Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想从互联网上搜集某些类型的论文,并且自动整理成我想要的格式,有什么基于大模型的agent或者软件推荐吗

Answer

以下是一些基于大模型的 agent 或者软件,可帮助您从互联网上搜集某些类型的论文并自动整理成您想要的格式:

  1. 文献管理和搜索:
    • Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。
    • Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。
  2. 内容生成和辅助写作:
    • Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高论文语言质量。
    • Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。
  3. 研究和数据分析:
    • Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。
    • Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。
  4. 论文结构和格式:
    • LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,可高效处理论文格式和数学公式。
    • Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。
  5. 研究伦理和抄袭检测:
    • Turnitin:广泛使用的抄袭检测工具,确保论文原创性。
    • Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。

此外,在 AI 文章排版方面,以下工具可供选择:

  1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档整体风格和流畅性。
  2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。
  3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。
  4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。
  5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。
  6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作和排版。

选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。

请注意,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:有没有论文写作的 AI 产品?

在论文写作领域,AI技术的应用正在迅速发展,提供了从文献搜索、内容生成、语言润色到数据分析等多方面的辅助。以下是一些论文写作中常用的AI工具和平台:1.文献管理和搜索:Zotero:结合AI技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。Semantic Scholar:一个由AI驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。2.内容生成和辅助写作:Grammarly:通过AI技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。Quillbot:一个基于AI的重写和摘要工具,可以帮助研究人员精简和优化论文内容。3.研究和数据分析:Google Colab:提供基于云的Jupyter笔记本环境,支持AI和机器学习研究,便于进行数据分析和可视化。Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。4.论文结构和格式:LaTeX:虽然不是纯粹的AI工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。Overleaf:一个在线LaTeX编辑器,提供丰富的模板库和协作功能,简化论文编写过程。5.研究伦理和抄袭检测:Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。这些工具可以帮助研究人员和写作者在写作过程中克服各种挑战,从提高语言质量到激发创意,再到引用文献和抄袭检测。使用这些工具时,重要的是要结合自己的写作风格和需求,选择最合适的辅助工具。内容由AI大模型生成,请仔细甄别。

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

在了解AI Agent之前,我们先考虑一个场景:我们要写一本20万字的关于人工智能最新技术的书在没有大模型之前,我们一般会按照如下流程第一步:先使用搜索引擎搜索一些相关书籍和信息进行阅读,为我们打开思路第二步:形成本书的大纲,并且考虑清楚每一章节要编写的内容第三步:针对每一个章节进行内容的编写,在编写过程中可能会调整文章的大纲第四步:在编写后面章节的时候可能会忘记前面写的内容,需要去翻阅前面已经写的内容第五步:文章初步完成之后,我们可能会找相关专业人士帮忙修改最后:经过几番调整之后,书籍最终成型在大模型出现之后,我们可能会这样使用:请你帮忙生成一篇20万字的关于人工智能最新技术的书这个时候我们会发现AI写出来的书根本就无法阅读,是大模型的能力不行么?不仅仅因为这个,相比于第一种写书的方式,第二种方式明显缺少了几个环节没有办法使用Google获取最新的外部信息(大模型的训练数据是有日期限制的)没有对整个事情进行规划(比如先写大纲,再编写每个章节,然后和别人讨论,最后成文)大模型没有记忆的能力,由于上下文(脑容量)的限制,无法一次性完成20万字的文章,会造成前言不搭后语的现象而AI Agent就是为了解决这个问题。AI Agent是应用了大模型(LLM)能力的Agent。以GPT为代表的大模型的出现,将Agent的能力提高到了前所未有的高度。AI Agent又被称为智能体。OpenAI的Lilian Weng将以LLM为驱动的AI Agent,形式化为如下的公式:

问:AI文章排版工具,论文排版

AI文章排版工具主要用于自动化和优化文档的布局和格式,特别是在处理学术论文和专业文档时。这些工具可以帮助作者和研究人员自动格式化文档,确保符合特定的出版标准或学术规范。以下是一些流行的AI文章排版工具:1.Grammarly:Grammarly不仅是一个语法和拼写检查工具,它还提供了一些排版功能,可以帮助改进文档的整体风格和流畅性。2.QuillBot:QuillBot是一个AI驱动的写作和排版工具,可以帮助用户改进文本的清晰度和流畅性,同时保持原有的意义。3.Latex:尽管不是纯粹的AI工具,Latex是一个广泛用于学术论文排版的软件,它使用标记语言来描述文档的格式。有许多AI辅助的Latex编辑器和插件可以帮助简化排版过程。4.PandaDoc:PandaDoc是一个文档自动化平台,它使用AI来帮助创建、格式化和自动化文档生成,适合商业和技术文档。5.Wordtune:Wordtune是一个AI写作助手,可以重新表述和改进文本,使其更加清晰和专业,同时保持原始意图。6.Overleaf:Overleaf是一个在线Latex编辑器,提供了丰富的模板和协作工具,非常适合学术写作和排版。选择合适的AI文章排版工具取决于你的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex和Overleaf是非常受欢迎的选择,因为它们提供了强大的排版功能和广泛的学术支持。对于一般的文章和商业文档,Grammarly和PandaDoc等工具可能更适用。内容由AI大模型生成,请仔细甄别。

Others are asking
agent 打通应用之间的协议?
在 AI 领域中,Agent 是连接模型与应用的关键。端侧 Agents 是在终端设备上自主运行的智能代理程序,具备感知、决策、执行的闭环能力。 Agent 之所以重要,原因包括:端侧资源约束要求最优化使用,任务具有复杂性,生态存在多样性,双系统路线更适合端侧。 Agent 创造价值的方式体现在双重价值实现:一是资源优化,包括任务分解、按需调用;二是生态连接,比如跨应用协作、UI 理解。 其发展趋势包括:技术上从单一模型到多智能体协作;生态上从封闭应用到开放服务;交互上从指令执行到场景理解。 在技术层面,AI Agent 的发展出现了两条技术路线:一是以自主决策为核心的 LLM 控制流,二是以工作流(Workflow)编排为重点的工具集成系统。 特别值得关注的是 Anthropic 提出的 MCP(Model Context Protocol),它的本质是一个通用接口协议,试图解决让 AI 模型能够以标准化、可扩展的方式与外部世界交互的问题。 此外,还有 Agent Protocol 这种用于与 AI 代理进行通信的统一接口,它提供了一种 API 规范,任何代理开发者都可以实现该协议,设计简单且不依赖特定技术栈,有助于生态系统发展和简化集成,并提供了不同语言的 SDK 供开发者使用。
2025-03-09
做一个每日收集兴趣信息的工具,如收集agent,从微信公众号上收集,应该怎么做
以下是一种通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答的方式来做每日收集兴趣信息的工具: 1. 安装 Docker(假设已经装上) 浏览器打开:http://127.0.0.1:4000 或 http://wewerss 服务的 IP:端口(为上面设置的外部端口) 点开后,输入 Dash 管理页面密码 先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号 然后在公众号源上,点添加 将您想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章。但建议不要短时间订阅太多公众号(最好不超 40 个),然后在本地 data/目录会生成一个 SQLite 数据库文件 wewerss.db 2. 关于 Coze 工作流和 Bot 因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。得到机器人的 app_id 和 app_secret 即可获得租用 token:tenant_access_token 来获取多维表格数据和编辑能力。 工作流一:通过微信文章链接进行文章解读成摘要报告。通过 LLM 能力,开源提示词如下。由于 Coze 使用 LLM 和批量执行任务延时的约束,建议不要同时处理太多文章(如 6 篇左右)。这样执行后,将多维表格的文章状态转换成“已通知”并生成简报。 消息情报官 Bot:最后可以通过 Coze,建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,即可变成一个消息情报官的 Agent,我们即可以获得想要的领域或行业情报,也可以深入挖掘相关情报的信息。然后发布到想要的平台,如:Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等,即可使用。可以构建多个分身,就能收集整理不同领域和行业的情报信息。 如感兴趣欢迎联系交流合作。
2025-03-08
AI Agent MANUS个人助手是否可以本地私有化部署
目前没有明确的信息表明 AI Agent MANUS 个人助手可以本地私有化部署。 Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人,具备自主规划、执行复杂任务并直接交付完整成果的能力。其技术架构主要基于多智能体架构,运行在独立的虚拟机中,核心功能由多个独立模型共同完成,包括规划、执行和验证三个子模块,还包括虚拟机、计算资源、生成物、内置多个 agents 等关键组件,并采用了“少结构,多智能体”的设计哲学。 但对于其是否能本地私有化部署,现有资料未给出确切说明。在构建高质量的 AI 数字人方面,由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,算法一般会部署到额外的集群或者调用提供出来的 API。而在本地部署资讯问答机器人方面,有相关案例,但未提及与 AI Agent MANUS 个人助手的直接关联。
2025-03-07
AI Agent MANUS个人助手
AI Agent MANUS 个人助手是一种真正自主的 AI 代理。它区别于传统的 AI 助手,能够自主完成复杂任务,不仅生成想法,还能直接执行并交付结果。其核心亮点包括: 1. 自主执行:可直接执行任务,而非仅提供建议。 2. 类人工作模式:能解压文件、浏览网页、阅读文档、提取关键信息等。 3. 云端异步运行:在后台执行任务,完成后自动通知用户。 4. 持续学习和记忆:从用户反馈中学习,提高未来任务的准确性。 5. “心智与手”理念:象征着实际执行能力。 在构建高质量的 AI 数字人时,涉及到为数字人构建灵魂,使其具备各种智能,充当个人助手等。其中在构建数字人灵魂方面,有以下几个工程关键点: 1. AI Agent:要让数字人像人一样思考,需要编写一个像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建存在挑战。 2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式视躯壳部分的实现而定。但包含情绪的语音表达以及保证躯壳的口型、表情、动作和语音的同步及匹配存在困难,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 实时性:由于数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,算法一般会部署到额外的集群或者调用提供出来的 API,会涉及到网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 多元跨模态:仅仅语音交互的数字人远远不够,可根据实际需求添加其他感官,如通过添加摄像头数据获取视觉信息,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常与人交流时并非线性对话,会有插话、转移话题等情况,这些情景的工程处理需要优化。 在人工智能的发展历程中,Agent(智能代理)一直是令人着迷的概念之一。2024 年,Agent 技术实现了从概念到实践的关键突破。例如,当对手机下达指令“帮我给同事的朋友圈点赞”,AI 就能识别屏幕并完成操作。这种进化展示了 AI 不仅能“听懂”,还能“思考”和“行动”,会分析任务、规划步骤、选择工具,甚至在遇到问题时及时调整策略。2024 年,Anthropic 的 Computer Use、智谱 AI 的 AutoGLM 以及 Google 的 Gemini 2.0 等都展示了 AI Agent 的突破性进展。这种接近成型的工程化的 Agent 核心在于四个关键能力的进展,但在过往,类似的 Agent 能力存在成功率不高、泛化能力不够强等问题,训练模型识别所有 App 的 UI 很难,模型进行自主操作也是难点。
2025-03-07
如何使用AI agent
使用 AI Agent 主要包括以下几个方面: 1. 理解工具:AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。利用 LLM 的 zeroshot learning 和 fewshot learning 能力,可通过描述工具功能和参数的 zeroshot demonstration 或特定工具使用场景和相应方法演示的少量提示来获取工具知识。面对复杂任务,AI Agent 应先将其分解为子任务,再组织和协调,这依赖于 LLM 的推理和规划能力及对工具的理解。 2. 使用工具:AI Agent 学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习(清华有相关从训练数据中学习的文章)。这包括模仿人类专家行为,了解行为后果,并根据环境和人类反馈(包括行动结果反馈、环境状态变化的中间反馈、显性评价和隐性行为如点击链接)做出调整。 3. 具身智能:在追求 AGI 的过程中,具身 Agent 成为核心研究范式,强调智能系统与物理世界紧密结合。与传统深度学习模型不同,LLMbased Agent 能主动感知和理解物理环境并互动,利用内部知识库决策并产生行动改变环境,此系列行为称为“具身行动”。 此外,AI Agent 还包括以下概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成,一个 Chain 视作一个步骤,可接受输入变量并产生输出变量,大部分 Chain 是大语言模型完成的 LLM Chain。 2. Router:可使用判定(甚至用 LLM 判定)让 Agent 走向不同的 Chain,如根据输入是图片还是其他进行不同处理。 3. Tool:Agent 上的一次工具调用,如互联网搜索、数据库检索。 同时,还需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态,如进入下一个剧本,抽检生成增长的记忆体等。 3. Daily Agent:每日 agent,用于生成剧本、配套图片及每日朋友圈。Background Agent 每隔一段时间运行一次(默认 3 分钟),分析期间的历史对话,变更人物关系、反感度,抽简对话内容提取信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-03-07
agent有哪些文章推荐?
以下是为您推荐的关于 agent 的文章: 从下往上看,一个一个点进去,都有视频。共学都有视频,都是手把手从注册开始的教学,不会就多看几遍,基本保障一个工具能调通、一个 Agent 能搭好。 注意事项:确实内容有点多,点进去看看哪个工具您听过就从哪个工具开始吧,不然太累啦。 看了一些视频之后,您就知道您要看理论还是应用了,找到导航,想看哪里点哪里。 备注:智能千帆、阿里云百炼都是有视频的,其余没有视频。 注意事项:确实内容有点多,您如果都看到这里了,就要考虑聚焦了,先挑一个,开始手把手一起做起来,看看能不能持续用起来,只要您开始用起来,这事儿就成啦! 增加了 AI Agent 图谱,由共建者缱绻怡然制作。 》,作者孔某人,主要讨论基于 LLM 的复杂 Agent 的实现。 《》,来自有新 Newin,Essential AI 由两位谷歌重要研究论文的作者 Ashish Vaswani 和 Niki Parmar 创立,2017 年在谷歌工作时与他人一起共同撰写了具有重要影响力的论文《Attention Is All You Need》。Essential AI 正在开发全栈 AI 产品,这些产品具备快速学习能力,能够通过自动化繁琐且耗时的工作流程来提高生产力。 Tesla 发布 Optimus Gen2 机器人,现在拥有更加精致的外观,并且比 5 月份特斯拉展示 Optimus Gen1 时的速度快了 30%,。 《》是微软亚洲研究院、华为天才少年李博杰的一篇文章,虽然目前的大模型技术已经非常强大,应付日常的 chat 并不难,但做一个有多模态能力、有记忆、能解决复杂任务、会利用工具、有性格、有情感、有自主性、低成本、高可靠的 AI Agent 并不容易。如果说 Chat 是大模型的第一个应用场景,也许 Agent 才是大模型真正的 killer app。 《》的 GitHub 地址,收集了多模态大型语言模型的最新论文和数据集及其评估。 《》是知识库的好友「INDIGO 的数字镜像」万字长文,本探讨在新一轮的 AI 变革之下,如何用新工具来帮助扩展大脑思维与记忆的边界,以及知识工作流的新方法,激发潜能,构建外脑!强烈推荐阅读。 《》是波士顿咨询的一篇新文章,讲述 CEO 抓住机遇和应对挑战,他们必须在三个关键支柱上做出选择:潜力、人员和政策。 收集群友的每日创作。
2025-03-07
如何利用ai将word格式中的内容完整以PPT格式呈现出来?
目前将 Word 格式的内容完整转换为 PPT 格式,主要可以通过以下几种方式: 1. 利用一些专门的文档转换工具软件,这些软件通常具有将 Word 转换为 PPT 的功能,但可能需要一定的费用,并且转换效果可能因文档的复杂程度而有所不同。 2. 某些在线转换平台也提供类似的服务,但需要注意数据的安全性和隐私保护。 3. 对于一些具备编程能力的用户,可以通过编写代码来实现转换,但这需要较高的技术门槛和时间成本。 需要注意的是,无论采用哪种方式,转换后的 PPT 可能都需要进行一定的手动调整和优化,以确保内容的布局、格式和展示效果符合您的需求。
2025-03-05
ai智能审图,包括不限于pdf,dwg格式文件
以下是一些能够帮助建筑设计师审核包括 PDF、DWG 等格式文件的规划平面图的 AI 工具: 1. HDAidMaster:这是一款云端工具,建筑师能在平台上使用主流的 AIGC 功能进行有趣的集卡式方案创作。它在建筑设计、室内设计和景观设计领域表现出色,平台搭载的建筑大模型 ArchiMaster 由建筑设计院开发,软件 UI 和设计成果颜值在线。 2. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面应用了 AI 技术。设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 3. ARCHITEChTURES:这是一个 AI 驱动的三维建筑设计软件,为设计师提供全新设计模式。在住宅设计早期阶段,可引入相关标准和规范约束 AI 生成的设计结果,保证设计合规性。 4. Fast AI 人工智能审图平台:从住宅设计图构件开始,形成全自动智能审图流程,包括自动导入设计图、自动区域划分、构件识别、强条审查和自动导出结果,同时为建筑信息自动建模打下基础,实现建筑全寿命周期内信息集成和数据汇总管理。 每个工具都有特定应用场景和功能,建议您根据具体需求选择合适的工具。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-05
零编程基础,我想写一个程序实现识别pdf格式的车险保单。我需要多久时间?
对于零编程基础的您来说,要编写一个能够识别 PDF 格式车险保单的程序,所需时间会比较长。这取决于您学习编程的速度和投入的精力。 如果您每天能够投入大量时间学习并实践,可能需要几个月的时间来掌握必要的编程知识和技能,然后再花费一定时间来开发和调试这个程序。 但如果您只是利用业余时间学习,可能需要半年甚至更长时间才能实现这个目标。 需要注意的是,这只是一个大致的估计,实际所需时间会受到多种因素的影响,比如您的学习能力、学习资源的质量、遇到问题时解决的效率等。
2025-03-05
给deepseek提问的格式是什么样的
关于 DeepSeek 的提问格式,以下为您提供相关信息: 在“五津:DeepSeek+扣子:1 分钟生成小红书爆款单词视频”中,包括整理数组、输出内容、问答等步骤。在问答环节,让用户确认单词是否满意,若满意则进入下一步,不满意或输入其他内容则到结束节点,结束节点会增加一个“bumanyi”变量,并提示若不满意可重新制作。 在“宝玉日报”中,提到 Deep Research 与 DeepSeek 的区别,如 Deep Research 基于 GPT4o 和 o3 具备 UI 交互、搜索等功能,DeepSeek 是品牌名称需加上具体模型名,还提到人工智能与人类智能的关系的官方文件译文及相关链接,以及 Deep Research 前置模型提示词泄露。 在“Deepseek‘4+1’黄金提问法——目标导向”中,包括明确身份(角色、专业背景、现有资源、决策权限)、具体任务(工作内容、执行步骤、优先级别、交付物)、细节约束(时间限制、资源限制、技术要求、禁区提示)、输出格式(文档类型、结构要求、重点内容、展示方式)等支撑要素。
2025-03-01
如何通过langchain实现上传 一个客户需求文档,生成一个产品规格书doc格式的文档
要通过 LangChain 实现上传客户需求文档并生成产品规格书(doc 格式),可以按照以下步骤进行: 1. 上传文档:用户可以上传包含知识的文档,支持 txt、pdf、docx 等格式,LangChain ChatChat 会将文档转换为 Markdown 格式。 2. 文本切割:为便于分析和处理,将长文本切割为小块(chunk)。 3. 文本向量化:将切割的 chunk 通过 embedding 技术,转换为算法可以处理的向量,存入向量数据库。 4. 问句向量化:用户提问后,同样将用户的问句向量化。 5. 语义检索匹配:将用户的问句与向量数据库中的 chunk 匹配,匹配出与问句向量最相似的 top k 个。 6. 提交 prompt 至 LLM:将匹配出的文本和问句,一起添加到配置好的 prompt 模板中,提交给 LLM。 7. 生成回答:LLM 生成回答,返回给用户。
2025-02-27
我现在想根据我的博士论文,想出一个国家社科基金的选题。但是我的博士论文感觉核心不是特别突出,我希望找到一个AI助手,让AI帮我读论文的PDF格式然后总结出一个最合适的选题,有没有推荐的AI工具?
以下是一些关于利用 AI 辅助完成您需求的建议: 1. 先拆解您的博士论文工作流程,搞清楚每个步骤的输入输出和相互关系。 2. 思考论文中的哪些环节可以引入 AI 工具来提效,一切要从业务逻辑出发,AI 是锦上添花,不能本末倒置。 3. 搭建选题库,明确论文的定位(可用 AI 辅助分析),找相关的对标论文和优秀研究。 4. 在写作环节,可用 AI 辅助拆解对标论文,提炼写作技巧,然后根据借鉴的技巧结合自身特色列出写作大纲,并使用 AI 优化大纲、查找资料、润色文章,但核心内容要自己完成,不能过度依赖 AI。 5. 起标题与配图方面,用 AI 辅助批量生成标题,再自己修改优化,评估标题是否足够吸引眼球,让 AI 分析论文提供配图建议,去免费图库搜索配图。 6. 养成习惯与总结,做每件事前都思考 AI 能提供什么帮助,把整套流程实践几次,形成肌肉记忆,不断打磨完善属于自己的 AI 辅助流程,同时警惕过度依赖,AI 只是辅助,核心能力要靠自己。 目前常见的可用于辅助您的 AI 工具如 ChatGPT 等,但具体的选择还需根据您的实际需求和使用体验来决定。
2025-02-16
想要搜集社交媒体的爆款,建立对标账号库和选题库,该如何高效搜索?是否有可使用的AI工具?
以下是高效搜集社交媒体爆款、建立对标账号库和选题库的方法及可使用的 AI 工具: 1. 对于找对标账号的爆款文章: 在电脑微信上打开对标账号的微信公众号相关界面。手机支持长截图也可,但不推荐,因手机易被干扰。 刷文章时不仅看当前文章,还应点开作者后台查看其他文章,关注“低粉爆款”(即平常阅读量几百,突然有几万阅读量的异常值文章),大号的阅读量参考价值较低。 遇到不错的对标账号,想获取所有阅读量数据和标题时,可使用长截图结合中文识别能力强的大模型,如 kimichat,飞书客户端自带的长截图功能好用,其截图快捷键在设置中可查看和修改(Windows 为 Ctrl+Shift+A,Mac 为 Alt+Shift+A)。 2. 搭建选题库和标题库: 使用飞书文档创建一个文档,并打开选题库模板(https://zi6nfl20s5u.feishu.cn/wiki/J7KvwzJZLi7mX0k5B5EcQ0ahnIc?from=from_copylink),根据自身需要制作表格。 3. 可使用的 AI 工具:腾讯元宝,这是一个基于腾讯混元大模型的 AI 助手 App,提供包括 AI 搜索、AI 总结、AI 写作等多种功能,能在公众号等平台搜索和总结相关内容,使用提示词句式“去公众号搜索关于「xxx」的文章”。
2025-02-24
给我搜集所有能文生图的AI应用给我
以下是一些常见的文生图工具: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和用户友好的界面设计而受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。 另外,国产大模型中,智谱和文心也有文生图的功能。
2025-02-08
中国国内有哪些帮助用户搜集新闻的AI
以下是中国国内一些帮助用户搜集新闻的 AI: 1. AI 秒学团队的“儿童新闻百事通”:通过插件实现新闻搜索,对新闻可信度进行分析,根据判断条件为新闻评分,还能根据用户提供的新闻关键词转写成 6 12 岁儿童能听懂(看懂)的新闻。 2. NOOZ.AI:这是一个 AI 驱动的新闻工具,其官网为 https://nooz.ai/news ,能按照最新更新排序提供各类新闻,并具备 NOOZSCORE 功能,可测量每篇文章的影响力,用户能通过筛选和搜索找到特定新闻故事或话题。 此外,还有一些能联网检索的 AI ,例如: 1. ChatGPT Plus 用户现在可以开启 web browsing 功能,实现联网功能。 2. Perplexity,结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 3. Bing Copilot,作为一个 AI 助手,旨在简化您的在线查询和浏览活动。 4. 如 You.com 和 Neeva AI 等搜索引擎,提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-08-17
有那种AI 是帮助用户搜集新闻的
以下是一些可以帮助用户搜集新闻的 AI 工具: 1. NOOZ.AI:这是一个 AI 驱动的新闻工具,其官网为 https://nooz.ai/news 。它提供按照最新更新排序的各类新闻,还具备 NOOZSCORE 功能,可以测量每篇文章的影响力,用户可以通过筛选和搜索来找到特定的新闻故事或话题。 2. Perplexity.AI:可以通过其 Discover 功能挖掘近期的热点资讯。 3. Particle.news:由前 Twitter 工程师领导的初创公司开发,正在重新思考如何利用人工智能帮助人们处理新闻和信息。该公司最近进入了私人测试阶段,提供一种个性化的“多视角”新闻阅读体验。不仅利用 AI 来总结新闻,还旨在以一种公平补偿作者和出版商的方式来实现这一点,尽管它尚未分享其商业模式。其链接为 https://www.particlenews.ai/
2024-08-17
手游开发的AI软件有哪些?
以下是一些手游开发中常用的 AI 软件: 语音生成: Coqui Studio:https://coqui.ai Bark:https://github.com/sunoai/bark Replica Studios:https://replicastudios.com 语音识别: OpenAI Whisper:https://huggingface.co/openai/whisperbase Facebook Wav2Vec2:https://huggingface.co/facebook/wav2vec2largexlsr53 对话模型: ChatGPT:https://chat.openai.com HuggingChat:https://huggingface.co/chat 故事讲述模型: MPT7BStoryWriter65k+:https://huggingface.co/mosaicml/mpt7bstorywriter Claude 100k:https://www.anthropic.com/index/100kcontextwindows GTP4 32k:https://platform.openai.com/docs/models/overview 游戏设计: Ludo.ai:https://ludo.ai 搜索引擎: Haddock:https://www.haddock.ai AI NPC: Inworld:https://inworld.ai Python 库 此外,网易推出的首款 AI 手游《逆水寒》在美术开发、NPC 与玩家的交互等方面应用了 AI 技术,如内嵌的全自动“AI 作词机”。还有一些 AI 应用如 AI 游戏道具推荐系统、AI 天气预报分时服务、AI 医疗病历分析平台、AI 会议发言总结工具、AI 书法作品临摹辅助工具等,也在不同方面为手游开发或相关领域提供了支持和帮助。
2025-03-09
给动画配音的软件
以下为您推荐一些给动画配音的软件: 1. Nijivoice:这是一款日语 AI 配音工具,支持自然真实且具有情感的语音生成,适用于动画配音、广播剧、广告、游戏等多种场景。它提供多种情感表达(如开心、悲伤、愤怒等)和丰富的虚拟角色库,每个角色拥有独特的语音风格。同时支持语音速度、音高和情感强度的编辑,方便用户调整细节。相关链接:
2025-03-08
能够生成AI视频的免费国产软件有哪些?
以下是一些能够生成 AI 视频的免费国产软件: 1. Hidreamai:有免费额度,网址为 https://hidreamai.com//AiVideo 。支持文生视频、图生视频,提示词使用中文、英文都可以,文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 2. ETNA:网址为 https://etna.7volcanoes.com/ 。这是一款由七火山科技开发的文生视频 AI 模型,能根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达 4K,最高 38402160,画面细腻逼真,帧率 60fps,支持中文和时空理解。 3. 可灵:网址为 https://klingai.kuaishou.com/ 。在 AI 视频生成领域表现出色,生成的视频质量高,生成速度快,对国内用户的可访问性强。支持文生视频、图生视频,提示词可使用中文,文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持多种尺寸。 4. Dreamina:处于国内内测阶段,有免费额度,网址为 https://jimeng.jianying.com/aitool/video/generate 。支持文生视频、图生视频、视频生视频,支持图生视频首尾帧功能,提示词使用中文、英文都可以,文生视频支持多种控制和尺寸选择,默认生成 3s 的视频。
2025-03-08
deepseek加什么软件能生成图片
DeepSeek 本身可能不具备直接生成图片的能力,但可以通过以下方式结合其他软件来生成图片: 开发浏览器插件:先开发基础版本,包括选择文字,可以自定义生成图片,图片底部包含文章标题和链接二维码。在开发过程中,可能需要使用 Trae 运行并在 Chrome 浏览器内加载扩展程序进行调试。 使用其他 AI 生成图片的软件来生成图标,例如多模态模型 JanusPro ,它既能进行视觉理解,也能生成图像。
2025-03-07
可视化分析的AI软件工具有哪些,可以生成线性结构、矩阵结构、框架结构、系统结构等
以下是一些可以用于生成线性结构、矩阵结构、框架结构、系统结构等可视化分析的 AI 软件工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包含逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2025-03-06
可视化分析的软件工具有哪些,可以生成线性结构、矩阵结构、框架结构、系统结构等
目前常见的可视化分析软件工具包括:Tableau、PowerBI、Excel、Google Data Studio、QlikView 等。但具体哪些工具能够生成您所提到的线性结构、矩阵结构、框架结构、系统结构等,可能需要您进一步查阅它们的详细功能介绍和实际使用体验来确定。
2025-03-06