以下为您推荐一些免费的 AI 大模型及获取方式:
另外,为了帮助您更好地理解 AI 大模型的相关知识,以下是一些概念和原理的介绍:
阿里、腾讯对【新用户】提供免费试用服务器的。可以去官网获取,腾讯云的[轻量应用服务器](https://cloud.tencent.com/act/pro/free)(官网提供的优惠服务器已够用了),阿里云的[服务器ECS](https://www.aliyun.com/product/ecs)、到期后想续费也行,这个看大伙需求了。服务器系统配置,请选择【宝塔】系统。后面我都会以这个操作系统来搭建上面说到的工具。[heading3]领免费大模型接口[content]阿里的[通义千问大模型](https://dashscope.console.aliyun.com/)接口,然后打开链接,创建个APIkey。[智谱AI(ChatGLM)](https://open.bigmodel.cn/)、[科大讯飞(SparkDesk)](https://xinghuo.xfyun.cn/sparkapi),也有免费接口。目前国内的大模型大都是,限制一定免费额度的Token。[谷歌的Gemini大模型](https://ai.google.dev/)(gemini 1.5),[海外版Coze](https://www.coze.com/)的GPT4模型。是免费而且还能图片识别,但需要给服务器挂梯子。想使用,这里我推荐张梦飞同学写的这篇教程[张梦飞:【保姆级教程】这可能是你在地球上能白嫖到的,能力最强的超级微信机器人!一步一图,小白友好](https://waytoagi.feishu.cn/wiki/YeBiwZx2TiyNLMk8pdjcmdQfnjd)。里面手把手教你怎么给服务器科学🕸️,怎么使用海外版coze。
一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。
一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。