Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI搜索工程架构

Answer

以下是关于 AI 搜索工程架构的相关内容:

一、可插拔架构 在整个搜索回答的全流程,有很多节点可以做 Hook 埋点,每个 Hook 可以挂载零至多个插件,多个插件构成了 AI 搜索的可插拔架构。一些常用的功能,可以由 AI 搜索平台自身或第三方创作者抽离成标准插件,用在 AI 搜索主流程或者智能体/工作流等辅助流程。比如,自定义一个思维导图摘要插件,用户可以在搜索的步骤中选择这个自定义插件,实现用思维导图输出搜索结果。

二、提升可玩性 可以预置一个 after_answer 钩子,在大模型回答完用户 query 之后,把请求大模型的上下文信息和大模型的回答内容一起发给第三方插件,第三方插件可以把内容整理成文章/思维导图等格式,再同步到第三方笔记软件。

三、自定义智能体 Agent 智能体一般是对一些自定义操作的封装,用于解决某个场景的某类问题。以 ChatGPT 的 GPTs 举例,一个智能体应用由以下几部分自定义操作组成:

  1. 提示词:描述智能体的作用,定义智能体的回复格式。
  2. 知识库:上传私有文件作为回答参考。
  3. 外挂 API:请求第三方 API 获取实时数据。
  4. 个性化配置:是否联网/是否使用图片生成/是否使用数据分析等。

四、提升准确度

  1. 为获取足够信息密度,需获取链接详情页内容。通过上一步的 Reranking 选择最匹配的 top_k 条数据,避免获取全部内容导致 context 超限。为保证获取详情内容的效率,可做并行处理,如通过 goroutine 或者 python 的协程并行读取 top_k 条链接。获取链接详情内容有多种方案,如网页爬虫、无头浏览器抓取、第三方 Reader 读取等。
  2. 构建上下文内容池 Context Pool,将历史搜索结果和历史对话消息组成 Context Pool。每次搜索后追问,都带上这个 Context Pool 做意图识别/问题改写,拿到新的检索结果后更新这个 Context Pool,并带上最新的 Context Pool 内容作为上下文请求大模型回答。需要保证 Context Pool 的内容有较高的信息密度,同时控制其内容长度,不要超过大模型的 context 极限。

五、检索增强生成 (RAG) 以 Sana 的企业搜索用例为例,RAG 过程始于应用程序加载和转换无结构文件,转换为 LLM 可查询格式,文件被“分块”成更小的文本块,并作为向量嵌入和存储在数据库中。当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM,然后 LLM 合成答复返回给用户。在生产中,AI 应用程序具有更复杂的应用程序流程,包含多个检索步骤和提示链,不同类型的任务并行执行,然后将结果综合在一起,以生成最终输出。

Content generated by AI large model, please carefully verify (powered by aily)

References

工具:我做了一个 AI 搜索引擎

[title]工具:我做了一个AI搜索引擎[heading1]ThinkAny是如何冷启动的[heading2]AI搜索如何提升可玩性比如,可以预置一个after_answer钩子,在大模型回答完用户query之后,把请求大模型的上下文信息和大模型的回答内容一起发给第三方插件,第三方插件可以把内容整理成文章/思维导图等格式,再同步到第三方笔记软件。在整个搜索回答的全流程,有很多节点可以做Hook埋点,每个Hook可以挂载零至多个插件,多个插件构成了AI搜索的可插拔架构,这套架构让AI搜索的全流程变得高度可定制,可玩性更高。一些常用的功能,可以由AI搜索平台自身或第三方创作者抽离成标准插件,用在AI搜索主流程或者智能体/工作流等辅助流程。比如,自定义一个思维导图摘要插件,输入内容是一段文本,输出内容是基于toc(table of contents)构成的思维导图。用户可以在搜索的步骤中选择这个自定义插件,实现用思维导图输出搜索结果。1.自定义智能体Agent智能体是现阶段ChatBot类产品经常用到的一种辅助产品形态。智能体一般是对一些自定义操作的封装,用于解决某个场景的某类问题。以ChatGPT()的GPTs举例,一个智能体应用由以下几部分自定义操作组成:提示词:描述智能体的作用,定义智能体的回复格式知识库:上传私有文件作为回答参考外挂API:请求第三方API获取实时数据个性化配置:是否联网/是否使用图片生成/是否使用数据分析等AI搜索的智能体也大体如此,外挂API的操作实际上就是挂载自定义信息源做检索。

工具:我做了一个 AI 搜索引擎

[title]工具:我做了一个AI搜索引擎[heading1]ThinkAny是如何冷启动的[heading2]AI搜索如何提升准确度很多的信息源(比如谷歌)返回的检索结果,只包含链接+摘要信息。如果要保证足够的信息密度,免不了要获取链接对应的详情页内容(Read Content)。上一步的Reranking让我们可以选择其中最匹配的top_k条数据,而不至于获取全部内容导致context超限。为了保证获取详情内容的效率,我们需要做一定的并行处理。比如通过goroutine或者python的协程并行读取top_k条链接,在一次请求耗时内拿到top_k条链接的全部内容。获取链接详情内容有很多方案,包括网页爬虫/无头浏览器抓取/第三方Reader读取等。ThinkAny目前使用的是jina.ai的Reader方案。做了一个开关,控制是否获取链接详情,为了保证响应速度,线上的版本暂时未开。1.构建上下文内容池Context Pool提高AI搜索的准确度,上下文的控制也是一个非常重要的手段。比如可以构建一个上下文内容池(Context Pool)=历史搜索结果(Search Results)+历史对话消息(Chat Messages)每次搜索后追问,都带上这个Context Pool做意图识别/问题改写,拿到新的检索结果后更新这个Context Pool,并带上最新的Context Pool内容作为上下文请求大模型回答。Context Pool里的Search Results可以根据链接做去重,Chat Messages可以根据相似度匹配做过滤。需要保证Context Pool的内容有较高的信息密度,同时要控制Context Pool的内容长度,不要超过大模型的context极限。对Context Pool的构建和动态更新,是一个非常有挑战性的事情,如果能做好,对搜索结果的准确度提升也能起到非常大的帮助。1.提示词工程Prompt Engineering

AI 智能体:企业自动化的新架构 - Menlo Ventures

设置基线:RAG是当今大多数现代人工智能应用程序的标准架构。让我们以Sana的企业搜索用例为例,了解它在幕后的工作原理。该过程始于应用程序加载和转换无结构文件(如PDF、幻灯片、文本文件)跨越企业数据孤岛,如Google Drive和Notion,转换为LLM可查询格式,通常通过像[Unstructured](https://menlovc.com/portfolio/unstructured/)*这样的数据预处理引擎进行。这些文件现在被"分块"成更小的文本块,以实现更精确的检索,并作为向量嵌入和存储在像[Pinecone](https://menlovc.com/portfolio/pinecone/)*这样的数据库中。当用户向AI应用程序提出问题时(例如,"总结我与公司X会议的所有笔记"),系统会检索语义上最相关的上下文块,并将其折叠到"元提示"中,与检索到的信息一起馈送给LLM。然后,LLM会从检索到的上下文中合成一个整洁的带有项目符号的答复返回给用户。当然,该图仅说明了一个带有一个LLM调用的单一检索步骤。在生产中,AI应用程序具有更复杂的应用程序流程,包含数十甚至数百个检索步骤。这些应用程序通常具有"提示链",其中一个检索步骤的输入馈送到下一步,并且不同类型的任务并行执行多个"提示链"。然后将结果综合在一起,以生成最终输出。[Eve](https://menlovc.com/portfolio/eve/)*法律研究的共同驾驭员,例如,可能会将针对《第七篇》的研究查询分解为专注于预定子主题的独立提示链,如雇主背景、就业历史、《第七篇》、相关案例法和原告案件支持证据。LLMs然后运行每个提示链,为每个生成中间输出,并综合各输出编写最终备忘录。

Others are asking
AI课程
以下是为您提供的关于 AI 课程的相关信息: 麻省理工学院(MIT)为 8 18 岁孩子推出了免费的 AI 课程 Day of AI,该课程席卷全球,来自 110 多个国家的 50 万名学生都在使用。但此课程资源主要面向家长和老师群体,大孩子可自学,小孩子可能需要家长辅助。同时,MIT 作为世界级学府肩负社会责任,用技术实现教育平等。国内有机构将其免费课程下载后开卖录播课收费。 对于新手学习 AI,首先要了解 AI 基本概念,建议阅读“从这里启程”部分熟悉术语和基础概念,浏览入门文章。然后开始学习之旅,在“入门:AI 学习路径”中可找到为初学者设计的课程,推荐李宏毅老师的课程,还可通过在线教育平台按自己节奏学习。选择感兴趣的模块深入学习,比如掌握提示词技巧。学习后要实践,在知识库有实践作品和文章分享。同时,体验如 ChatGPT 等 AI 产品。 如果让我推荐一门 AI 课,【野菩萨的 AIGC 资深课】由工信部下属单位人民邮电出版社开设,是市面上值得推荐的课程之一,技术更新快,涵盖 AI 绘画、视听语言和 ChatGPT 等知识,无论初学者还是进阶者都适用。
2025-04-08
ai制作网站免费的
以下是一些关于免费的 AI 制作网站的信息: 1. 选择合适的 AI 网站制作工具时,需要考虑以下因素: 目标和需求:明确网站的目标(如个人博客、商业网站、在线商店)和功能需求。 预算:部分工具提供免费计划或试用版,但高级功能可能需付费订阅。 易用性:选择符合自身技术水平,能轻松使用和管理的工具。 自定义选项:检查工具是否提供足够的自定义选项,满足设计和功能需求。 支持和资源:查看是否有充足的客户支持和学习资源(如教程、社区论坛)以解决问题。 2. 麻省理工(MIT)为 8 18 岁孩子推出了免费的 AI 课程 Day of AI,该课程包含在 MIT 的 RAISE 项目中。其课程资源面向家长、老师群体,大孩子可自学,小孩子可能需要家长辅助。 3. ProductHunt 2023 年度最佳产品榜单中的 AI 产品: Dora AI:通过一个 prompt,借助 AI 3D 动画生成强大网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 Bard(免费):谷歌推出的官方 ChatGPT 竞争者。 Chat.DID(免费):首个允许人们以人类方式与 AI 进行视频聊天的 APP,处于测试阶段。 Pika(免费):能将创意转化为动态视频的概念 视频平台。
2025-04-08
ai制作网站
以下是一些制作网站的 AI 工具: 1. Wix ADI(Artificial Design Intelligence) 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA 通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成 AI 驱动的 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是 Jimdo 的 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 8. Site123 网址:https://www.site123.com/ 特点:简单易用,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。 选择合适的 AI 网站制作工具时,您可以考虑以下因素: 1. 目标和需求:确定网站目标(如个人博客、商业网站、在线商店)和功能需求。 2. 预算:有些工具提供免费计划或试用版,但高级功能可能需要付费订阅。 3. 易用性:选择符合您技术水平的工具,确保能轻松使用和管理网站。 4. 自定义选项:检查工具是否提供足够的自定义选项,以满足设计和功能需求。 5. 支持和资源:查看是否有足够的客户支持和学习资源(如教程、社区论坛),帮助解决问题。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08
AI的发展史
AI(人工智能)的发展历程如下: 1. 起源阶段: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科确立下来。 2. 发展阶段: 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 3. 前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 在过去的几十年里,AI 的发展起起落落,经历了多次热度的起伏。如今,生成式 AI 等新技术的出现引发了新的关注和探索。
2025-04-08
AI音频使用了哪些技术
以下是一些关于 AI 音频所使用技术的介绍: 声音检测方面: :通过更强的听觉感知创造卓越的人类体验。 :先进的声音识别解决方案,能够分类如尖叫、枪声、咳嗽和哭泣等声音。 :下一代声音 AI 平台,能够像人类一样理解任何声音。 :语音控制的家庭自动化系统。 :世界上首个智能家居听觉系统。 :可用于从音频源中提取隐藏数据的 AI 模型。 :无需键盘、按钮或触摸屏,无缝融合物理世界和数据世界。 :为手机、VR/AR 头戴设备、智能手表、扬声器和笔记本电脑提供上下文感知。 :智能音频穿戴设备。 :将声音转化为信息。 :使用先进的深度学习技术进行声音事件检测和上下文识别,为世界上的每一个声音赋予意义。 音乐方面: :免费的 DAW,提供高质量的人声、鼓点、旋律、贝斯分离、全能音频分离、编辑和人声/乐器转 MIDI 功能。 :AI 音频处理。 :在音乐/视频流媒体和虚拟/增强现实中重新定义音频体验。 :为音乐行业提供按需创建音轨的平台。 :为娱乐行业提供音频分离解决方案,释放经典内容的全部潜力。 :在几秒钟内将任何歌曲的人声和音乐分离。 :基于世界排名第一的 AI 技术的高质量音轨分离。 :使用强大的 AI 算法免费将歌曲中的人声与音乐分离。 :使用 HiFi AI 分离歌曲中的人声、鼓点、贝斯和其他乐器。 :为 DJ 歌手提供的在线 AI 人声移除器。 :人声移除和在线卡拉 OK。 :使用多种不同算法(Demucs、MDX、UVR 等)免费分离歌曲。 语音合成(TTS)方面: :为所有人提供开放的语音技术。 :基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 :基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 :使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 :为出版商和创作者开发最具吸引力的 AI 语音软件。 :Wondercraft 使用户能够使用文本转语音技术生成播客。 :基于生成机器学习模型构建内容创作的未来。 :从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 :演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。
2025-04-08
吉卜力风格的生成是哪个ai
以下 AI 工具可以生成吉卜力风格的图像: Midjourney:仿照 GPTs 里的 MJ prompt 改了一版提示词,可以用在 coze 或者其他国内的 agent 里。不是很挑模型,基本上都可以用。方便的地方在于如果提示词懒得写全,可以让 agent 直接帮助补全润色,黏贴就可以。例如生成一个巨大鲸鱼头部的特写,鲸鱼的眼睛显示疲惫的神情,一个小女孩站在鲸鱼的旁边抚摸鲸鱼的脸,小女孩占画面比例很小,体现鲸鱼的巨大,吉卜力工作室风格的提示词为:A closeup of a huge whale's head with its tired eyes. A little girl in red dress stands beside the whale, gently touching its face. The girl takes up a small portion of the frame, emphasizing the whale's enormity. Created Using: soft colors, gentle lighting, wideangle lens, Ghibli Studio style ar 16:9 style raw niji 6(画面需要改成了 niji) Sora:生成过左半部分为超现实主义风格,细腻刻画皮肤纹理与光影变化,右半部分为吉卜力动画风格,柔和笔触呈现幻想世界魅力的震撼图像。
2025-04-08
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
有没有什么可以帮助产品自动生成功能架构图的AI工具
以下是一些可以帮助产品自动生成功能架构图的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2025-03-31
深度学习模型架构有哪些
深度学习模型架构主要包括以下几种: 1. Transformer 模型: 由编码器(Encoder)和解码器(Decoder)两大部分组成。 每个部分由多个相同的层堆叠而成,每层包含多头注意力机制(Multihead Attention)和位置全连接前馈网络。 编码器将自然语言转换成向量文本,解码器基于编码器的输出和之前生成的输出逐步生成目标序列。 2. DiT 架构:结合扩散模型和 Transformer 的架构,用于高质量图像生成。 3. 存算一体架构: 是未来 AI 硬件的发展趋势。 运行几百亿个参数的大模型时具有优势,可避免数据搬运。 此外,在端到端算法的时代,有观点认为不应继续使用冯诺依曼架构,且在存算一体的芯片之上,有望诞生全新的算法。在将大模型与私域知识结合方面,有重新训练、微调、RAG、关键词工程、加长 Context 等方法,其中长 Context 和 RAG 被认为较有希望。
2025-03-22
生成组织架构图的AI工具
以下是一些可以生成组织架构图的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,可通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2025-03-17
Transformer 架构
Transformer 架构主要由编码器(Encoder)和解码器(Decoder)两大部分组成。 编码器可以将自然语言转换成向量文本,其内部参数包含了原始信息以及序列内元素间的相互关系。例如,输入“我喜欢猫”,会将自然语言转换成词嵌入向量,如“我”对应,然后通过自注意力机制输出一个表示对输入句子理解的向量序列。 解码器基于编码器的输出和之前生成的输出逐步生成目标序列,将向量文本重新转化成自然语言。例如生成中文句子“我喜欢猫”,解码器接收开始符号,然后逐步根据编码器输出和已生成的词决定生成后续的词。 Transformer 是一种使用注意力机制的编码器解码器模型,其模型架构使得它可以利用多元化的优势,同时处理大量数据,有助于提高机器翻译等应用程序的性能。 此外,Transformer 架构能够并行处理大量数据吞吐,且满足 scaling law,在各个模态和技术栈具有优势,被 OpenAI 广泛使用。使用同样的架构可以复用模型的参数来引导不同技术栈的训练,以及使用一套 infra 框架训练不同的模型。
2025-03-14
有没有可以输入文本快速生成组织架构图的软件推荐
以下是一些可以输入文本快速生成组织架构图的软件推荐: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2025-03-06
小白不懂MCP,请搜索waytoAGI中与智能体相关的内容(特别是视频形式的)让我来学习
以下是为您整理的关于 MCP 的相关内容: 一、什么是 MCP MCP(Model Context Protocol)是一种通用的方式,向各类大语言模型提供数据源和工具。它是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式。可以将 MCP 想象成 AI 应用程序的 USBC 接口,为 AI 模型连接不同的数据源和工具提供了标准化方式。 二、相关文章的写作目的和探讨内容 1. 作者因在 WaytoAGI 社区阅读了他人优秀文章,决定逼自己做输出,对自我学习进行总结。 2. 文章从作者自身疑问出发,通过动手实践的方式探索:利用自然语言交互,大模型为什么会调用 MCP 工具;大模型调用 MCP 工具,从客户端到服务端发生了什么;安装了类似 MCP 工具,大模型如何选择用哪一个。 三、MCP 和 AI 工具的未来 自 OpenAI 发布函数调用以来,思考解锁智能体和工具使用生态系统所需条件。MCP 于 2024 年 11 月推出,在开发者和 AI 社区中已获广泛关注,被视为潜在解决方案。探讨了其如何改变 AI 与工具的交互方式、开发人员的使用情况及仍需解决的挑战。 四、MCP 小白图文使用教程 MCP 服务器有三大核心功能: 1. 资源:是服务器提供给 AI 的数据内容,如文件、数据库结构或特定信息,每个资源通过唯一 URI 标识。 2. 工具:允许 AI 模型执行特定操作,如查询数据库、调用 API 或执行计算,每个工具由名称和描述其模式的元数据唯一标识。 3. 提示:提供结构化消息和指令,用于与语言模型交互,客户端可以发现可用提示、检索其内容并提供参数进行自定义。 希望以上内容对您有所帮助。
2025-04-08
如何搜索知识库
以下是关于知识库搜索的相关信息: 知识库搜索网址:https://search.atomecho.cn/ Coze 中工作流配置知识库: 添加知识库:可同时添加多个知识库。 参数设置: 搜索策略:包括语义检索(像人类一样理解词与词、句与句之间的关系,适用于需要理解语义关联度和跨语言查询的场景)、全文检索(基于关键词进行,适用于特定名称、专有名词、术语、缩写词、ID 等场景)、混合检索(结合全文检索和语义检索的优势,并对结果进行综合排序召回相关内容片段)。 最大召回数量:选择从检索结果中返回给大模型使用的内容片段数量,数值越大,返回的越多。 最小匹配度:根据设置的匹配度选取要返回给大模型的内容片段,低于设定匹配度的内容不会被返回。 提示:最大召回数量和最小匹配度直接影响输出效果,需进行协调的多轮测试找出最优值。 认识大模型 Embedding 技术加实战中: Embedding 增强 GPT 的能力的过程包括搜索内部知识库检索相关文本、将检索到的文本内容部分发送给 GPT 大模型并向其提出问题。 具体操作步骤: 准备搜索数据(仅一次):搜集数据、切块、嵌入、存储(对于大型数据集的 Embedding 结果,可使用向量数据库保存)。 搜索(每次查询一次):给定用户问题,从 OpenAI API 生成查询的 embeddings,使用 embeddings 按照与查询相关性对文本部分进行排序,距离函数推荐使用余弦相似性。 提问(每次查询一次):将问题和最相关的部分插入到发送给 GPT 的消息中返回 GPT 的答案。 Embedding 的作用:搜索(结果按与查询字符串的相关性进行排名)、聚类(文本字符串按相似性分组)、建议(建议包含相关文本字符串的项目)、异常检测(识别出相关性很小的离群值)、多样性测量(分析相似性分布)、分类(文本字符串按其最相似的标签分类)。
2025-04-08
最好的AI学术文献搜索软件?
以下是一些较好的 AI 学术文献搜索软件: 1. Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 2. Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 此外,在论文写作和课题研究中,还可以利用其他 AI 工具辅助,如: 1. 内容生成和辅助写作:Grammarly 提供文本校对、语法修正和写作风格建议;Quillbot 可进行重写和摘要。 2. 数据分析:Google Colab 支持 AI 和机器学习研究,便于数据分析和可视化;Knitro 用于数学建模和优化。 在教学中,Claude 和 Gamma.app 这两个工具可以帮助学生做好组会准备,如快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。使用 Claude 时,可以通过对话解决如学术网站条件搜索等问题。
2025-04-01
人工智能搜索与百度搜索的区别
人工智能搜索与百度搜索存在以下区别: 1. 底层技术:人工智能搜索的底层技术常包括“RAG”,即“检索增强生成”,包括检索、增强和生成三个步骤。而百度搜索的技术构成相对复杂,不断融合新的技术和功能。 2. 发展路径:在中国市场,相较欧美,百度作为搜索巨头已将文心一言大模型融入搜索,提供对话式回答和创作功能。同时,市场上还涌现出如秘塔 AI 搜索等创新型产品,主打“无广告,直接答案”,提供结构化结果和引用来源等特色功能。 3. 产品更新与竞争态势:Google 仍在战斗前线密集释放技能,与其他公司竞争激烈。而百度在新模型发布方面相对较少。此外,Google 推出新功能曾引发大量用户不满,而百度的相关新功能在页面布局和使用体验上更靠近某些特定产品,并聚合了多种创作能力和智能体快捷调用窗口。百度文库也上线了“AI 全网搜”功能,打通了特定工作流,产品功能较为完整,但受限于模型能力,生成内容尚有提升空间。
2025-04-01
Ai搜索引擎
以下是一些常见的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户搜索效率和体验。 2. Perplexity:聊天机器人式搜索引擎,允许用自然语言提问,通过生成式 AI 技术收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 有人选择做 AI 搜索引擎可能基于以下原则: 1. 对该方向感兴趣。 2. 产品有价值,能带来成就感。 3. 在自身能力范围内。 例如,有人在研究了贾扬清老师开源的 Lepton Search 源码和 float32 的 AI 搜索引擎源码,弄清楚“检索增强生成”这一底层技术(包括检索、增强、生成三个步骤)后,决定在这个领域尝试,并将所做的 AI 搜索引擎产品取名为“ThinkAny”。
2025-03-31
我想学提示词工程
提示词工程是指在与人工智能模型进行交互时,负责设计和优化提示的专业领域。 提示词工程师的职责包括: 1. 设计提示:根据用户需求和模型能力,考虑提示的长度、结构、措辞和信息量等因素,设计有效的提示,清晰传达用户意图,引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同策略等方式,不断优化提示,提高模型性能。 3. 评估提示:使用准确率、流畅度和相关性等指标评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对工作领域有深入了解,以便设计有效提示。 2. 自然语言处理(NLP):了解 NLP 基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:与用户、团队成员和其他利益相关者有效沟通。 提示工程是在人工智能领域,特别是自然语言处理和大型语言模型的背景下,一个相对较新的概念。它涉及设计和优化输入提示,以引导 AI 模型生成特定输出或执行特定任务。其关键点包括精确性、创造性、迭代和上下文理解。提示词通常指直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。提示工程不仅包括创建提示词,还涉及理解模型行为、优化提示以获得更好性能、探索模型潜在应用等。 目前提示词工程发展火热,出现了各种流派和框架,但结构化虽降低沟通难度、提高结果准确度,却也限制了更多可能性,且大部分框架不太适合解决过于主观、个人情绪或过于简单的问题,一个框架往往难以完全满足需求。
2025-03-31
提示词工程
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,确保清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,以提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例: 无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能。其主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。 在生成式 AI 模型中,提示词工程是一门新兴的学科。提示词是用户与模型沟通愿望的文本界面,可从简单问题到复杂任务。提示词工程的核心在于制作出能实现特定目标的最佳提示词,这不仅要指导模型,还涉及对模型能力和局限性的深刻理解及所处的上下文。提示词工程还需要结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,是一个迭代和探索的过程。本文旨在深入探讨这个新兴领域,重点关注其在 LLM 中的应用,且大多数技术也可应用于多模态生成式 AI 模型。 随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。
2025-03-27
提示词工程入门
提示词工程入门: 基本概念: 简单的提示词能获得结果,但结果质量与提供信息的数量和完善度有关。提示词可包含指令、问题、上下文、输入、示例等元素,以更好地指导模型获得更好结果。 如使用 OpenAI 的聊天模型,有 system、user 和 assistant 三种角色,system 非必需但有助于设定 assistant 行为。本指南示例通常仅用 user 消息作 prompt。 语言模型能基于给出的上下文续写,可通过改进提示词获得更好结果。提示工程探讨如何设计最佳提示词以高效完成任务,可用于多种高级任务。 相关精读: 在生成式 AI 模型中,提示词工程是新兴学科,塑造模型交互和输出。提示词是用户与模型沟通的文本界面,涵盖简单问题到复杂任务。 提示词工程核心是制作实现特定目标的最佳提示词,涉及对模型能力和局限性的理解及所处上下文。 提示词工程不仅构建提示词,还需结合领域知识、对 AI 模型理解和系统化方法定制提示词,是迭代和探索过程。 关于提示词工程师: 是负责设计和优化提示的专业人员,目标是引导模型产生准确、有用和相关回答。 主要职责包括设计、优化、评估提示,需具备领域知识、自然语言处理、人工智能、沟通能力等。 是新兴职业,随着人工智能发展需求将增大,有实际工作案例。
2025-03-27
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
关于提示词工程的教程
以下是关于提示词工程的教程: 1. 提示词工程教程:为帮助大型语言模型更好地理解任务,提供了在线教程。任务可分解为两步,第一步模型检查当前提示词和样本,第二步编写改进的提示词。 2. 逐步推理模板:指导提案模型回答一系列问题,如输出是否正确、提示词是否准确描述任务等,以鼓励模型仔细检查示例并反思提示词局限性。 3. 上下文规定:提示词插入输入序列的位置灵活,可能在输入文本之前或之后,元提示词中应明确提示词和输入的相互作用。 4. 基础提示词:简单提示词能获得结果,但结果质量与提供信息的数量和完善度有关。提示词可包含指令、问题、上下文、输入或示例等元素。使用 OpenAI 聊天模型时,有 system、user 和 assistant 三种角色,本指南示例通常仅使用 user 消息作为 prompt。通过改进提示词可获得更好结果,提示工程探讨如何设计最佳提示词以高效完成任务。 5. 无需微调,仅用提示词工程让 LLM 获得 tool calling 功能:主要由提示词注入和工具结果回传两部分代码组成。提示词注入将工具信息及使用提示添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。工具结果回传解析 tool calling 输出,并将工具返回内容嵌入 LLM,利用正则表达式抓取相关参数,对于不同工具和 LLM 接口有不同处理方式。
2025-03-26
我要学习提示词工程哪些教程最好
以下是一些学习提示词工程的优质教程推荐: 1. 小七姐的“Prompt Engineering a Prompt Engineer 精读翻译”: 提供了提示词工程的在线教程。 将提示词工程的任务分解为两个步骤,并在元提示词中明确这两个步骤,提前传达期望。 为鼓励模型仔细检查示例,指导提案模型回答一系列问题。 明确提示词在不同上下文中与输入的相互作用。 2. 歸藏翻译的“简单易懂,强烈推荐 Codesignal 提示工程教程1”: 通俗易懂,给出丰富实践经验。 课程地址:https://learn.codesignal.com/preview/coursepaths/16/promptengineeringforeveryone 。 3. “GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List”中的第 3 节: 推荐了 Lilian Weng、Eugene Yan、Anthropic 的《提示工程教程》和《人工智能工程师工作坊》。
2025-03-25