直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

提示词工程

回答

提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。

主要职责包括:

  • 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,确保清晰传达用户意图并引导模型生成满意结果。
  • 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,以提高模型性能。
  • 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。

提示词工程师需要具备以下技能和知识:

  • 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。
  • 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。
  • 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。
  • 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。

以下是一些提示词工程师工作的实际案例: 无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能。其实现原理主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。

在生成式 AI 模型中,提示词工程是一门新兴的学科,它塑造了模型的交互和输出。提示词是用户与模型沟通愿望的文本界面,可从简单问题到复杂任务,包括指令、问题、输入数据和示例等。提示词工程的核心在于制作出能实现特定目标的最佳提示词,这不仅要指导模型,还需深刻理解模型能力和局限性及所处上下文。此外,提示词工程是一个迭代和探索的过程,类似于传统软件工程实践,且需要适应新范式。本文旨在深入探讨这个新兴领域,重点关注其在 LLM 中的应用,且多数技术也适用于多模态生成式 AI 模型。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:什么是提示词工程师(Prompt Engineer)

提示词工程师(Prompt Engineer)是指在与人工智能模型进行交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。作为提示词工程师,他们需要具备一定的领域知识、理解人工智能模型的能力以及对用户需求的敏感性。提示词工程师的主要职责包括:设计提示:提示词工程师需要根据用户需求和模型能力设计有效的提示。他们需要考虑提示的长度、结构、措辞和信息量等因素,以确保提示能够清晰地传达用户意图并引导模型生成满意的结果。优化提示:提示词工程师需要不断优化提示,以提高模型的性能。他们可以通过收集用户反馈、分析模型结果和实验不同的提示策略等方式来优化提示。评估提示:提示词工程师需要评估提示的有效性。他们可以使用各种指标来评估提示,例如模型的准确率、流畅度和相关性等。提示词工程师需要具备以下技能和知识:领域知识:提示词工程师需要对他们所工作的领域有深入的了解,以便能够设计出有效的提示。自然语言处理(NLP):提示词工程师需要了解NLP的基本原理和技术,以便能够理解和生成自然语言文本。人工智能(AI):提示词工程师需要了解AI的基本原理和技术,以便能够理解和使用AI模型。沟通能力:提示词工程师需要具备良好的沟通能力,以便能够与用户、团队成员和其他利益相关者有效沟通。提示词工程师是一个新兴的职业,随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。以下是一些提示词工程师工作的实际案例:

无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能

本文采用的提示词工程主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析tool calling的输出,并将工具返回的内容再次嵌入LLM。[heading2]1、提示词注入阶段[content]INSTRUCTION为最后注入到系统提示中的字符串,他又包含了TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT三个部分。TOOL_EAXMPLE用于提示LLM如何理解tool以及如何使用tool。在编写TOOL_EAXMPLE时,请注意用一些无关紧要的工具作为示例,例如本文使用的将数字加一和数字减一的工具,从而避免LLM混淆真正可以使用的工具与示例工具。tools_instructions是由目前通用的工具字典转换成LLM可读的工具列表。实际使用LLM时,可以通过输入不同的工具来动态调整tools_instructions,让LLM得知目前可用的工具有哪些以及如何使用。REUTRN_FORMAT定义了调用API的格式。[heading2]2、工具结果回传阶段[content]利用正则表达式抓取输出中的"tool"和"parameters"参数。对于interpreter工具,使用了另一种正则表达式来提取LLM输出的代码,提高LLM使用interpreter工具的成功率。本文使用代码如下:通过识别LLM返回的调用工具的字典,提取出对应的值,再传入相应的工具函数,最后将工具返回的结果以observation的角色返回给LLM。对于一些不接受observation、tool、function角色的LLM接口,可以改为回传给user角色,例如:通过以上提示词工程,可以避免微调,让完全没有tool calling能力的LLM获得稳定的tool calling能力。

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

在生成式AI模型中,提示词工程是一门新兴的学科,它塑造了这些模型的交互和输出。提示词是用户与模型沟通愿望的文本界面,无论是在像DALLE-3或Midjourney这样的图像生成模型中描述图像,还是在像GPT-4和Gemini这样的LLM中提出复杂的问题。提示词可以是简单的问题到复杂的任务,包括指令、问题、输入数据和示例,以指导AI的响应。提示词工程的核心在于制作出能够实现特定目标的最佳提示词。这个过程不仅仅是指导模型,还涉及到对模型能力和局限性的深刻理解,以及它所处的上下文。例如,在图像生成模型中,提示词可能是对期望图像的详细描述,而在LLM中,它可能是一个包含各种类型数据的复杂查询。提示词工程不仅仅是构建提示词,它还需要结合领域知识、对AI模型的理解,以及一种系统化的方法来为不同情境定制提示词。这可能包括创建可以根据给定数据集或上下文进行程序化修改的模板。例如,基于用户数据生成个性化响应可能会使用一个动态填充相关信息的模板。此外,提示词工程是一个迭代和探索的过程,类似于传统软件工程实践,如版本控制和回归测试。这个领域的快速增长表明它有潜力彻底改变机器学习的某些方面,超越传统的特征或架构工程方法,尤其是在大型神经网络的背景下。另一方面,传统工程实践,如版本控制和回归测试,需要适应这个新范式,就像它们适应其他机器学习方法一样[1]。本文旨在深入探讨这个新兴领域,探索其基础方面和高级应用。我们将重点关注提示词工程在LLM中的应用。然而,大多数技术也可以应用于多模态生成式AI模型。

其他人在问
常用的结构化提示词框架有哪些?
以下是一些常用的结构化提示词框架: 1. 基础的结构化编写 Prompt 框架: Role: Profile: author:作者 version:版本 language:中文 description: Goals: 1. 2. Constrains: Skills: Workflows: 1. 2. 2. CRISPE 框架(Capacity and Role,Insight,Statement,Personality,Experiment) 3. BROKE 框架(Background,Role,Objectives,Key Results,Evolve) 4. ICIO 框架: Instruction(指令):明确定义 AI 需要执行的任务,遵循简洁明了、具体详细、行动导向、单一任务等原则。 Context(背景信息):提供任务的相关背景,包括任务目的、目标受众、相关背景、限制条件、角色扮演等。 Input Data(输入数据):为 AI 提供执行任务所需的具体信息或数据。 Output Indicator(输出引导):指导 AI 如何构建和呈现输出结果,包括格式要求、语气和风格、长度限制、结构指引、特殊要求、评估标准等。
2024-11-14
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 学习 Stable Diffusion 提示词的步骤: 1. 学习基本概念:了解其工作原理、模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 2. 研究官方文档和教程:通读官方文档,研究开发团队和专家的教程与技巧分享。 3. 学习常见术语和范例:熟悉相关领域术语和概念,研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧:学会组合词条精确描述效果,掌握控制生成权重的符号技巧,处理抽象概念等无形事物的描述。 5. 实践和反馈:尝试生成不同风格和主题的图像,对比结果并总结经验,在社区分享请教获取反馈。 6. 创建提示词库:按主题、风格等维度建立,记录成功案例方便复用。 7. 持续跟进前沿:关注最新更新和社区分享,掌握新技术、新范式、新趋势。 学习提示词运用的建议: 1. 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 2. 学习构建技巧:明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例:在领域社区、Github 等资源中研究学习。 4. 实践、迭代、优化:与语言模型互动,根据输出提高提示词质量,尝试变体并分析差异。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究:持续关注最新研究成果和方法论。
2024-11-13
我现在正在使用mid journey生成图片,做漫画,我想知道怎么样写提示词,才能更好的让mid journey生成我需要的图片
以下是关于在 Midjourney 中写提示词以生成所需图片的一些指导: 1. 常规操作: 登录 Discord 网站,打开 MJ 服务器出图。 通过 /imagine 命令,在对话框输入“/imagine”激活指令,然后把提示词粘贴到“prompt”后面,点击发送即可。 想要多少张图片,就要输入多少次提示词,且输入下一次提示词之前,要等待上一张图片生成完毕。 2. 使用插件提效: Autojourney 是电脑浏览器的一个插件,可在浏览器拓展程序中下载安装。 它功能强大,支持批量发送提示词、自动下载图片、自动放大图片、生成提示词等功能,能够提高使用 Midjourney 的效率。 点击浏览器右上角的插件,选择 Autojourney 插件将其激活,将提示词复制到插件中点击发送,提示词会排队进入 MJ 发送程序,自动批量出图。 Autojourney 插件支持一次输入 10 组提示词。 3. Midjourney V6 更新风格参考命令 2.0“sref”: 将“sref”和 URL添加到提示的末尾,以参考风格参考图像的视觉风格创建新图像。 新提示本身没有美学内容,有助于“sref”的执行。 4. Midjourney 最新编辑器更新: 常见问题:提出极其不合适的请求或要求修改非常小的区域,可能无法得到预期结果;在场景中放很小的头部并要求外绘,生成的身体可能会太大。 重纹理化:是一种通过使用另一张图像来引导图像结构或构图的方法,从构图引导图像开始,然后使用提示词和参数添加所需细节。 右侧显示的缩略图:显示器右侧的缩略图显示最近几次编辑会话的记录,左边稍大的缩略图是上传或链接的母图像,其他四张是子图像,展示根据提示生成的不同表达方式。 “View All /查看全部”按钮:每次在不改变选择区域的情况下对母图像进行编辑时,会生成新的缩略图行,更改提示词,新提示词对应的图像会显示在子图像中。
2024-11-13
如何学习提示词
学习提示词可以参考以下步骤和方法: 1. 基础概念学习 了解相关模型(如 Stable Diffusion)的工作原理和架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方资料 通读官方文档,了解提示词相关指南。 研究开发团队和专家的教程、技巧分享。 3. 学习常见术语和范例 熟悉相关领域(如 UI、艺术、摄影)的专业术语和概念。 研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧 学会组合多个词条精确描述想要的效果。 掌握使用特定符号(如“()”、“”)控制生成权重。 学会处理抽象概念、情感等无形事物的描述。 5. 实践与反馈 用不同提示词生成各种风格和主题的图像。 对比结果,分析原因,总结经验。 在社区分享,请教高手获取反馈建议。 6. 创建提示词库 按主题、风格等维度建立自己的词库。 记录成功案例和总结,方便复用。 7. 持续跟进前沿 关注模型的最新更新和社区动态。 掌握提示词的新技术、新范式、新趋势。 此外,还需注意: 1. 理解提示词的作用,它为模型提供上下文和指示,影响输出质量。 2. 学习构建技巧,明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例,可在领域社区、Github 等资源中寻找。 4. 多实践、迭代、优化,尝试变体并分析输出差异。 5. 活用提示工程工具,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究,提示工程是前沿领域,持续关注最新成果和方法论。 精心设计的提示词能最大程度发挥语言模型的潜力,多实践、多学习、多总结才能掌握窍门。
2024-11-13
如何学习提示词
学习提示词可以按照以下步骤和方法进行: 1. 基本概念的学习: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,提示词在现代大型语言模型中极其重要,掌握其运用技巧能最大限度发挥模型潜能。具体包括: 1. 理解提示词的作用:提示词向模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧:明确任务目标,用简洁准确的语言描述;给予足够背景信息和示例,帮助模型理解语境;使用清晰指令,如“解释”“总结”“创作”等;对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:目前已有一些提示工程工具可供使用。 6. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新研究成果和方法论。 提示词是给大语言模型的输入文本,用于指定模型执行任务和生成输出,发挥“提示”模型的作用。设计高质量提示词需根据目标任务和模型能力精心设计。学习提示词需要先了解大模型特性,具备清晰表述需求和任务的能力。
2024-11-13
suno提示词怎么写
以下是关于 Suno 提示词的写法: 在创作“离谱村”时,先收到台词素材和配音,构思出“童趣”“欢乐”等词,让 AJ 提出活泼、离谱搞笑的方向。然后把台词和想到的形容词投喂给 GPT4 生成音乐脚本,再将脚本输入给 SunoBeats 生成提示词。但最初生成的提示词太长,之后参考论坛网友分享的格式,即通过调式变化加上情节描述,使用和弦进展推动故事情节发展,让 SunoBeats 模仿这种格式生成提示词,测试发现这种格式的提示词质量更好、利用率更高。 推荐的写法可参考详细教程,如。 Suno 创作音乐的小技巧:如果想参考现有歌曲的节奏,可以在(引子)来更好地告诉 AI 这段歌词应该怎么唱。
2024-11-13
请总结本知识库,并提炼出11节面向十岁儿童关于AIGC的课程,三节是提示词工程,2节文生文,2节文生图/图生图,2节文生音频,2节文生视频/图生视频,不需要涉及智能体及文生代码
以下是对本知识库的总结: 包含了不同时间段的 AIGC 周刊内容,如 Open AI 发布 ChatGPT 的 iOS 应用、Google 宣布多项 AI 新功能、AI 歌手相关教程等。 有关于提示词工程的课程及相关技巧介绍。 涉及一些特定的 AIGC 技术和方法,如 Donut 文档理解方法。 提到了谷歌的生成式 AI 学习课程。 以下是为十岁儿童设计的 11 节关于 AIGC 的课程: 1. 提示词工程基础 什么是提示词 提示词的作用 简单的提示词示例 2. 提示词工程进阶 复杂提示词的构建 如何优化提示词 提示词的实际应用 3. 提示词工程实践 设计自己的提示词任务 分享与讨论提示词成果 总结提示词的使用技巧 4. 文生文入门 了解文生文的概念 简单的文生文工具介绍 尝试生成一段文字 5. 文生文提高 优化文生文的输入 让生成的文字更有趣 比较不同文生文的效果 6. 文生图/图生图基础 认识文生图和图生图 常见的文生图工具 用简单描述生成一张图片 7. 文生图/图生图进阶 更复杂的描述生成精美图片 对生成的图片进行修改 分享自己生成的图片 8. 文生音频入门 什么是文生音频 简单的文生音频工具 生成一段简单的音频 9. 文生音频提高 让生成的音频更动听 给音频添加特效 欣赏优秀的文生音频作品 10. 文生视频/图生视频基础 文生视频和图生视频的概念 基本的文生视频工具 制作一个简单的视频 11. 文生视频/图生视频进阶 让视频更精彩 视频的后期处理 展示自己制作的视频
2024-10-31
aigc提示工程师应该学习哪些课程
以下是 AIGC 提示工程师应该学习的一些课程: 1. 针对开发者的 AIGPT 提示工程课程:由 OpenAI 技术团队成员授课,涵盖软件开发最佳实践的提示,常见用例如总结、推理、转换和扩展,以及使用 LLM 构建聊天机器人等内容。 2. 范德堡大学的提示工程课程:教您成为生成 AI 工具的专家用户,展示利用生成式人工智能工具的示例,提高日常工作效率,并深入了解其工作原理。 3. 了解大型语言模型背后的理论:深入探讨自然语言处理中基本模型的细节,学习创新技术,涉及基于 Transformer 的模型,以及少量学习和知识蒸馏等转移学习技术,聚焦新的 LLM 发展方向。 4. 提示词培训课——Part4:包括提词工程的基础概念和实用技巧,如利用地规构建思考链条、探讨提示词的敏感性问题、解释'token'概念及相关操作,深入讲解提示词的进阶技术,如增强推理能力、运用元提示和任务分解技巧,探讨 AIAgent 和 AIAgentic 的概念和差别,学习多智能体设计模式,梳理提词落地流程。
2024-10-31
AI搜索工程架构
以下是关于 AI 搜索工程架构的相关内容: 一、可插拔架构 在整个搜索回答的全流程,有很多节点可以做 Hook 埋点,每个 Hook 可以挂载零至多个插件,多个插件构成了 AI 搜索的可插拔架构。一些常用的功能,可以由 AI 搜索平台自身或第三方创作者抽离成标准插件,用在 AI 搜索主流程或者智能体/工作流等辅助流程。比如,自定义一个思维导图摘要插件,用户可以在搜索的步骤中选择这个自定义插件,实现用思维导图输出搜索结果。 二、提升可玩性 可以预置一个 after_answer 钩子,在大模型回答完用户 query 之后,把请求大模型的上下文信息和大模型的回答内容一起发给第三方插件,第三方插件可以把内容整理成文章/思维导图等格式,再同步到第三方笔记软件。 三、自定义智能体 Agent 智能体一般是对一些自定义操作的封装,用于解决某个场景的某类问题。以 ChatGPT 的 GPTs 举例,一个智能体应用由以下几部分自定义操作组成: 1. 提示词:描述智能体的作用,定义智能体的回复格式。 2. 知识库:上传私有文件作为回答参考。 3. 外挂 API:请求第三方 API 获取实时数据。 4. 个性化配置:是否联网/是否使用图片生成/是否使用数据分析等。 四、提升准确度 1. 为获取足够信息密度,需获取链接详情页内容。通过上一步的 Reranking 选择最匹配的 top_k 条数据,避免获取全部内容导致 context 超限。为保证获取详情内容的效率,可做并行处理,如通过 goroutine 或者 python 的协程并行读取 top_k 条链接。获取链接详情内容有多种方案,如网页爬虫、无头浏览器抓取、第三方 Reader 读取等。 2. 构建上下文内容池 Context Pool,将历史搜索结果和历史对话消息组成 Context Pool。每次搜索后追问,都带上这个 Context Pool 做意图识别/问题改写,拿到新的检索结果后更新这个 Context Pool,并带上最新的 Context Pool 内容作为上下文请求大模型回答。需要保证 Context Pool 的内容有较高的信息密度,同时控制其内容长度,不要超过大模型的 context 极限。 五、检索增强生成 以 Sana 的企业搜索用例为例,RAG 过程始于应用程序加载和转换无结构文件,转换为 LLM 可查询格式,文件被“分块”成更小的文本块,并作为向量嵌入和存储在数据库中。当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM,然后 LLM 合成答复返回给用户。在生产中,AI 应用程序具有更复杂的应用程序流程,包含多个检索步骤和提示链,不同类型的任务并行执行,然后将结果综合在一起,以生成最终输出。
2024-10-26
提词工程
提示词工程是一门在 AI 领域中新兴且重要的学科,主要包括以下方面: 实现原理:主要由提示词注入和工具结果回传两部分代码组成。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。 提示词注入阶段:INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 理解和使用工具,编写时应注意用无关紧要的工具作示例避免混淆。tools_instructions 可通过输入不同工具动态调整,让 LLM 得知可用工具及使用方法。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传阶段:利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码。通过识别 LLM 返回的调用工具的字典提取对应值,传入工具函数,将结果以 observation 或 user 角色返回给 LLM。 是用户与模型沟通愿望的文本界面,涵盖简单问题到复杂任务,包括指令、问题、输入数据和示例等,以指导 AI 的响应。其核心在于制作出能实现特定目标的最佳提示词,需结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,还可能包括创建可根据给定数据集或上下文进行程序化修改的模板,是一个迭代和探索的过程。 在人工智能迅速发展的当下,已成为企业领导者必须掌握的关键技能,是设计和优化输入到 AI 系统指令(即提示词)的艺术和科学。但简单提示词存在局限性,无法满足复杂需求,推动了更先进提示技巧如思维链、思维树和思维图等的发展。
2024-10-23
无人驾驶开发工程师
以下是为您提供的关于无人驾驶开发工程师的相关信息: 在生成式人工智能的行动方面,目前出现的趋势是首先将 AI 作为辅助驾驶(humanintheloop)部署,并通过使用机会积累经验,最终实现全自动化部署。例如 Sierra 就是一个例子,它在无法解决问题时能优雅地转交给人工处理。同时,新一代自主型应用随着生成式 AI 推理能力的提升而涌现,如 L4 智能驾驶可能是第一个具身智能最大的应用场景,目前其安全性比人类高 10 倍。 在 2024 北京智源大会的主题讨论中,张亚勤认为目前真正赚钱的是 2B 领域,如芯片、服务器等,应用是先 2C 再 2B。他把智能分成信息智能、具身智能、生物智能 3 个阶段,预测 05 年是信息智能,510 年是物理智能(具身智能),1520 年是生物智能。李开复认为无人驾驶面临巨大机会,FSD 会为无人驾驶带来新机遇,大模型适合虚拟世界,而接入物理世界会面临很多现实问题,创业者更适合从虚拟世界的 AI 创业开始。
2024-10-21
我是一定装饰工程造价从业人员,如何通过学习AI来提升自己
对于装饰工程造价从业人员来说,通过以下方式学习 AI 可以提升自己: 了解相关基础知识和技术细节:阅读关于 AI 生成 CAD 图的学术论文,深入研究其原理和应用。 参加在线课程:系统学习 AI 在 CAD 领域的知识和技能。 观看教程视频:直观地了解操作和实践方法。 交流学习:与同行或专家交流经验,分享心得。 需要注意的是,随着 AI 技术的不断发展,其在 CAD 设计中的应用会越来越广泛,为设计师和工程师提供更多辅助和支持。但以上内容由 AI 大模型生成,请您仔细甄别。
2024-09-24