直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI搜索工程架构

回答

以下是关于 AI 搜索工程架构的相关内容:

一、可插拔架构 在整个搜索回答的全流程,有很多节点可以做 Hook 埋点,每个 Hook 可以挂载零至多个插件,多个插件构成了 AI 搜索的可插拔架构。一些常用的功能,可以由 AI 搜索平台自身或第三方创作者抽离成标准插件,用在 AI 搜索主流程或者智能体/工作流等辅助流程。比如,自定义一个思维导图摘要插件,用户可以在搜索的步骤中选择这个自定义插件,实现用思维导图输出搜索结果。

二、提升可玩性 可以预置一个 after_answer 钩子,在大模型回答完用户 query 之后,把请求大模型的上下文信息和大模型的回答内容一起发给第三方插件,第三方插件可以把内容整理成文章/思维导图等格式,再同步到第三方笔记软件。

三、自定义智能体 Agent 智能体一般是对一些自定义操作的封装,用于解决某个场景的某类问题。以 ChatGPT 的 GPTs 举例,一个智能体应用由以下几部分自定义操作组成:

  1. 提示词:描述智能体的作用,定义智能体的回复格式。
  2. 知识库:上传私有文件作为回答参考。
  3. 外挂 API:请求第三方 API 获取实时数据。
  4. 个性化配置:是否联网/是否使用图片生成/是否使用数据分析等。

四、提升准确度

  1. 为获取足够信息密度,需获取链接详情页内容。通过上一步的 Reranking 选择最匹配的 top_k 条数据,避免获取全部内容导致 context 超限。为保证获取详情内容的效率,可做并行处理,如通过 goroutine 或者 python 的协程并行读取 top_k 条链接。获取链接详情内容有多种方案,如网页爬虫、无头浏览器抓取、第三方 Reader 读取等。
  2. 构建上下文内容池 Context Pool,将历史搜索结果和历史对话消息组成 Context Pool。每次搜索后追问,都带上这个 Context Pool 做意图识别/问题改写,拿到新的检索结果后更新这个 Context Pool,并带上最新的 Context Pool 内容作为上下文请求大模型回答。需要保证 Context Pool 的内容有较高的信息密度,同时控制其内容长度,不要超过大模型的 context 极限。

五、检索增强生成 (RAG) 以 Sana 的企业搜索用例为例,RAG 过程始于应用程序加载和转换无结构文件,转换为 LLM 可查询格式,文件被“分块”成更小的文本块,并作为向量嵌入和存储在数据库中。当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM,然后 LLM 合成答复返回给用户。在生产中,AI 应用程序具有更复杂的应用程序流程,包含多个检索步骤和提示链,不同类型的任务并行执行,然后将结果综合在一起,以生成最终输出。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

工具:我做了一个 AI 搜索引擎

[title]工具:我做了一个AI搜索引擎[heading1]ThinkAny是如何冷启动的[heading2]AI搜索如何提升可玩性比如,可以预置一个after_answer钩子,在大模型回答完用户query之后,把请求大模型的上下文信息和大模型的回答内容一起发给第三方插件,第三方插件可以把内容整理成文章/思维导图等格式,再同步到第三方笔记软件。在整个搜索回答的全流程,有很多节点可以做Hook埋点,每个Hook可以挂载零至多个插件,多个插件构成了AI搜索的可插拔架构,这套架构让AI搜索的全流程变得高度可定制,可玩性更高。一些常用的功能,可以由AI搜索平台自身或第三方创作者抽离成标准插件,用在AI搜索主流程或者智能体/工作流等辅助流程。比如,自定义一个思维导图摘要插件,输入内容是一段文本,输出内容是基于toc(table of contents)构成的思维导图。用户可以在搜索的步骤中选择这个自定义插件,实现用思维导图输出搜索结果。1.自定义智能体Agent智能体是现阶段ChatBot类产品经常用到的一种辅助产品形态。智能体一般是对一些自定义操作的封装,用于解决某个场景的某类问题。以ChatGPT()的GPTs举例,一个智能体应用由以下几部分自定义操作组成:提示词:描述智能体的作用,定义智能体的回复格式知识库:上传私有文件作为回答参考外挂API:请求第三方API获取实时数据个性化配置:是否联网/是否使用图片生成/是否使用数据分析等AI搜索的智能体也大体如此,外挂API的操作实际上就是挂载自定义信息源做检索。

工具:我做了一个 AI 搜索引擎

[title]工具:我做了一个AI搜索引擎[heading1]ThinkAny是如何冷启动的[heading2]AI搜索如何提升准确度很多的信息源(比如谷歌)返回的检索结果,只包含链接+摘要信息。如果要保证足够的信息密度,免不了要获取链接对应的详情页内容(Read Content)。上一步的Reranking让我们可以选择其中最匹配的top_k条数据,而不至于获取全部内容导致context超限。为了保证获取详情内容的效率,我们需要做一定的并行处理。比如通过goroutine或者python的协程并行读取top_k条链接,在一次请求耗时内拿到top_k条链接的全部内容。获取链接详情内容有很多方案,包括网页爬虫/无头浏览器抓取/第三方Reader读取等。ThinkAny目前使用的是jina.ai的Reader方案。做了一个开关,控制是否获取链接详情,为了保证响应速度,线上的版本暂时未开。1.构建上下文内容池Context Pool提高AI搜索的准确度,上下文的控制也是一个非常重要的手段。比如可以构建一个上下文内容池(Context Pool)=历史搜索结果(Search Results)+历史对话消息(Chat Messages)每次搜索后追问,都带上这个Context Pool做意图识别/问题改写,拿到新的检索结果后更新这个Context Pool,并带上最新的Context Pool内容作为上下文请求大模型回答。Context Pool里的Search Results可以根据链接做去重,Chat Messages可以根据相似度匹配做过滤。需要保证Context Pool的内容有较高的信息密度,同时要控制Context Pool的内容长度,不要超过大模型的context极限。对Context Pool的构建和动态更新,是一个非常有挑战性的事情,如果能做好,对搜索结果的准确度提升也能起到非常大的帮助。1.提示词工程Prompt Engineering

AI 智能体:企业自动化的新架构 - Menlo Ventures

设置基线:RAG是当今大多数现代人工智能应用程序的标准架构。让我们以Sana的企业搜索用例为例,了解它在幕后的工作原理。该过程始于应用程序加载和转换无结构文件(如PDF、幻灯片、文本文件)跨越企业数据孤岛,如Google Drive和Notion,转换为LLM可查询格式,通常通过像[Unstructured](https://menlovc.com/portfolio/unstructured/)*这样的数据预处理引擎进行。这些文件现在被"分块"成更小的文本块,以实现更精确的检索,并作为向量嵌入和存储在像[Pinecone](https://menlovc.com/portfolio/pinecone/)*这样的数据库中。当用户向AI应用程序提出问题时(例如,"总结我与公司X会议的所有笔记"),系统会检索语义上最相关的上下文块,并将其折叠到"元提示"中,与检索到的信息一起馈送给LLM。然后,LLM会从检索到的上下文中合成一个整洁的带有项目符号的答复返回给用户。当然,该图仅说明了一个带有一个LLM调用的单一检索步骤。在生产中,AI应用程序具有更复杂的应用程序流程,包含数十甚至数百个检索步骤。这些应用程序通常具有"提示链",其中一个检索步骤的输入馈送到下一步,并且不同类型的任务并行执行多个"提示链"。然后将结果综合在一起,以生成最终输出。[Eve](https://menlovc.com/portfolio/eve/)*法律研究的共同驾驭员,例如,可能会将针对《第七篇》的研究查询分解为专注于预定子主题的独立提示链,如雇主背景、就业历史、《第七篇》、相关案例法和原告案件支持证据。LLMs然后运行每个提示链,为每个生成中间输出,并综合各输出编写最终备忘录。

其他人在问
有没有AI数字人的软件
以下是一些 AI 数字人的软件和相关信息: 互联网厂商: 腾讯: 阿里: 百度: 华为: 网易: 京东: 字节: 快手: 科大讯飞: 制作数字人的工具: HeyGen:AI 驱动的平台,可创建逼真的数字人脸和角色,使用深度学习算法生成高质量肖像和角色模型,适用于游戏、电影和虚拟现实等应用。 Synthesia:AI 视频制作平台,允许创建虚拟角色并进行语音和口型同步,支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 DID:提供 AI 拟真人视频产品服务和开发,只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后合成逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会随时间和技术发展而变化。在使用这些工具时,请确保遵守相关使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。 此外,关于数字人的相关技术还包括: 算法开源代码仓库: ASR 语音识别: openai 的 whisper:https://github.com/openai/whisper wenet:https://github.com/wenete2e/wenet speech_recognition:https://github.com/Uberi/speech_recognition AI Agent: 大模型部分包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 Agent 部分可以使用 LangChain 的模块去做自定义,里面基本包含了 Agent 实现的几个组件 TTS: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声。 sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 除了算法,人物建模模型可以通过手动建模实现,这样就完成了一个最简单的数字人。但这种简单的构建方式还存在很多问题,例如如何生成指定人物的声音、TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作、数字人如何使用知识库做出某个领域的专业性回答等。
2024-10-31
做ppt的ai有什么
以下是一些做 PPT 的 AI 产品: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,包含互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 此外,卓 sir 分享了自己使用 AI 完成 PPT 的经历,用到的 AI 工具只有 3 个:GPT4、WPS AI 和 chatPPT。
2024-10-31
查找文献AI
以下是关于查找文献 AI 的相关信息: Txyz 网站: 是一个帮助搜索、查询专业文献并进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。 是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 Txyz 的按钮。 用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到想要的答案和内容。 在对话中提供论文参考,给出可信的背书。 论文写作的 AI 产品: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,帮助精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-10-31
学习AI
以下是为新手提供的学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-31
ai生成视频教程
以下是关于 AI 生成视频的教程: 使用 Adobe Firefly 生成带有文本提示和图像的视频: 在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。选择 Generate 进行生成。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 AI 视频工具合集: Runway(有免费额度) 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 简单介绍:支持文生视频、图生视频,视频生视频;使用英文提示词;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持 16:9、9:16、1:1、4:3、3:4、21:9 尺寸,可设置种子值;图生视频、视频生视频除了尺寸不可选以外,其他跟文生视频基本相同;生成好的视频可以延长时间,默认生成 4s 的视频。 Stable video(有免费额度) 网址:https://www.stablevideo.com/generate 知识库详细教程: 简单介绍:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-10-31
请总结本知识库,并提炼出11节面向十岁儿童关于AIGC的课程,三节是提示词工程,2节文生文,2节文生图/图生图,2节文生音频,2节文生视频/图生视频,不需要涉及智能体及文生代码
以下是对本知识库的总结: 包含了不同时间段的 AIGC 周刊内容,如 Open AI 发布 ChatGPT 的 iOS 应用、Google 宣布多项 AI 新功能、AI 歌手相关教程等。 有关于提示词工程的课程及相关技巧介绍。 涉及一些特定的 AIGC 技术和方法,如 Donut 文档理解方法。 提到了谷歌的生成式 AI 学习课程。 以下是为十岁儿童设计的 11 节关于 AIGC 的课程: 1. 提示词工程基础 什么是提示词 提示词的作用 简单的提示词示例 2. 提示词工程进阶 复杂提示词的构建 如何优化提示词 提示词的实际应用 3. 提示词工程实践 设计自己的提示词任务 分享与讨论提示词成果 总结提示词的使用技巧 4. 文生文入门 了解文生文的概念 简单的文生文工具介绍 尝试生成一段文字 5. 文生文提高 优化文生文的输入 让生成的文字更有趣 比较不同文生文的效果 6. 文生图/图生图基础 认识文生图和图生图 常见的文生图工具 用简单描述生成一张图片 7. 文生图/图生图进阶 更复杂的描述生成精美图片 对生成的图片进行修改 分享自己生成的图片 8. 文生音频入门 什么是文生音频 简单的文生音频工具 生成一段简单的音频 9. 文生音频提高 让生成的音频更动听 给音频添加特效 欣赏优秀的文生音频作品 10. 文生视频/图生视频基础 文生视频和图生视频的概念 基本的文生视频工具 制作一个简单的视频 11. 文生视频/图生视频进阶 让视频更精彩 视频的后期处理 展示自己制作的视频
2024-10-31
AI生成系统架构图 用什么
以下是一些可以用于绘制逻辑视图、功能视图和部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建相关视图。 6. draw.io(现 diagrams.net):免费在线图表软件,支持创建逻辑和部署视图等。 7. PlantUML:文本到 UML 转换工具,可通过描述文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建架构图功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建逻辑和部署视图。 请注意,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-10-30
有没有RAG 基本架构的中文图示
以下是关于 RAG 基本架构的介绍: RAG 是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其工作原理如下: 1. 应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。 2. 这些文件被“分块”成更小的文本块,作为向量嵌入并存储在数据库(如 Pinecone)中,以实现更精确的检索。 3. 当用户提出问题时,系统检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。 4. LLM 从检索到的上下文中合成答复返回给用户。 RAG 的基本概念: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成的质量和准确性。其基本流程为: 首先,给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文)。 然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。 最后,从大模型的输出中提取或格式化所需信息返回给用户。
2024-10-17
怎们架构专属自己企业的AI系统
要架构专属自己企业的 AI 系统,可以参考以下步骤: 一、逐步搭建 AI 智能体 1. 搭建整理入库工作流 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置需根据实际需求进行。 2. 在外层 bot 中封装工作流,完成整体配置 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”,测试下来通义对提示词理解和执行效果较好。 把配置好的工作流添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可按需求和实际效果优化调整)。 二、相关术语 以下是一些在 AI 系统架构中可能涉及的术语: 1. AI 或 AI 系统或 AI 技术:具有“适应性”和“自主性”的产品和服务,如在定义的第 3.2.1 节中所述。 2. AI 供应商:在 AI 系统的研究、开发、培训、实施、部署、维护、提供或销售中发挥作用的任何组织或个人。 3. AI 用户:使用 AI 产品的任何个人或组织。 4. AI 生命周期:与 AI 系统的寿命相关的所有事件和过程,从开始到退役,包括其设计、研究、培训、开发、部署、集成、操作、维护、销售、使用和治理。 5. AI 生态系统:在 AI 生命周期中实现 AI 使用和供应的复杂网络,包括供应链、市场和治理机制。 6. 基础模型:在大量数据上训练的一种 AI 模型,可适用于广泛的任务,可作为构建更具体 AI 模型的基础。 经过上述配置,您可以在「预览与调试」窗口与 AI 智能体对话并使用全部功能。
2024-09-11
输入文字,生成组织架构图
以下是一些可以用于生成组织架构图的工具: 1. PlantUML:这是一个文本到 UML 的转换工具,通过编写描述性文本可自动生成序列图、用例图、类图等,能帮助创建逻辑视图。 2. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 3. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 4. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包含逻辑视图和部署视图。 需要注意的是,这些工具并非都基于 AI。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑具体需求,如是否需要支持特定建模语言、与特定开发工具集成、偏好在线工具或桌面应用程序等。 另外,增强版 Bot 是基于 AI 驱动的智能创作平台,可实现一站式内容生成(包括图片、PPT、PDF)。在图片理解与生成场景中,在对话框输入诉求即可测试效果,比如生成常见的系统架构风格架构设计图,给出一张图片。通过简短的文本就能让 Bot 生成相应的图片,这背后是文本到图片或视频等其他格式内容的映射关系,在日常工作中使用便捷。当然,也可以根据图片提取里面的关键知识内容。
2024-09-03
文生图中DiT架构比SDXL架构好在哪
DiT 架构相比 SDXL 架构具有以下优势: 1. Scaling 能力:相比于 Unet,Transformer 结构的 Scaling 能力更受认可,即模型参数量越大,性能越强。 2. 额外信息处理:DiT 在 Vision Transformer 模块基础上做了略微修改,能够在图片生成过程中接受一些额外的信息,如时间步 t 和标签 y。 3. 场景模拟真实性:Sora 背后的 DiT 架构在大数据量情况下具有强大的刻画能力,能展现出类似大语言模型涌现出逻辑推理等能力的现象。 4. 文本编码器:在提升文生图模型的语义理解能力方面,新的文生图模型纷纷优化文本编码器的能力,而 HunyuanDiT 作为使用 DiT 架构的模型,在中文生图方面有一定进展,但开源界中文、细粒度文生图模型的文本编码器仍有较大优化空间。
2024-08-20
Agents协作的系统架构图应该怎么画
以下是关于绘制 Agents 协作的系统架构图的一些参考信息: 首先,了解 Agent 的基本框架,即“Agent = LLM + 规划 + 记忆 + 工具使用”。其中大模型 LLM 扮演了 Agent 的“大脑”。 规划方面,主要包括子目标分解、反思与改进。子目标分解能将大型任务分解为较小可管理的子目标来处理复杂任务,反思和改进则可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。 记忆分为短期记忆和长期记忆。短期记忆是将所有的上下文学习看成利用模型的短期记忆来学习;长期记忆提供了长期存储和召回信息的能力,通常通过利用外部的向量存储和快速检索来实现。 工具方面,不同的任务和场景需要选择合适的工具。 在生成式 AI 的人机协同中,分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,人与 AI 的协作流程有所差异。在 Agents 模式下,AI 完成大多数工作。 可以通过 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如,作为产品经理角色,可将产品功能设计需求通过 Agents 拆解成多个独立的任务,然后遵循不同的工作流,最后生成一份大致符合期望的输出结果,再进行修改完善。 此外,还可以参考一些实例探究,如提示 LLM 提供 100 个最新观察结果,并根据这些观测/陈述生成 3 个最重要的高层次问题,然后让 LLM 回答这些问题。规划和反应时要考虑主体之间的关系以及一个主体对另一个主体的观察,环境信息以树形结构呈现。
2024-08-18
我想要能够搜索浏览器上我提出的相关内容的AI
以下是一些能够在浏览器上搜索您提出的相关内容的 AI: 1. ChatGPT Plus:其用户现在可以开启 web browsing 功能,实现联网功能。 2. Perplexity:结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 3. Bing Copilot:作为一个 AI 助手,旨在简化您的在线查询和浏览活动。 4. You.com 和 Neeva AI 等搜索引擎:提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 利用这些 AI 工具搜索时,例如在 Perplexity.AI 中,您可以在搜索框中输入具体的 Prompt,如“查找关于 OpenAI 对马斯克言论回应的博客文章”,获取搜索结果后,点击回答内容下方的拷贝按钮获取相关引用网站链接。同理,微软的 Bing 搜索引擎等也有类似功能。 此外,在利用 AI 打造爆款公众号文章时,收集完资料后可使用如 Kimi 这样的 AI 会话助手进行资料整理,但需注意其阅读能力的限制,可分批次提供资料以确保其有效读取和理解。
2024-10-28
AI搜索产品研报
以下是关于 AI 搜索产品的相关研报内容: Perplexity: 于 2022 年 12 月起步,被认为是全球市场的第一个 AI 搜索产品。 经过一年多发展,已成长为全球市场最大的 AI 搜索引擎产品,最新估值高达 30 亿美金。 产品形态: 目前主要有两类产品形态。 一类是大模型厂商或第三方推出的 ChatBot,主要交互是一个对话框 + RAG 联网检索,如 ChatGPT、Kimi Chat 等。这类产品依赖大模型的理解能力提供问答服务,RAG 检索作为补充手段,弥补大模型在实时信息获取方面的不足。 另一类是专门做 AI 搜索的产品,主要交互是一个搜索框 + 搜索详情页,如 Perplexity、秘塔等。这类产品主要侧重点在检索,优先保证检索召回的信息质量,在首次回答的准确度方面有所要求,对话(Chat)则作为补充步骤,方便用户对检索结果进行追问或二次检索。 Genspark: 其 AI 代理团队专门处理特定类型的信息和查询,确保每次搜索都能提供高效且准确的结果。 在种子轮融资中获得 6000 万美元(约合人民币 4.35 亿元),投后估值达到 2.6 亿美元(约合人民币 18.87 亿元)。体验链接:https://www.genspark.ai 搜索引擎 Top20 中的 AI 产品: |排名|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |||||| |1|NewBing|搜索|131600|0.055| |2|Perplexity AI|搜索|8031|0.06| |3|秘塔 Metaso|搜索|1019|0.248| |4|You|搜索|954|0.162| |5|Pimeye|搜索|517|0.137| |6|360AI 搜索|搜索|486|1.132| |7|Phind|搜索|406|0.313| |8|iAsk Ai|搜索|340|0.207| |9|昆仑万维天工 AI 搜索|搜索|332|0.322| |10|Pond5 Lullab.AI|搜索|301|0.02| |11|kagi|搜索|300|0.068| |12|Consensus|搜索|281|0.166| |13|Scite_|搜索|132|0.096| |14|Algolia|搜索|101|0.056| |15|Easy With AI|搜索|92|0.258| |16|Globe|搜索|88|0.596| |17|NeevaAI|搜索|63|0.417| |18|GPTGO|搜索|59|0.045|
2024-10-28
有没有给文字指令,可以在网上搜索出相应图片的ai
以下是一些可以根据文字指令在网上搜索出相应图片的 AI 工具: 1. Perplexity.AI:具有 Search Images 功能,能为您寻找合适的素材。在挑选图片时,需注意避免使用带水印、画质不清晰或分辨率低的图片。图片出处主要在 twitter 和官方网站。 2. 文生图工具: DALL·E:由 OpenAI 推出,能根据文本描述生成逼真图片。 StableDiffusion:开源工具,可生成高质量图片,支持多种模型和算法。 MidJourney:因高质量图像生成效果和友好界面在创意设计人群中受欢迎。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。 此外,能联网检索的 AI 有: 1. ChatGPT Plus 用户可开启 web browsing 功能实现联网。 2. Perplexity,结合了问答和搜索引擎功能,可指定响应时的搜索源类型。 3. Bing Copilot,能简化在线查询和浏览活动。 4. 如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验并保护用户数据隐私。
2024-10-27
好用的AI 搜索工具
以下为您推荐一些好用的 AI 搜索工具: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户的搜索效率和体验。 2. Perplexity:聊天机器人式的搜索引擎,支持自然语言提问,利用生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 此外,存在能联网检索的 AI,例如: 1. ChatGPT Plus 用户可开启 web browsing 功能实现联网。 2. Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 3. Bing Copilot 作为 AI 助手,可简化在线查询和浏览活动。 4. You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 在利用 AI 打造爆款公众号文章方面,您可以: 在搜索框中输入具体的 Prompt,如“查找关于 OpenAI 对马斯克言论回应的博客文章”,通过 AI 工具如 Perplexity.AI 获取搜索结果,点击回答内容下方的拷贝按钮获取相关引用网站链接。同理,微软的 Bing 搜索引擎等也有类似功能,可快速搜集大量相关资料。 收集完资料后,使用月之暗面开发的 Kimi 这个 AI 会话助手进行整理。Kimi 具备读取网页内容并生成一定内容的能力,但可能存在阅读能力限制,可分批次提供资料确保其有效读取和理解。
2024-10-24
AI 搜索资料 工具
以下是关于 AI 搜索资料工具的相关信息: 1. 利用 AI 打造爆款公众号文章:在搜索框中输入具体的 Prompt 来快速定位相关资讯,如“查找关于 OpenAI 对马斯克言论回应的博客文章”。通过 AI 工具如 Perplexity.AI、微软的 Bing 搜索引擎等获取搜索结果,这些工具的结果包含大量引用和来源链接,可点击回答内容下方的拷贝按钮获取。 2. 开搜 AI 搜索:这是一款免费无广告、直达结果的面向大众的搜索工具。它能帮助在校学生快速搜集学术资料、智能总结关键信息以撰写论文和报告,并支持查看来源出处;能协助教育教师群体获取教学资源、自动生成教案和课题研究报告;能助力职场办公人群高效查找工作所需信息、简化文案撰写等工作;能为学术研究人员提供行业分析、整合和总结大量数据形成研究报告。链接:https://kaisouai.com/ 3. 能联网检索的 AI:存在此类 AI,它们通过连接互联网实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。例如,ChatGPT Plus 用户可开启 web browsing 功能实现联网;Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,可指定希望聊天机器人在制定响应时搜索的源类型;Bing Copilot 能简化在线查询和浏览活动;还有 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验并保持用户数据的私密性。 需要注意的是,部分 AI 工具在使用时可能存在一定限制,如 Kimi 的阅读能力有限,可能无法一次性处理大量资讯或读取某些网站内容,此时可分批次提供资料。同时,对于 AI 生成的内容请仔细甄别。
2024-10-24
怎么用chatgpt搜索网络,如小红书等
以下是一些关于使用 ChatGPT 进行网络搜索的信息: GPTs 中有一些与网络相关的应用,如小红书写作专家,其直达链接为。 存在能联网检索的 AI,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网。 像 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为 AI 助手,可简化在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2024-10-22
aigc提示工程师应该学习哪些课程
以下是 AIGC 提示工程师应该学习的一些课程: 1. 针对开发者的 AIGPT 提示工程课程:由 OpenAI 技术团队成员授课,涵盖软件开发最佳实践的提示,常见用例如总结、推理、转换和扩展,以及使用 LLM 构建聊天机器人等内容。 2. 范德堡大学的提示工程课程:教您成为生成 AI 工具的专家用户,展示利用生成式人工智能工具的示例,提高日常工作效率,并深入了解其工作原理。 3. 了解大型语言模型背后的理论:深入探讨自然语言处理中基本模型的细节,学习创新技术,涉及基于 Transformer 的模型,以及少量学习和知识蒸馏等转移学习技术,聚焦新的 LLM 发展方向。 4. 提示词培训课——Part4:包括提词工程的基础概念和实用技巧,如利用地规构建思考链条、探讨提示词的敏感性问题、解释'token'概念及相关操作,深入讲解提示词的进阶技术,如增强推理能力、运用元提示和任务分解技巧,探讨 AIAgent 和 AIAgentic 的概念和差别,学习多智能体设计模式,梳理提词落地流程。
2024-10-31
提词工程
提示词工程是一门在 AI 领域中新兴且重要的学科,主要包括以下方面: 实现原理:主要由提示词注入和工具结果回传两部分代码组成。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。 提示词注入阶段:INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 理解和使用工具,编写时应注意用无关紧要的工具作示例避免混淆。tools_instructions 可通过输入不同工具动态调整,让 LLM 得知可用工具及使用方法。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传阶段:利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码。通过识别 LLM 返回的调用工具的字典提取对应值,传入工具函数,将结果以 observation 或 user 角色返回给 LLM。 是用户与模型沟通愿望的文本界面,涵盖简单问题到复杂任务,包括指令、问题、输入数据和示例等,以指导 AI 的响应。其核心在于制作出能实现特定目标的最佳提示词,需结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,还可能包括创建可根据给定数据集或上下文进行程序化修改的模板,是一个迭代和探索的过程。 在人工智能迅速发展的当下,已成为企业领导者必须掌握的关键技能,是设计和优化输入到 AI 系统指令(即提示词)的艺术和科学。但简单提示词存在局限性,无法满足复杂需求,推动了更先进提示技巧如思维链、思维树和思维图等的发展。
2024-10-23
无人驾驶开发工程师
以下是为您提供的关于无人驾驶开发工程师的相关信息: 在生成式人工智能的行动方面,目前出现的趋势是首先将 AI 作为辅助驾驶(humanintheloop)部署,并通过使用机会积累经验,最终实现全自动化部署。例如 Sierra 就是一个例子,它在无法解决问题时能优雅地转交给人工处理。同时,新一代自主型应用随着生成式 AI 推理能力的提升而涌现,如 L4 智能驾驶可能是第一个具身智能最大的应用场景,目前其安全性比人类高 10 倍。 在 2024 北京智源大会的主题讨论中,张亚勤认为目前真正赚钱的是 2B 领域,如芯片、服务器等,应用是先 2C 再 2B。他把智能分成信息智能、具身智能、生物智能 3 个阶段,预测 05 年是信息智能,510 年是物理智能(具身智能),1520 年是生物智能。李开复认为无人驾驶面临巨大机会,FSD 会为无人驾驶带来新机遇,大模型适合虚拟世界,而接入物理世界会面临很多现实问题,创业者更适合从虚拟世界的 AI 创业开始。
2024-10-21
我是一定装饰工程造价从业人员,如何通过学习AI来提升自己
对于装饰工程造价从业人员来说,通过以下方式学习 AI 可以提升自己: 了解相关基础知识和技术细节:阅读关于 AI 生成 CAD 图的学术论文,深入研究其原理和应用。 参加在线课程:系统学习 AI 在 CAD 领域的知识和技能。 观看教程视频:直观地了解操作和实践方法。 交流学习:与同行或专家交流经验,分享心得。 需要注意的是,随着 AI 技术的不断发展,其在 CAD 设计中的应用会越来越广泛,为设计师和工程师提供更多辅助和支持。但以上内容由 AI 大模型生成,请您仔细甄别。
2024-09-24
查询工程项目招标和工程进度的AI工具和网站
目前在 AI 领域,专门用于查询工程项目招标和工程进度的工具和网站相对较少。但您可以通过一些综合性的数据分析和信息检索平台来获取相关信息,例如天眼查、企查查等,它们能够提供部分企业的工程项目相关数据。另外,一些政府部门的官方网站也会发布工程项目招标和进度的信息。
2024-09-14