Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

能向我解释ChatGPT的基本原理吗

Answer

ChatGPT 的基本原理如下:

  1. 数据获取:从网络、书籍等来源获取大量人类创作的文本样本。
  2. 训练神经网络:通过训练神经网络生成“类似”的文本。神经网络由简单元素组成,操作基本是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。
  3. 生成文本:能够从“提示”开始,然后继续生成“类似于训练内容”的文本。具体方式是把自己生成的下一个词,和之前的上文组合成新的上文,再生成下一个词,不断重复以生成任意长的下文,此过程称为自回归生成。
  4. 训练目的:训练的主要目的不是记忆,而是学习以单字接龙的方式来训练模型,学习提问和回答的通用规律,以便在遇到没记忆过的提问时,能利用所学规律生成用户想要的回答,这种能力也叫做泛化。
  5. 模型特点:ChatGPT 被称为生成模型,与搜索引擎不同,它可以创造不存在的文本。但它也存在缺点,可能混淆记忆,无法直接查看和更新所学,且高度依赖学习材料,导致缺乏及时性和准确性。

ChatGPT 中的 GPT 是 Generative Pre-Training Transformer,即生成式预训练转换器。其本质功能是“单字接龙”,长文由单字接龙的回归所生成。

ChatGPT 的成功表明人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”。但它并不总是说出“全局意义上的话”或对应于正确的计算,只是根据训练材料中的“声音类似”的东西“说出”“听起来正确”的东西。

当我们人类生成语言时,许多方面的工作与 ChatGPT 似乎相当相似。但 ChatGPT 最终(至少在它可以使用外部工具之前),仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。

Content generated by AI large model, please carefully verify (powered by aily)

References

ChatGPT 是在做什么,为什么它有效?

ChatGPT的基本概念在某种程度上相当简单。从网络、书籍等来源中获取大量人类创作的文本样本。然后训练神经网络生成“类似”的文本。特别是让它能够从“提示”开始,然后继续生成“类似于训练内容”的文本。正如我们所见,ChatGPT中的实际神经网络由非常简单的元素组成,尽管有数十亿个。神经网络的基本操作也非常简单,基本上是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。但是,这个过程能够产生成功地“类似于”网络、书籍等内容的文本,这是非常卓越和出乎意料的。它不仅是连贯的人类语言,而且“说的话”是“遵循其提示”的,利用其“读到”的内容。它并不总是说出“全局意义上的话”(或对应于正确的计算),因为(例如,没有访问Wolfram|Alpha的“计算超能力”)它只是根据训练材料中的“声音类似”的东西“说出”“听起来正确”的东西。ChatGPT的具体工程使其相当引人入胜。但是,最终(至少在它可以使用外部工具之前),ChatGPT仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。但是,其结果有多么类似于人类。正如我所讨论的,这表明了一些至少在科学上非常重要的事情:人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”。ChatGPT已经隐含地发现了它。但是我们可能可以用语义语法、计算语言等明确地揭示它。ChatGPT在生成文本方面的表现非常出色,结果通常非常接近我们人类所产生的。那么这是否意味着ChatGPT像大脑一样工作呢?它的基本人工神经网络结构最终是基于大脑的理想化模型的。当我们人类生成语言时,许多方面的工作似乎是相当相似的,这似乎是非常可能的。

直播一期:知识库及 GPT 基础介绍

具体来说就是给他任意⻓的上文,他会用自己的模型去生成下一个词那他是怎么回答那些⻓内容的呢?答案是把它自己生成的下一个词,和之前的上文组合成新的上文,再让它生成下一个词,不断重复就可以生成任意⻓的下文。该过程也叫做自回归生成。上文:我爱下文:香菜?中国?原神?每一次的回答就像掷骰子或抽卡,训练模型可以让答案更接近用户想要的答案(当然提示词的撰写也非常重要,后面的直播会说到)[heading2]🌐大型模型的训练方式[heading3]Chat GPT 🙅🏻‍♀️搜索引擎[content]难道说要把所有的提问回答组合都给chat GPT t来做单字接⻰吗?其实不需要训练的主要目的不是记忆,而是学习以单字接⻰的方式来训练模型。不仅仅是为了让模型记住某个提问和回答,数据库已经将所有信息都记忆好了,直接搜索就可以得到回答非要训练单字接⻰,为的就是让模型学习提问和回答的通用规律。以便在遇到没记忆过的提问时,也能利用所学的规律生成用户想要的回答,这种举一反三的目的也叫做泛化。学习材料的作用只是调整模型,以得到通用模型,为的是能处理未被数据库记忆的情况因此chat GPT也被称为生成模型,生成模型与搜索引擎非常不同,搜索引擎无法给出没被数据库记忆的信息,但生成语言模型可以创造不存在的文本。

YoYo:小白 AI 初识知识点扫盲

它为什么叫做ChatGPT呢?先说GPT:Generative Pre-Training Transformer;Generative生成式,Pre-Training预训练。Transformer转换器示意图ChatGPT实质功能:本质是「单字接龙」,长文由单字接龙的回归所生成GPT作为大脑,也就是模型是需要训练的。训练方式是通过材料学习,不断的形成模型。eg.未学习前,胡乱生成,学习后,概率抽样生成,可以对比小朋友学习前后训练的目的不是记忆,是学习,“提问和回答的通用规律”学习后的模型,可以实现举一反三Chat Gpt并不是搜索引擎的升级版,材料学习作业时调整模型,生成模型;可以给出没有记忆中的内容,这也是出现“幻觉”的原因,对现实不存在的东西,出现合乎规律的捏造,通过提前训练才能生成想要的问答,这样的训练是为了让它学会「能举一反三的规律」缺点是可能混淆记忆,无法直接查看和更新所学,且高度依赖学习材料,也是缺乏及时性,准确性的原因

Others are asking
我需要deepseek或chatgpt辅助完成中文硕士 论文综述的指令
很抱歉,目前没有关于使用 DeepSeek 或 ChatGPT 辅助完成中文硕士论文综述的具体指令。但一般来说,您可以利用这些工具来获取相关主题的信息和观点,为您的综述提供参考。不过需要注意的是,使用这些工具生成的内容不能直接作为您论文的一部分,您仍需要对获取的信息进行筛选、整理、分析和引用,并确保符合学术规范和道德标准。
2025-03-11
【深度拆解】ChatGPT-4o背后的技术革新:从语言模型到多模态跨越
ChatGPT4o 背后的技术革新具有重要意义。人类的感知多样,仅靠语言描述世界远远不够,多模态理解非常有用,能更全面学习世界、理解人类需求等。2023 年 9 月 GPT4v 发布,将大语言模型竞赛带入多模态模型时代,如 ChatGPT 能看图说话、画图,Google 的 Gemini 支持多种模态,但 OpenAI 常抢先发布。今年 5 月 OpenAI 发布 GPT4o,向智能体方向迈进,其是之前技术的集大成者,通过端到端神经网络混合训练视觉、语音和文本数据,平均音频输入反应时间为 300 毫秒,能感悟人类表达的情绪等。OpenAI 未公开 GPT4o 技术细节,唯一线索来自内部炼丹师的博客 AudioLM。此外,GPT4 是 OpenAI 的多模态工具,在编程任务中表现出色,ChatGPT 是用户友好界面,可与高级语言模型交互。2024 年 5 月 14 日 OpenAI 发布 GPT4o,效率高、价格降低、延迟缩短。9 月 16 日 OpenAI 推出 o1 系列模型,在复杂任务中表现优异,o1mini 适合编码任务,两个模型已在 ChatGPT 中提供,有免费或收费版本。
2025-03-09
如何发挥chatgpt 4.5的能力
以下是关于发挥 ChatGPT 4.5 能力的一些信息: 1. 可以通过特定提示词测试其是否真的升级,比如测试其是否能展现足够的刻薄与讽刺风格。 2. 预计 GPT4.5 正在向 ChatGPT Plus 用户推送,13 天内完成,建议重点体验其写作能力和对话情感。 3. 开启对话:打开 ChatGPT 应用或网页,点击开始对话,会员在苹果或安卓手机上购买的,电脑上也能登录。 4. 体验最新语音对话功能:将版本切到 ChatGPT 4o,点击右下角“耳机🎧”图标,选择一个声音,即可体验流畅的语音对话。 以上就是目前相关的一些内容,希望对您有所帮助。
2025-03-08
chatgpt plus使用技巧
以下是关于 ChatGPT Plus 的使用技巧: 安卓系统安装、订阅教程: 1. 订阅方法: 目前订阅 PLUS 版本有多种方法,手机端订阅较为简单方便。安卓手机可使用谷歌支付,苹果手机可在支付宝购买礼品卡充值到苹果 ID 里进行订阅。 首先在谷歌账号里绑定谷歌支付,支持国内的双币信用卡或全币信用卡。打开谷歌商店,依次点击“付款和订阅”“付款方式”“添加信用卡或借记卡”,填写信用卡信息后点击保存卡,付款方式中就会出现绑定的信用卡。 打开 ChatGPT 手机应用,选择谷歌账号登录,选择相应账号后,点击打开外部应用,成功登录 ChatGPT 后点 Continue 继续,点击顶部 get plus 按钮,再点击订阅按钮,此时会跳出谷歌支付的界面,确定订阅即可。日后如需取消订阅,可到谷歌商店的账号管理、付款和订阅里面取消。 2. 安装步骤: 安装 Google Play:到小米自带的应用商店搜索 Google Play 进行安装,安装好后打开,按照提示操作登录。 下载安装 ChatGPT:到谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI,注意别下错。可能会遇到“google play 未在您所在的地区提供此应用”的问题,可在 google play 点按右上角的个人资料图标,依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料,添加国内双币信用卡,地区选美。若仍搜不到,可卸载重装 Google Play,保持梯子的 IP 一直是美,多试几次。 3. 体验与订阅 GPT4 Plus 版本: 若只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录注册好的 ChatGPT 账号即可。 若想订阅 GPT4 Plus 版本,需先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡,然后在 ChatGPT 里订阅 Plus。 GPT4 Vision 目前仅适用于 ChatGPT Plus 和企业用户。ChatGPT Plus 每月收费 20 美元,可从常规免费 ChatGPT 帐户升级到。访问方法为:访问 OpenAI ChatGPT 网站并注册一个帐户,登录帐户并导航到“升级到 Plus”选项,继续升级以获得 ChatGPT Plus 的访问权限(需每月 20 美元的订阅费),在聊天窗口中选择“GPT4”作为模型,点击图片图标上传图片,并添加提示,指示 GPT4 执行。
2025-03-08
ChatGPT
2025-03-06
国内信用卡如何开通ChatGPT plus
国内信用卡开通 ChatGPT plus 的步骤如下: 1. 安装 Google Play:到小米自带的应用商店搜索 Google Play 进行安装,安装好后打开,按照提示一步步操作登录。 2. 下载安装 ChatGPT:到谷歌商店搜索“ChatGPT”进行下载安装,注意开发者是 OpenAI。可能会遇到“google play 未在您所在的地区提供此应用”的问题,可在 google play 点按右上角的个人资料图标,依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。在此处可“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。若回到 Google Play 首页还搜不到 ChatGPT,可以卸载重装 Google Play,操作过程保持梯子的 IP 一直是美。 3. 若想订阅 GPT4 Plus 版本: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡。 然后在 ChatGPT 里订阅 Plus,具体操作包括打开 ChatGPT 手机应用,选择谷歌账号登录,选择相应账号后点击打开外部应用,成功登录后点 Continue 继续,点击顶部 get plus 按钮,点击订阅按钮,此时会跳出谷歌支付的界面,确定订阅即可。 如日后想要取消订阅,可到谷歌商店的账号管理,付款和订阅里面取消。若在上述过程中出现未提及的问题,可私信联系相关人员寻求帮助。
2025-03-03
在学习过ai的基本原理以及尝试过一些大众的ai应用后,我想进一步深入了解ai,给我可以参考的方向
以下是您进一步深入了解 AI 可以参考的方向: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,其上手容易且实用。 4. 实践和尝试: 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。 6. 精进学习: 了解 AI 背景知识,包括基础理论、历史发展。 掌握数学基础,如统计学基础(熟悉均值、中位数、方差等)、线性代数(了解向量、矩阵等)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 熟悉算法和模型,如监督学习(了解线性回归、决策树、支持向量机等)、无监督学习(熟悉聚类、降维等)、强化学习(了解基本概念)。 学会评估和调优,包括性能评估(了解交叉验证、精确度、召回率等)、模型调优(学习使用网格搜索等技术优化模型参数)。 掌握神经网络基础,包括网络结构(理解前馈网络、卷积神经网络、循环神经网络等)、激活函数(了解 ReLU、Sigmoid、Tanh 等)。
2025-03-11
大模型的基本原理
大模型的基本原理如下: 1. 模仿人类大脑结构,表现出人的特征,应对大模型回答不及预期的解决之道与人与人交流沟通的技巧相似。 2. GPT 全称是生成式预训练转换器模型(Generative Pretrained Transformer): 生成式(Generative):大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从提示词“How”开始,依次推理计算出“are”“you”等,直到计算出下一个词是的概率最大时结束输出。 3. 通俗来讲,大模型通过输入大量语料来让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作: 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:用合适算法讲述“书本”内容,让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后进行推导(infer),如进行翻译、问答等。 4. 在 LLM 中,Token 被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时会对其进行数字化,形成词汇表。 5. 相关技术名词及关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签自主发现规律,强化学习从反馈里学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型,生成只是大语言模型的一个处理任务。 6. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,基于自注意力机制处理序列数据,不依赖 RNN 或 CNN。
2025-02-17
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
最值得了解的AI专业名称,及解释
以下是一些值得了解的 AI 专业名称及解释: 1. 人工智能(Artificial Intelligence,简称 AI):一种目标,让机器展现智慧。 2. 生成式人工智能(Generative AI,简称 GenAI):一种目标,让机器产生复杂有结构的内容。 3. 机器学习:一种手段,让机器自动从资料中找到公式。 4. 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 5. 大语言模型(Large Language Models,简称 LLMs):是一类具有大量参数的“深度学习”模型。 6. ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 7. AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 这些概念之间存在一定的关系,AIGC 技术可以用于多种应用,ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例。对于新手学习 AI,建议先了解 AI 基本概念,如阅读相关的入门文章和熟悉术语。可以在特定的学习路径中找到为初学者设计的课程,通过在线教育平台按自己节奏学习。选择感兴趣的模块深入学习,比如掌握提示词技巧。实践和尝试很关键,可使用各种产品做出作品,并体验如 ChatGPT 等 AI 产品。
2025-03-11
可以帮我输出一张图,解释人工智能的工作原理?
以下是关于人工智能工作原理的解释: 在音频生成方面,以谷歌的 V2A 系统为例: 首先,将视频输入编码为压缩表示。 然后,基于扩散模型从随机噪声中迭代改进音频,这一过程由视觉输入和自然语言提示引导,以生成与提示紧密配合的同步逼真音频。 最后,对音频输出进行解码,转化为音频波形,并与视频数据相结合。 在生成式人工智能的整体领域中: 监督学习用于标记事物,一直占据较大比例。 生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。 以生成文本为例,大语言模型通过使用监督学习不断预测下一个词语来生成新的文本内容,这需要千亿甚至万亿级别的单词数据库。 此外,大语言模型在写作、修改文本、翻译等方面有应用,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。人工智能作为一种通用技术,有大量的运用空间,如基于网络界面应用和基于软件程序应用等。
2025-03-10
通俗解释AGI
AGI 即人工通用智能,指的是能够胜任几乎所有人类智力活动的人工智能,其能力不局限于特定领域。例如,它能够完成推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等各种智力任务。在 2000 年代初,“通用人工智能”(AGI)这一名词开始流行,强调从“狭义 AI”向更广泛的智能概念的追求,符合心理学家、哲学家和计算机科学家对智能的广泛定义。但目前并没有一个被广泛接受的 AGI 定义。像 GPT3 及其后续版本在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型则不具备这样的能力。当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革。
2025-03-10
请解释一下AGI是什么意思
AGI 指的是通用人工智能(Artificial General Intelligence),它是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。 例如,OpenAI 致力于研发实现 AGI 的技术,像 GPT 系列模型在某种程度上是朝着 AGI 迈出的巨大一步。人类在不断创新,从电力、晶体管、计算机、互联网,到很快可能出现的 AGI,每一代新的工具都推动着世界的进步。在未来,AGI 可能会让人们的生活在各方面获得极大的改善,比如治愈所有疾病、有更多时间陪伴家人以及充分发挥创造潜能等。
2025-03-06
AI提示词解释
以下是关于 AI 提示词的详细解释: 提示词用于描绘您想要生成的画面。在星流一站式 AI 设计工具中,不同的基础模型对输入语言有不同要求。通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。 写好提示词要注意以下几点: 1. 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可以对已有的提示词权重进行编辑。 4. 辅助功能:包括翻译功能,可一键将提示词翻译成英文;删除所有提示词,可清空提示词框;会员加速,能加速图像生图速度,提升效率。 在【SD】文生图中,括号和冒号加数字(如:1.2)都是用来增加权重的,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。同时,还可以增加反向提示词,告诉 AI 我们不要什么。 在 AI 领域中,Prompt 中文译作提示词,就是我们输入给大模型的文本内容,可以理解为您和大模型说的话、下达的指令。提示词的质量好坏会显著影响大模型回答的质量。Token 是大模型语言体系中的最小单元,不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字,大模型的收费计算方法及对输入输出长度的限制通常以 token 为单位计量。上下文(context)指对话聊天内容前、后的内容信息,其长度和窗口都会影响 AI 大模型回答的质量。
2025-03-06
你作为AI开源项目的专家,请解释下如何来做一个AI开源项目
要做一个 AI 开源项目,以下是一些关键步骤和要点: 1. 明确项目目标和范围:确定您的 AI 开源项目要解决的具体问题和应用场景,以及项目的边界和功能。 2. 制定.cursorrules: 说明自己的身份和期望的技能:告诉 AI 您希望它具备的专业水准和技能。 明确项目任务:清晰地告知 AI 项目的具体目标和要求。 设定项目规则:包括代码规范、风格等,以保证代码的一致性和可维护性。 规划文件存放位置:便于代码的组织和查找。 指定使用的工具:如框架和库,确保项目的整洁和统一。 说明测试要求:让 AI 生成的代码具有可测试性,并主动编写测试用例。 提供参考资料:帮助 AI 基于最佳实践进行开发。 如有 UI 需求,明确相关要求。 3. 选择合适的技术和框架:例如 Fooocus 这样的图像生成开源项目,它内置多种风格,适合小白上手,且具有离线、开源、免费等特点,支持在多种操作系统上使用,并借鉴了稳定扩散和 Midjourney 的设计思想。 4. 考虑开源的角色和影响:从长远来看,开源模型的情况会变得复杂。对于具有高度能力的模型,如能够自主创办和建立大型科技公司或进行科学研究的模型,其是否开源会产生难以预测的后果。 总之,创建一个 AI 开源项目需要综合考虑多方面的因素,包括技术选型、规则制定、目标明确等,以确保项目的成功和可持续发展。
2025-03-06