Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何通过langchain实现上传 一个客户需求文档,生成一个产品规格书doc格式的文档

Answer

要通过 LangChain 实现上传客户需求文档并生成产品规格书(doc 格式),可以按照以下步骤进行:

  1. 上传文档:用户可以上传包含知识的文档,支持 txt、pdf、docx 等格式,LangChain ChatChat 会将文档转换为 Markdown 格式。
  2. 文本切割:为便于分析和处理,将长文本切割为小块(chunk)。
  3. 文本向量化:将切割的 chunk 通过 embedding 技术,转换为算法可以处理的向量,存入向量数据库。
  4. 问句向量化:用户提问后,同样将用户的问句向量化。
  5. 语义检索匹配:将用户的问句与向量数据库中的 chunk 匹配,匹配出与问句向量最相似的 top k 个。
  6. 提交 prompt 至 LLM:将匹配出的文本和问句,一起添加到配置好的 prompt 模板中,提交给 LLM。
  7. 生成回答:LLM 生成回答,返回给用户。
Content generated by AI large model, please carefully verify (powered by aily)

References

开发:产品视角的大模型 RAG 应用

(1)上传文档:用户上传包含知识的文档,支持txt、pdf、docx等格式,LangChain Chatchat会将文档转换为Markdown格式(2)文本切割:为了便于分析和处理,将长文本切割为小块(chunk)(3)文本向量化:将切割的chunk通过embedding技术,转换为算法可以处理的向量,存入向量数据库(4)问句向量化:用户提问后,同样将用户的问句向量化(5)语义检索匹配:将用户的问句与向量数据库中的chunk匹配,匹配出与问句向量最相似的top k个(6)提交prompt至LLM:将匹配出的文本和问句,一起添加到配置好的prompt模板中,提交给LLM(7)生成回答:LLM生成回答,返回给用户

Others are asking
企业建立私有大模型时候,采用什么工具进行RAG,高效实习企业知识文档、表格和pdf图纸的向量化
企业建立私有大模型进行 RAG 并实现企业知识文档、表格和 PDF 图纸向量化时,可参考以下工具和方法: 1. 本地部署资讯问答机器人: 导入依赖库,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型(使用前需确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,可使用文本向量模型 bgem3,从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 2. 开发:LangChain 应用开发指南 大模型的知识外挂 RAG 加载数据,根据数据源类型选择合适的数据加载器,如网页可使用 WebBaseLoader。 将文档对象分割成较小的对象,根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 将文档对象转换为嵌入并存储到向量存储器中,根据嵌入质量和速度选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 创建检索器,使用向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数创建检索器对象。 创建聊天模型,根据性能和成本选择合适的聊天模型,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-02-27
知识库中关于 deepseek 有哪些文档
以下是关于 DeepSeek 的相关文档和内容: 章节: 知识点: 申请: 接入: 此外,还有以下相关内容: 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日的智能纪要,包括关于 DP 模型的使用分享、音系学和与大模型互动的分享、DeepSeek 的介绍与活动预告等。 DP 模型的功能、使用优势、存在问题、审核方法、使用建议、使用场景和案例展示。 音系学研究、大模型取队名。 DeepSeek 文档分享、使用介绍、未来活动预告。
2025-02-25
怎样分析一篇PDF文档中的信息并创建问答对,将问答对按行输出到多维表格?
以下是分析一篇 PDF 文档中的信息并创建问答对,按行输出到多维表格的一些要点: 1. 文档格式规范: Markdown:建议优先使用 Markdown 格式。 Word:优先采用 2007 版或之后的 Word 格式,使用全局样式,统一使用全局标题和段落样式,避免字符样式,使用段落样式保持文档格式一致性。 PDF:避免使用图片,将图像中的重要信息转录成文本并按规范组织,不包含嵌入压缩文件,保持文档单栏布局。 CSV:避免使用图片,不嵌入压缩文件,表头作为第一行。 2. 问答对内容规范: 推荐保存 FAQ(常见问题解答)中的问答对,问题表述清晰明确,答案简洁易懂,使用用户熟悉的术语,突出关键词,以提高检索召回准确度。 不推荐在 CSV 中上传复杂的关系型数据表,可能导致数据处理时间超长和失败。 希望这些要点对您有所帮助。若您想深入了解 RAG,可以进入知识库专区:
2025-02-25
deepseek的提示词文档
以下是关于 DeepSeek 的相关信息: DeepSeek 爆火,价格亲民且实力超群,是智慧开源领航者,实时联网深度推理双冠王,用技术普惠重新定义了 AI 边界。便宜、开源且能联网,在 Appstore 排行第一,导致算力股大跌。 使用地址:https://chat.deepseek.com/(有手机客户端:扫描下面二维码) 模型下载地址:https://github.com/deepseekai/DeepSeekLLM?tab=readmeovfile API 文档地址:无 DeepSeek 的提示词使用方法比较长,单独列了一篇 魔改版本:https://huggingface.co/ValueFX9507/TifaDeepsex14bCoTGGUFQ4 、https://huggingface.co/mradermacher/DeepSeekR1DistillQwen7BabliteratedGGUF 一个提示词让 DeepSeek 能力更上一层楼的相关内容: 效果对比:用 Coze 做了小测试,对比视频 使用方法: Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定) 完整提示词:v 1.3 特别鸣谢:李继刚(【思考的七把武器】在前期提供了很多思考方向)、Thinking Claude(项目是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源)、Claude 3.5 Sonnet(最得力的助手)
2025-02-24
我有什么方法,能够让ai帮我分析我有几篇飞书文档的内容,然后行程一个分享的提纲
目前让 AI 直接分析您的多篇飞书文档内容并形成分享提纲可能具有一定的挑战。但您可以尝试以下方法: 1. 首先,将飞书文档中的关键内容提取出来,整理成较为清晰的文本格式。 2. 然后,使用具有文本分析能力的 AI 工具,如某些自然语言处理模型,输入整理后的文本,让其帮助您总结主要观点和关键信息。 3. 您还可以向 AI 提供一些关于分享提纲的格式和重点要求的提示,以便它能生成更符合您需求的提纲。 需要注意的是,AI 的分析结果可能需要您进一步的审查和调整,以确保准确性和完整性。
2025-02-24
我是0基础代码小白,我希望快速编写一款APP,满足我所需要的要求,我用deepseek生产app开发者文档,然后用bolt.new工具开发,开发到一半,发现要收费,给我中断了,我该怎么办
对于您这种 0 基础代码小白在开发 APP 过程中遇到收费中断的情况,以下是一些建议: 1. 重新评估您的需求和能力:像案例中的白九龄一样,思考您的想法是否过于复杂,是否可以先从简单的插件开发入手,降低开发难度。 2. 学习基础知识:包括代码环境安装、终端操作等,通过基础实践教程资料来弥补知识短板。 3. 借鉴他人成功经验:仔细研究别人的项目,按照成功的案例原封不动地去实现,从中领悟开发的要点。 4. 清晰描述需求:在开发前与工具充分沟通,明确需求和实现步骤,避免盲目开发。 5. 寻找免费替代工具:既然当前使用的工具收费中断,您可以寻找其他类似的免费工具来继续您的开发工作。 6. 做好项目记录:让工具帮忙写一个 README 文档,记录项目进展、下一步计划以及如何开启和关闭项目,方便后续跟进。
2025-02-23
LangChain
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和功能: 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供了一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 核心概念包括组件和链,组件是模块化的构建块,链是组合在一起完成特定任务的一系列组件(或其他链)。 具有模型抽象、提示模板和值、链、代理等功能。 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,且可与外部数据源交互并提供内存功能。 LangChain 与 RAG(检索增强生成)的关系: 框架与技术:LangChain 作为框架,提供实现 RAG 必需的工具和组件,RAG 技术可在其框架内实施利用。 模块化实现:允许开发者通过模块化组件构建 RAG 应用程序。 简化开发:通过提供现成的链和提示模板简化 RAG 应用开发过程。 提高性能:利用 LangChain 实现 RAG 可创建更高效、准确的应用程序,尤其在需大量外部信息辅助决策的场景。 应用构建:通过丰富的 API 和组件库支持构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。 在开发 LangChain 应用时,构建 RAG 应用的相关组件包括数据加载器、文本分割器、文本嵌入器、向量存储器、检索器、聊天模型等,一般流程如下:(具体流程未给出,如有需要请补充提问)
2025-02-24
详细介绍下langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它具有以下特点和优势: 1. 提供一系列工具、组件和接口,使基于大型语言模型(LLM)和聊天模型创建应用程序更轻松。 2. 核心概念包括组件和链,组件是模块化构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 3. 具有模型抽象功能,提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义处理步骤链,按顺序执行完成复杂任务。 6. 支持构建代理,能使用语言模型做决策并根据用户输入调用工具。 7. 支持多种用例,如特定文档问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。 LangChain 是一个开源框架,为简化大模型应用开发而设计。它通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性以适应业务需求变化。作为社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握。同时,在设计时充分考虑应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-02-14
langchain与dify哪个更有发展前景
LangChain 和 Dify 都是在 LLM 应用开发领域具有特点和优势的工具,难以简单地判断哪个更有发展前景。 LangChain 是一个编排框架,在提示链细节抽象、与外部 API 接口、从向量数据库检索上下文数据以及在多个 LLM 调用中维持内存等方面表现出色,为多种常见应用提供模板,在业余爱好者和初创公司中被广泛使用。但它目前仍是相对新的项目,且一些开发者在生产中更愿意切换到原生 Python 以消除额外依赖性。 Dify 是一个开源的 LLM 应用开发平台,具有快速部署、创意文档生成、长文档摘要、自定义 API、连接全球 LLM、更接近生产环境等优势。它允许用户编排从代理到复杂 AI 工作流的 LLM 应用,并配备了 RAG 引擎,旨在为特定行业提供聊天机器人和 AI 助手。 两者的发展前景取决于多种因素,如技术创新、市场需求、社区支持等。在不同的应用场景和需求下,它们各自都有发挥作用的空间和潜力。
2025-02-14
langchain会被淘汰吗
LangChain 目前不太可能被淘汰。它是 LLM 应用程序编排框架中的领导者,在提示链细节抽象、与外部 API 接口、上下文数据检索以及维持内存等方面表现出色,为业余爱好者和初创公司广泛使用,并已开始有构建的应用转入生产。 虽然 LangChain 仍是相对新的项目,一些开发者特别是 LLM 的早期采用者,更愿意在生产中切换到原生 Python 以消除额外的依赖性,但预计这种自行制作的方法在大多数用例中的使用会随时间减少,这与传统的 web 应用堆栈情况类似。 同时,高级提示词工程技术的普及促进了一系列工具和框架的发展,LangChain 已成为提示词工程工具包景观中的基石,最初专注于链条,后扩展到支持包括智能体和网络浏览功能在内的更广泛功能,其全面的功能套件使其成为开发复杂 LLM 应用的宝贵资源。
2025-02-14
langchain 大白话解释一下给我听
LangChain 是一个用于构建高级语言模型应用程序的框架。它能简化开发人员使用语言模型构建端到端应用程序的流程,提供了一系列工具、组件和接口,让创建由大型语言模型和聊天模型支持的应用程序更轻松。 其核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链则是一系列组件或其他链的组合,用于完成特定任务。 主要特点有: 1. 模型抽象:提供对大型语言模型和聊天模型的抽象,方便开发人员选择合适模型并利用组件构建应用。 2. 提示模板和值:支持创建和管理提示模板,引导语言模型生成特定输出。 3. 链:允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 4. 代理:支持构建代理,能使用语言模型做决策,并根据用户输入调用工具。 LangChain 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,能与外部数据源交互收集数据,还提供内存功能维护状态。它旨在为开发人员提供强大工具集,构建适应性强、高效且能处理复杂用例的高级语言模型应用程序。
2025-02-08
langchain的提示词工程
LangChain 是一个在提示词工程领域具有重要地位的开源框架。 它允许开发者将语言模型与应用程序连接起来,使应用程序能够嵌入大模型的能力,俗称 ReAct,展示了一种提示词技术,允许模型“推理”和“行动”。 高级提示词工程技术的发展促使一系列工具和框架兴起,LangChain 已成为提示词工程工具包中的基石,最初专注于链条,后扩展到支持包括智能体和网络浏览等更广泛的功能,其全面的功能套件使其成为开发复杂 LLM 应用的宝贵资源。 在实际的工作场景中,LangChain 是常用的 RAG 框架之一。它是为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,便于开发者集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛模型,具备良好可扩展性,有活跃的贡献者和持续更新,提供全面文档和示例代码,考虑了应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-01-25
请告诉我coze里面的doc maker这个插件的使用技巧
以下是关于 Coze 中 Doc Maker 插件的使用技巧: 1. 新建插件: 进入 Coze 个人空间,选择插件,新建一个插件并起个名字,如 api_1,可随意命名,甚至描述也可简单设置为 test。 在插件的 URL 部分,填入 Ngrok 随机生成的 https 的链接地址。如果服务还开着则继续,若已关闭则重新开始。 按照 Coze 的指引配置输出参数,完成后测试并发布插件。 2. 手捏简单 Bot: 完成插件创建后,创建一个测试 api 的 bot,并将自己创建的插件接进来。在 prompt 里面明确要求一定要调用创建的插件。 3. 后续说明: 整体过程仅为说明 Coze 的插件指引好用。若在生产环境中有准备好的 https 的 api,可直接接入。 本案例中使用的是 Coze 国内版,对模型无特殊要求。 Ngrok 在本案例中仅供娱乐,生产环境中勿用。 4. 通过 Coze API 打造强大的微信图片助手: 设置任务的参考提示词,如任务 1 总结图片内容对应【识图小能手】等。 准备好 Glif 的 Token,包括在 Glif 官网注册登录,打开 Token 注册页面等。 打开 Coze 中自定义的插件编辑参数选项,填入准备的 token 并保存,关闭对大模型的可见按钮。 Bot 通过 API 渠道发布更新。若多次尝试不成功,可优化 Coze Bot 中提示词,避免使用违规字词和图片内容。 5. 使用 Coze IDE 创建插件: 登录,在左侧导航栏的工作区区域选择进入指定团队。 在页面顶部进入插件页面或在某一 Bot 的编排页面,找到插件区域并单击+图标,单击创建插件。 在新建插件对话框,完成插件图标、名称、描述、插件工具创建方式、IDE 运行时等配置并单击确认。 在插件详情页,单击在 IDE 中创建工具,在弹出的创建工具对话框设置工具名称和介绍,创建后跳转到 Coze IDE 页面进行编码。 可在 IDE 左上角工具列表区域添加更多工具,在左下角依赖包区域管理依赖包。
2025-02-10
有哪些可以阅读多字数文本(doc,pdf等格式)的ai
以下是一些可以阅读多字数文本(如 doc、pdf 等格式)的 AI 产品: 1. 沉浸式翻译: 主打在所有网页双语翻译、PDF 文档对照阅读。 可以一键开启网页中 Youtube 视频的双语字幕。 插件安装地址:https://immersivetranslate.com/ 2. Kimi AI: 由月之暗面科技有限公司开发。 最大特点在于超长文本(支持最多 20 万字的输入和输出)的处理和基于文件、链接内容对话的能力。 用户可以上传 TXT、PDF、Word 文档、PPT 幻灯片、Excel 电子表格等格式的文件,Kimi AI 能够阅读并理解相关内容,为用户提供基于文件内容的回复。 此外,以下是一些可以翻译 PDF 的 AI 产品: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13
我有126个docs文件,我需要用同一套提示词,对这些文件进行总结,有什么工具可以做到
以下是一些可能用于对 126 个 docs 文件进行总结的工具和方法: 1. 可以考虑使用由杨志磊开发的律师的文本总结助手。其说明为对客户提供的文件或文本进行总结,具有明确的角色设定、目标和约束条件。链接地址为:https://waytoagi.feishu.cn/wiki/HvJGwlMFhidzZukPsoKcnuXlnKe 。 2. 在 Stable Diffusion 中,Embedding 功能可以将很多提示词打包到一个文件里。例如常见的负向提示词 Embedding,如 EasyNegative,官方推荐搭配二次元模型使用,能在一定程度上优化生成效果。但需注意,对于一些复杂问题如 AI 绘图中的手部问题,可能无法完全解决。
2024-10-22
docker部署qwen
以下是关于 Docker 部署相关问题的综合回答: 容器编排模板: 容器编排模板是一种配置文件,用于在 Docker 中部署和管理多个容器,可一键部署复杂环境,无需手动配置细节,如配置 COW 组件与微信和极简未来平台交互。 使用 Docker 部署 COW 组件的原因: Docker 提供隔离运行环境,确保应用在任何环境稳定运行,简化安装和配置过程,保证环境一致,便于管理和维护。 配置多个前缀触发机器人回复的原因: 配置如“bot”、“@bot”等多个前缀,能确保机器人只在特定情况回复,避免群聊或私聊中频繁干扰,提高响应准确性和用户体验。 扫码登录失败的解决办法: 1. 重启 Docker 容器:在宝塔面板中找到对应容器,点击“重启”。 2. 检查网络连接:确保服务器和微信客户端能正常访问互联网。 3. 重新扫描二维码:等待容器重启后,重新扫描日志中生成的二维码。 费用相关: 使用 AI 微信聊天机器人的费用实际上不高,极简未来平台按使用量收费,对一般用户费用相对低廉,充值少量费用通常可用很长时间,且平台提供每天签到免费领积分福利,进一步降低使用成本。使用极简未来平台创建 AI 机器人的具体费用未明确给出。
2024-10-20
chatdoc是什么
ChatDOC 是一个基于 ChatGPT 的文件阅读助手。它能够从 PDF 文件中提取和总结信息。这个平台由先进的 AI 技术支持,能够理解文本、表格和图片,并进行优化的数据分析。它还提供引文支持,可以直接从文件中提供引文以进行事实核实和准确性。
2024-04-21
我在MacBook用docker安装的dify,以app形式安装的ollama,但在dify设置ollama的api时候,总是报错。如何解决
根据搜索结果,解决 dify 设置 ollama API 时报错的方法如下: 1. 检查 IP 地址和 URL 是否正确 有用户反映,通过修改 IP 地址和 URL 格式解决了类似的问题 确保使用了正确的 IP 地址和完整的 URL 格式 2. 尝试使用 LiteLLM 与 Ollama 有用户建议使用 LiteLLM 与 Ollama 的组合,这似乎是一个可行的解决方案 3. 检查 Ollama 的版本兼容性 有用户提到,Ollama 可能升级了客户端,需要检查与 Dify 的版本兼容性 4. 检查 OpenAI 账户类型和模型权限 确保 OpenAI 账户类型和所选模型(如 GPT4)是否有访问权限 5. 尝试禁用流式传输模式 有用户反映,流式传输可能会导致错误,可以尝试禁用该功能 总之,解决这个问题的关键是确保 Ollama 的 IP 地址、URL 格式、版本兼容性以及 OpenAI 账户权限等都设置正确。如果还有其他问题,可以继续在 Dify 的 GitHub 仓库中寻找相关的讨论和解决方案。
2024-04-19