直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI提示词如何使用

回答

AI 提示词的使用方法如下:

  1. 明确任务:清晰地定义任务,如写故事时包含背景、角色和主要情节。
  2. 提供上下文:若任务需特定背景知识,在提示词中提供足够信息。
  3. 使用清晰语言:尽量用简单、清晰的语言描述,避免模糊或歧义词汇。
  4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。
  5. 使用示例:如有特定期望结果,提供示例帮助模型理解需求。
  6. 保持简洁:提示词简洁明了,避免过多信息导致模型困惑。
  7. 使用关键词和标签:有助于模型更好理解任务主题和类型。
  8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需多次迭代达到满意结果。

此外,设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成,与多数为单个任务设计的 NLP 服务不同,补全和聊天补全几乎可用于任何任务。我们的模型通过将文本分解为标记(Token)来理解和处理文本,在给定的 API 请求中处理的 Token 数量取决于输入和输出长度。对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。

还需认识到,基于 AI“似人”的一面,要接受其存在的“不稳定性”,不能期待设计一个完美的提示词就得到完美答案,而应将提示词视为一个相对完善的“谈话方案”,真正成果在对话中产生,并在对话中限缩自己思维中的模糊地带。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:怎么写提示词 prompt?

写prompt(提示)是一个关键的步骤,它决定了AI模型如何理解并生成文本。一个好的prompt能够帮助AI模型更好地理解任务的要求,并生成更符合预期的文本。以下是一些编写prompt的建议:1.明确任务:确保你的prompt清晰地定义了任务。例如,如果你需要写一个故事,你的prompt应该包含故事的背景、角色和主要情节。2.提供上下文:如果任务需要特定的背景知识,确保在prompt中提供足够的上下文。例如,如果你需要写一篇关于某个历史事件的报告,提供一些关于该事件的基本信息。3.使用清晰的语言:尽量使用简单、清晰的语言来描述任务。避免使用模糊或歧义的词汇,以免AI模型产生误解。4.给出具体要求:如果你的任务有特定的格式或风格要求,请在prompt中明确指出。例如,如果你的文章需要遵循特定的格式或引用特定类型的文献,确保在prompt中说明。5.使用示例:如果你有特定的期望结果,可以在prompt中提供示例。这有助于AI模型更好地理解你的需求。6.保持简洁:尽量保持prompt简洁明了。过多的信息可能会使AI模型产生困惑,导致生成不准确的结果。7.使用关键词和标签:在prompt中使用关键词和标签可以帮助AI模型更好地理解任务的主题和类型。8.测试和调整:在生成文本后,仔细检查结果,并根据需要调整prompt。这可能需要多次迭代,直到达到满意的结果。希望这些建议能帮助你更好地编写prompt。内容由AI大模型生成,请仔细甄别。

快速开始

OpenAI API可以应用于几乎所有涉及生成自然语言、代码或图像的任务。我们提供了一系列不同能力级别的[模型](https://ywh1bkansf.feishu.cn/wiki/R70MwasSpik2tgkCr7dc9eTmn0o),适用于不同任务的,并且能够[微调(Fine-tune)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf)您自己的自定义模型。这些模型可以用于从内容生成到语义搜索和分类的所有领域。[heading2]提示词Prompts[content]设计提示词本质上就是对模型进行“编程”,这通常是通过提供一些指令或几个示例来完成。这与大多数其他NLP服务不同,后者是为单个任务设计的,例如情绪分类或命名实体识别。相反,补全(Completions)和聊天补全(Chat Completions)几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。[heading2]标记Token[content]我们的模型通过将文本分解为标记(Token)来理解和处理文本。Token可以是单词,也可以是字符块。例如,单词“hamburger”被分解成标记“ham”、“bur”和“ger”,而很短且常见的单词像“pear”是一个Token。许多Token以空格开头,例如“ hello”和“ bye”。在给定的API请求中处理的Token数量取决于您的输入和输出长度。作为一个粗略的经验法则,对于英文文本,1个Token大约相当于4个字符或0.75个单词。要记住的一个限制是,您的文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是2048个Token,或大约1500个单词)。可以查看我们的[分词器工具](https://platform.openai.com/tokenizer)来了解有关文本如何转换为Token的更多信息。

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

《浮士德》《一千零一夜》《酉阳杂俎》……各个地区各个时代的神怪小说一个非常重要的故事类型就是“当你面对一个‘似人非人拥有神力/魔法的异类’时,许愿没有许清楚会有什么倒霉下场。”时间到了我们这个时代,你真的想要AI发挥出期待的效果的话,最好也学习一下古人早就总结出来的智慧。(xs最好的AI提示词编写启蒙书其实是《一千零一夜》)2.基于祂“似人”的一面,你最好从一开始就接受祂会存在的“不稳定性”。也就是说,即使你的指令再清晰,祂也可能会学习人类思维磨洋工、乱搞、不执行,而你需要教育祂、监督祂、鞭策祂。虽然陶律师对AI的技术原理一窍不通,但基于“AI的方向是尽可能实现对人类思维、人类自然语言的高度模拟”这个哲学基点,可以预判一波“一定程度的不确定性/模糊性会是AI的固有属性。”因为这种一定程度内的不确定性/模糊性正是人类思维/自然语言的精华所在,是人(生灵)区别于机械的价值所在。这意味着你不能期待设计一个完美的提示词,然后AI百分百给到你一个完美的符合你要求的答案,中间不能有谬误,否则就是一个需要修复的“ BUG ”——这本质上还是前AI时代“机器编程”的思路,是工程学的,把AI当成机械的。这意味着的你要给到AI的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在你们的对话中产生——实际上你也需要在对话中来限缩你自己思维中的模糊地带。

其他人在问
AI可以解决可控性核聚变吗
AI 可以在一定程度上协助解决可控性核聚变问题。 从全人类能源供给的角度来看,可控核聚变是唯一有希望大幅提升全人类能源供给数量级的技术。目前,在可控核聚变技术的研究中,AI 已经发挥了作用。例如,普林斯顿大学等离子体物理实验室通过 AI 成功在离子体撕裂前 300ms 进行了预测,这是可控核聚变进展的一小步。 同时,由于 AI 发展对能源的强大需求,科技公司纷纷投资致力于核聚变技术商业化的公司,如 Sam Altman 投资了 Helion Energy,谷歌投资了 TAE Technologies,OpenAI 投资了 Commonwealth Fusion Systems。这很有可能加速攻克可控核聚变技术的难题。 此外,AI 已经在工业中对诸如控制核聚变过程等大规模安全关键实践带来了变革。
2024-11-13
AI可以运用于炒股领域吗
AI 可以运用于炒股领域。 目前,AI 在炒股领域的应用仍处于不断探索和发展的阶段。例如,博主林亦 LYi 的《AI 炒股?我开了一家员工全是 AI 的公司,自动帮我炒股》就在某种程度上实现了多 Agent 协作的能力。 人工智能和机器学习在金融服务行业的应用已有十多年历史,大型语言模型通过生成式人工智能代表着重大飞跃,可能为金融服务市场带来数十年来最大的变革。但需要注意的是,AI 在炒股领域的应用还存在一些挑战和需要完善的地方。一方面,高度智能化的能力需要进一步打磨,概念落地还有较长距离;另一方面,AI 与金融服务的结合还需要不断探索和优化。
2024-11-13
能做高等数学的AI
以下是为您整理的关于能做高等数学的 AI 的相关信息: Pi 对于高等数学的表现不稳定,有时不回答,有时能回答但可能答错,状态飘忽不定。比如在做七八道高等数学入门水平的题时,存在这样的情况。 沃尔夫勒姆认为,人工智能在“流体动力学风格”的数学水平上可能提供代码帮助,但对于真正新的、不涉及太多“样板文件”的内容,帮助有限。数学家在做数学时似乎在更高水平上对“微观元数学”进行了“粗粒度”处理。
2024-11-13
论文写作相关的AI推荐
以下是为您推荐的与论文写作相关的 AI 工具: 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:虽非纯粹 AI 工具,但结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 如果您的医学课题需要 AI 给出修改意见,以下工具可供考虑: Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 Scholarcy:可提取文档结构化数据,生成文章概要,包含多个分析板块。 ChatGPT:强大的自然语言处理模型,能提供修改意见和帮助。 在 AI 文章排版方面,以下工具较为流行: Grammarly:不仅检查语法拼写,还有排版功能,改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 LaTeX:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助编辑器和插件。 PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 Overleaf:在线 LaTeX 编辑器,有丰富模板和协作工具,适合学术写作排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。学术论文常选 LaTeX 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-13
有哪些著名的AI咨询公司?提供方案解决的那种
以下是一些著名的提供方案解决的 AI 咨询公司及相关信息: 在 AI 心理咨询产品方面,有 Woebot、Replika、Talkspace、Wysa、Moodfit、Youper 等。Woebot 是基于聊天机器人的心理健康平台,使用认知行为疗法原理引导用户。Replika 是 AI 驱动的个人朋友,提供情感支持和指导。Talkspace 是在线心理咨询平台,使用 AI 技术匹配咨询师。Wysa 提供情绪管理和心理健康支持。Moodfit 分析用户情绪模式并提供建议。Youper 结合 AI 和虚拟现实改善心理健康。但对于严重心理问题仍需专业帮助,且应作为传统咨询的补充。 在其他 AI 应用方面,如 14 号的小红书穿搭推荐,是 AI 时尚穿搭建议平台,利用图像识别和数据分析,根据用户身材和风格提供穿搭建议。15 号的蚂蚁财富智能理财助手,通过数据分析和机器学习为用户提供专业投资建议。16 号的法信智能法律咨询,运用自然语言处理和知识图谱解答法律问题。17 号的慧植农当家等是 AI 农业病虫害识别系统,借助图像识别和机器学习帮助农民识别病虫害。18 号的小米智能家居系统,基于物联网技术和机器学习实现家居设备智能化控制。19 号的文案狗等是 AI 广告文案生成工具,通过自然语言处理快速生成吸引人的广告文案。 在生成式 AI 平台的基础设施供应商方面,英伟达是目前该领域最大的幕后赢家,其数据中心 GPU 收入可观,建立了坚固的护城河。同时也有其他供应商,如甲骨文等挑战者,以及一些提供针对大模型开发人员解决方案的初创公司,如 Coreweave 和 Lambda Labs 等。此外还有谷歌张量处理单元(TPU)、AMD Instinct GPU、AWS Inferentia 和 Trainium 芯片,以及来自 Cerebras、Sambanova 和 Graphcore 等初创公司的 AI 加速器,英特尔也带着高端芯片进入市场,但新芯片占据的市场份额有限。
2024-11-13
如何用ai模型做训练
以下是关于如何用 AI 模型做训练的相关内容: 要在医疗保健领域让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入和学徒实践开始,AI 也应如此。当前的学习方式存在问题,应通过堆叠模型训练,如先训练生物学、化学模型,再添加特定数据点。就像预医学生从基础课程学起,设计新疗法的科学家经历多年学习和指导,这种方式能培养处理细微差别决策的直觉。 大模型的构建过程包括: 1. 收集海量数据:如同教孩子博学多才要让其阅读大量资料,对于 AI 模型要收集互联网上的各种文本数据。 2. 预处理数据:像为孩子整理适合的资料,AI 研究人员要清理和组织收集的数据,如删除垃圾信息、纠正拼写错误等。 3. 设计模型架构:为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是复杂的神经网络,如 Transformer 架构。 4. 训练模型:像孩子开始学习,AI 模型开始“阅读”数据,通过反复预测句子中的下一个词等方式逐渐学会理解和生成人类语言。 为提高 AI 模型的鲁棒性,应对可能的“恶意”样本数据导致的幻觉,可使用对抗训练技术,让模型在训练中接触并学会识别和抵抗。
2024-11-13
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 学习 Stable Diffusion 提示词的步骤: 1. 学习基本概念:了解其工作原理、模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 2. 研究官方文档和教程:通读官方文档,研究开发团队和专家的教程与技巧分享。 3. 学习常见术语和范例:熟悉相关领域术语和概念,研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧:学会组合词条精确描述效果,掌握控制生成权重的符号技巧,处理抽象概念等无形事物的描述。 5. 实践和反馈:尝试生成不同风格和主题的图像,对比结果并总结经验,在社区分享请教获取反馈。 6. 创建提示词库:按主题、风格等维度建立,记录成功案例方便复用。 7. 持续跟进前沿:关注最新更新和社区分享,掌握新技术、新范式、新趋势。 学习提示词运用的建议: 1. 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 2. 学习构建技巧:明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例:在领域社区、Github 等资源中研究学习。 4. 实践、迭代、优化:与语言模型互动,根据输出提高提示词质量,尝试变体并分析差异。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究:持续关注最新研究成果和方法论。
2024-11-13
我现在正在使用mid journey生成图片,做漫画,我想知道怎么样写提示词,才能更好的让mid journey生成我需要的图片
以下是关于在 Midjourney 中写提示词以生成所需图片的一些指导: 1. 常规操作: 登录 Discord 网站,打开 MJ 服务器出图。 通过 /imagine 命令,在对话框输入“/imagine”激活指令,然后把提示词粘贴到“prompt”后面,点击发送即可。 想要多少张图片,就要输入多少次提示词,且输入下一次提示词之前,要等待上一张图片生成完毕。 2. 使用插件提效: Autojourney 是电脑浏览器的一个插件,可在浏览器拓展程序中下载安装。 它功能强大,支持批量发送提示词、自动下载图片、自动放大图片、生成提示词等功能,能够提高使用 Midjourney 的效率。 点击浏览器右上角的插件,选择 Autojourney 插件将其激活,将提示词复制到插件中点击发送,提示词会排队进入 MJ 发送程序,自动批量出图。 Autojourney 插件支持一次输入 10 组提示词。 3. Midjourney V6 更新风格参考命令 2.0“sref”: 将“sref”和 URL添加到提示的末尾,以参考风格参考图像的视觉风格创建新图像。 新提示本身没有美学内容,有助于“sref”的执行。 4. Midjourney 最新编辑器更新: 常见问题:提出极其不合适的请求或要求修改非常小的区域,可能无法得到预期结果;在场景中放很小的头部并要求外绘,生成的身体可能会太大。 重纹理化:是一种通过使用另一张图像来引导图像结构或构图的方法,从构图引导图像开始,然后使用提示词和参数添加所需细节。 右侧显示的缩略图:显示器右侧的缩略图显示最近几次编辑会话的记录,左边稍大的缩略图是上传或链接的母图像,其他四张是子图像,展示根据提示生成的不同表达方式。 “View All /查看全部”按钮:每次在不改变选择区域的情况下对母图像进行编辑时,会生成新的缩略图行,更改提示词,新提示词对应的图像会显示在子图像中。
2024-11-13
如何学习提示词
学习提示词可以参考以下步骤和方法: 1. 基础概念学习 了解相关模型(如 Stable Diffusion)的工作原理和架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方资料 通读官方文档,了解提示词相关指南。 研究开发团队和专家的教程、技巧分享。 3. 学习常见术语和范例 熟悉相关领域(如 UI、艺术、摄影)的专业术语和概念。 研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧 学会组合多个词条精确描述想要的效果。 掌握使用特定符号(如“()”、“”)控制生成权重。 学会处理抽象概念、情感等无形事物的描述。 5. 实践与反馈 用不同提示词生成各种风格和主题的图像。 对比结果,分析原因,总结经验。 在社区分享,请教高手获取反馈建议。 6. 创建提示词库 按主题、风格等维度建立自己的词库。 记录成功案例和总结,方便复用。 7. 持续跟进前沿 关注模型的最新更新和社区动态。 掌握提示词的新技术、新范式、新趋势。 此外,还需注意: 1. 理解提示词的作用,它为模型提供上下文和指示,影响输出质量。 2. 学习构建技巧,明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例,可在领域社区、Github 等资源中寻找。 4. 多实践、迭代、优化,尝试变体并分析输出差异。 5. 活用提示工程工具,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究,提示工程是前沿领域,持续关注最新成果和方法论。 精心设计的提示词能最大程度发挥语言模型的潜力,多实践、多学习、多总结才能掌握窍门。
2024-11-13
如何学习提示词
学习提示词可以按照以下步骤和方法进行: 1. 基本概念的学习: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,提示词在现代大型语言模型中极其重要,掌握其运用技巧能最大限度发挥模型潜能。具体包括: 1. 理解提示词的作用:提示词向模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧:明确任务目标,用简洁准确的语言描述;给予足够背景信息和示例,帮助模型理解语境;使用清晰指令,如“解释”“总结”“创作”等;对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:目前已有一些提示工程工具可供使用。 6. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新研究成果和方法论。 提示词是给大语言模型的输入文本,用于指定模型执行任务和生成输出,发挥“提示”模型的作用。设计高质量提示词需根据目标任务和模型能力精心设计。学习提示词需要先了解大模型特性,具备清晰表述需求和任务的能力。
2024-11-13
suno提示词怎么写
以下是关于 Suno 提示词的写法: 在创作“离谱村”时,先收到台词素材和配音,构思出“童趣”“欢乐”等词,让 AJ 提出活泼、离谱搞笑的方向。然后把台词和想到的形容词投喂给 GPT4 生成音乐脚本,再将脚本输入给 SunoBeats 生成提示词。但最初生成的提示词太长,之后参考论坛网友分享的格式,即通过调式变化加上情节描述,使用和弦进展推动故事情节发展,让 SunoBeats 模仿这种格式生成提示词,测试发现这种格式的提示词质量更好、利用率更高。 推荐的写法可参考详细教程,如。 Suno 创作音乐的小技巧:如果想参考现有歌曲的节奏,可以在(引子)来更好地告诉 AI 这段歌词应该怎么唱。
2024-11-13
给图片写提示词
以下是关于给图片写提示词的相关内容: 在 SD 文生图中,提示词的一些规则如下: 括号和“:1.2”等用于增加权重,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。 反向提示词可以告诉 AI 不要的内容,例如:NSFw,等。 描述逻辑通常包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 可以利用一些辅助网站来写提示词,如 http://www.atoolbox.net/ ,通过选项卡方式快速填写关键词信息;https://ai.dawnmark.cn/ ,每种参数有缩略图参考;还可以在 C 站(https://civitai.com/)抄作业,复制图的参数粘贴到正向提示词栏。但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可以选取部分好的描述词,如人物描写、背景描述、小元素或画面质感等。 给自己做卡通头像时的提示词操作: 在聊天窗口输入/imainge 找到/imagine prompt,放入链接,加提示词,以英文逗号分隔,再加上设置参数。 设置参数包括:“iw 1.5”设置参考图片的权重,数值越高与参考图片越接近,默认 0.5,最大 2;“s 500”设置风格强度,数字越大越有创造力和想象力,可设 0 1000 间任意整数;“v 5”指用 midjourney 的第 5 代版本,需订阅付费,不想付费可用“v 4”;“no glasses”指不戴眼镜。 例如完整提示词:simple avatar,Disney boy,3d rendering,iw 1.5 s 500 v 5 。若不满意可调整“s”和“iw”的值多次尝试。
2024-11-13
SD软件使用
以下是关于 SD 软件使用的相关内容: 1. 软件安装: 系统要求:Win10 或 Win11。 Win 系统查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:需要满足 3 个要求(推荐),电脑运行内存 8GB 以上,是英伟达(NVIDA)的显卡,显卡内存 4GB 以上。打开任务管理器(同时按下 ctrl+shift+esc),可查看电脑运行内存和显卡内存(显存)。8GB 运行内存可勉强运行 SD,推荐 16GB 以上运行内存;4GB 显存可运行 SD,推荐 8GB 以上显存。 安装方式:配置达标可跳转至对应安装教程页。 2. 制作二维码: 使用进行安装。如果使用的是 Colab Notebook,只需在启动时选择 ControlNet。 生成二维码:首先需要一个二维码。为增加成功机会,请使用符合以下条件的二维码。使用高容错设置或草料二维码。具体步骤为:第一步选择文字类型,输入二维码的文字;第 2 步将容错设置为 30%;第 3 步按生成;第 4 步将二维码下载为 PNG 文件。 3. 软件原理理解: 模型下载与放置:不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\\models\\Stablediffusion】文件夹下,在左上角的模型列表中选择(看不到就点旁边的蓝色按钮刷新)。 VAE:相当于给模型增加提高饱和度的滤镜和局部细节微调,有的大模型自带 VAE,可在启动器里面下载,下载的 VAE 放在根目录的【……\\models\\VAE】文件夹。 Embedding:功能相当于提示词打包,可在 C 站通过右上角的筛选 Textual Inversion 找到,放在根目录下的 embeddings 文件夹里。 LORA:可以将人物或者物品接近完美地复刻进图像中,具有极大商用价值,但使用时需注意版权和法律问题。
2024-11-13
有没有可以直接讲word文件生产PPT,并使用AI讲课的流程
以下是使用 AI 将 word 文件生成 PPT 并进行讲课的流程: 首先,让 GPT4 生成 PPT 大纲。但生成符合要求的大纲可能比较耗时,比如可能会花费 2 小时左右。 然后,将大纲导入到 WPS 当中,启用 WPS AI 一键生成 PPT。 为了让 PPT 更具灵动性和观感,可让 chatPPT 为其添加一些动画。 最后,手动修改一些细节,比如字体、事实性错误等,整份 PPT 就基本完成了。 需要注意的是,在生成大纲的环节中,可能会因为题目理解困难而花费较多时间。例如,对于一些抽象的题目,可能需要借助 OCR 识别后抛给 GPT4 来帮助理解题意。对于不熟悉的电商企业属性等问题,GPT4 也能提供耐心的解答。
2024-11-13
完全不会编程的人能使用AI完成网站和app的开发吗
完全不会编程的人在一定程度上可以借助 AI 来开发网站和 app,但存在一定的限制。 从去年三月 GPT4 发布会的手绘草图直接生成网站的 demo 开始,人们对非编程人员开发应用充满期待。然而,现实情况是,真正的应用往往有复杂的特殊需求,代码量也可能超出 AI 单次处理能力,AI 无法直接完成。比如,纯小白使用 cursor 创建起始文件后,可能会不知从何下手。 但也有一些积极的情况,没有任何编码能力的人独自创建的应用程序或网站有迅速走红的可能。对于纯小白,如果需求复杂无法一次性直出,需要在 AI 的帮助下一步一步来,并在这个过程中学习一些编程知识。 在深入学习 AI 时,即使不会编程,也可以通过一些教程,如 20 分钟上手 Python + AI,来逐渐掌握相关技能。Python 拥有丰富的标准库,还可以通过工具和平台获取更多资源。OpenAI 提供了 ChatGPT 这种开箱即用的服务,也有通过代码调用的 OpenAI API 来完成更多自动化任务。
2024-11-13
如何使用AI做产品?
使用 AI 做产品可以参考以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以获取关键信息,如产品受欢迎程度、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提升搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具,根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:依靠 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:利用 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点以吸引顾客。 6. 价格策略:通过 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:运用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:利用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:利用 AI 在社交媒体上找到目标客户群体,进行精准营销提高品牌知名度。 14. 直播和视频营销:借助 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 关于健身的 AI 产品,有以下几个不错的选择: 1. Keep:中国最大的健身平台,为用户提供全面的健身解决方案,以帮助用户实现其健身目标。网址:https://keep.com/ 2. Fiture:沸彻魔镜由核心 AI 技术打造,集硬件、丰富课程内容、明星教练和社区于一体。网址:https://www.fiture.com/ 3. Fitness AI:利用人工智能进行锻炼,增强力量和速度。网址:https://www.fitnessai.com/ 4. Planfit:健身房家庭训练与 AI 健身计划,AI 教练是专门针对健身的生成式人工智能,使用 800 多万条文本数据和 ChatGPT 实时提供指导。网址:https://planfit.ai/ 此外,AI 产品化的关键在于让用户跟随产品引导,通过简单操作获得 AI 所需要的高质量 prompt。每一个真实用户希望得到的是能解决具体问题的答案,而他们想付出的可能只是一个 touch、一句 text、一秒 voice。简单原子通过迭代去拟合复杂任务,当用户无法直接感知 AI 产品使用的模型时,AI 产品的形态和范式才算真正成熟。
2024-11-13
AI提示词,应该如何使用
以下是关于 AI 提示词使用的全面指导: 写提示词(prompt)是决定 AI 模型如何理解并生成文本的关键步骤,一个好的提示词能帮助模型生成更符合预期的文本。编写提示词时,可参考以下建议: 1. 明确任务 清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文 若任务需特定背景知识,提供足够信息。 3. 使用清晰语言 用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求 如有特定格式或风格要求,在提示词中明确指出。 5. 使用示例 如有特定期望结果,提供示例帮助模型理解需求。 6. 保持简洁 避免过多信息,防止模型困惑。 7. 使用关键词和标签 有助于模型理解任务主题和类型。 8. 测试和调整 生成文本后检查结果,根据需要调整提示词,可能需多次迭代。 优化和润色提示词对于提高文生图、对话等 AI 模型的输出质量很重要,可尝试以下方法: 1. 明确具体描述 使用更具体、细节的词语和短语。 2. 添加视觉参考 插入相关图片参考,提高模型理解能力。 3. 注意语气和情感 用合适的形容词、语气词调整整体语气和情感色彩。 4. 优化关键词组合 尝试不同搭配和语序,找到准确表达需求的方式。 5. 增加约束条件 如分辨率、比例等,避免意外输出。 6. 分步骤构建 复杂需求拆解为子提示词,逐步引导生成。 7. 参考优秀案例 研究有效的范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化 多次尝试不同写法,根据效果反馈完善。 此外,还需认识到: 基于 AI“似人”的一面,要接受其存在的“不稳定性”。即使指令清晰,它也可能出现问题,需要对其进行教育、监督和鞭策。不能期待设计完美的提示词就得到完美答案,提示词应是一个相对完善的“谈话方案”,真正成果在对话中产生,同时在对话中限缩自己思维的模糊地带。 总之,编写高质量提示词需要不断实践、总结经验,熟悉 AI 模型的能力边界,保持开放思维尝试创新描述方式。
2024-11-13