Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Ai常见缩写及含义

Answer

以下是一些 AI 常见缩写及含义:

  • AI:人工智能(Artificial Intelligence)
  • AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统
  • NLP:自然语言处理(Natural Language Processing),即处理和理解人类语言
  • LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多
  • chatGPT:由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT-4 的 LLM

此外,还有一些相关的术语:

  • NAI:(Novel AI,一般特指 Leak)
  • 咒语:prompts,关键词
  • 施法/吟唱/t2i:Text2Image
  • 魔杖:t2i/i2i 参数
  • i2i:Image2Image,一般特指全部图片生成
  • inpaint:i2i 一种 maskredraw,可以局部重绘
  • ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件
  • hn/hyper/冶金:hypernetwork,超网络
  • 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练
  • 废丹:指完全没有训练成功
  • 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算
  • db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高
  • ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用
  • 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用

关于机器学习: 机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近 30 多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。

关于自然语言: 自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。自然语言处理是人工智能和语言学领域的分支学科,此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。

关于 AI 的推理: 推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。

关于 AI 的训练: 训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。

Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC常见名词解释(字典篇)

作者:小鱼干了发布时间:2023-06-29 23:45原文地址:https://mp.weixin.qq.com/s/ycDWZ8W46DrsyeNShC1-wA微信扫一扫关注该公众号[heading1]先热个身[content]chatGPT:是由致力于AGI的公司OpenAI研发的一款AI技术驱动的NLP聊天工具,于2022年11月30日发布,目前使用的是GPT-4的LLM。额!~ chatGPT我听过,也知道是啥,但你这个解释我直接给我干懵了,套娃呢,解释藏我不认识的单词是不!~ AI:人工智能(Artificial Intelligence)AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统NLP:自然语言处理(Natural Language Processing),就是说人话LLM:大型语言模型(Large Language Model),数据规模很大,没钱你搞不出来的,大烧钱模型。这段解释chatGPT的释义,一句话就把关于AIGC的几个常见名词都涵盖了,不愧是去年火到我卖地瓜的二姨都知道的“鸡屁屉”。一个字!绝!

AIGC常见名词解释(字典篇)

|黑话|解释|<br>|-|-|<br>|NAI|(Novel AI,一般特指Leak)|<br>|咒语|prompts,关键词|<br>|施法/吟唱/t2i|Text2Image|<br>|魔杖|t2i/i2i参数|<br>|i2i|Image2Image,一般特指全部图片生成|<br>|inpaint|i2i一种maskredraw,可以局部重绘|<br>|ti/emb/炼丹|Train中的文本反转,一般特指Embedding插件|<br>|hn/hyper/冶金|hypernetwork,超网络|<br>|炸炉|指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练|<br>|废丹|指完全没有训练成功|<br>|美学/ext|aesthetic_embeddings,emb一种,特性是训练飞快,但在生产图片时实时计算。|<br>|db/梦展|DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高|<br>|ds|DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使db的vram需求降到8g以下。开发时未考虑win,目前在win有兼容性问题故不可用|<br>|8bit/bsb|一般指Bitsandbyte,一种8比特算法,能极大降低vram占用,使16g可用于训练db。由于链接库问题,目前/预计未来在win不可用|后面这些难啃一些,随便看看吧

AIGC常见名词解释(字典篇)

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。[heading1]自然语言是什么?[content]自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。[heading1]AI的推理是什么?[content]推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。[heading1]AI的训练是什么?[content]训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。

Others are asking
免费生成logo的智能ai网站
以下是一些免费生成 logo 的智能 AI 网站: 1. Looka:是一个在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器利用 AI 技术创建个性化 Logo,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 另外,您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。
2025-01-31
生成logo的智能ai
以下是一些可以生成 logo 的 AI 产品: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器利用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 此外,还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。 藏师傅教您用 AI 三步制作任意公司的周边图片,流程如下: 1. 获取 Logo 图片的描述。 2. 根据 Logo 图片的描述和生成意图生成图片提示词。 3. 将图片和提示词输入 Comfyui 工作生成。 即梦 AI 智能画布制作 Logo 的步骤: 1. 在即梦左侧点击「智能画布」,「上传图片」上传一张 logo 图,点击「图生图」输入描述词,参考程度为 55,选择「轮廓边缘」,点击立即生成。 2. 右侧图层可看到 4 张图,选择喜欢的图;若不喜欢,可用局部重绘、消除笔等功能调整,也可重新生成。
2025-01-31
好用的翻译ai
以下是一些好用的翻译 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 如果您想利用 AI 学习一门外语,可以参考以下方式: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助您提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。
2025-01-31
好用的手机翻译ai
以下为您推荐一些好用的手机翻译 AI 应用: 1. Hand Talk:能自动将文本或语音转换成美国手语。被联合国评为“世界上最佳的社交应用”,已翻译近 20 亿个单词。既是翻译工具,也是学习平台。相关链接:https://xiaohu.ai/p/5688 、https://x.com/imxiaohu/status/1777201503142601143
2025-01-31
零基础如何系统学习ai
对于零基础学习 AI,以下是一个系统的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的经验,比如系统性的学习,不要碎片化的输入,一开始就去系统的看几本书,听几门好课。可以加入像这样的社区,按照新手指引入门。
2025-01-31
零基础如何系统学习ai?
对于零基础学习 AI,以下是一个系统的学习路径: 1. 了解 AI 基本概念: 阅读「」,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作作品。 知识库中有很多实践后的作品和文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用的第一手体验。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 体验 ChatGPT、Midjourney 等生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的经验: 系统性学习,打好基础,避免碎片化输入,通过看书听课进社区来学习。 加入 AI 社区,如,参考新手指引入门。
2025-01-31
AGI缩写的全称是什么
AGI 是“Artificial General Intelligence”的缩写,中文意思是“通用人工智能”。它强调的是构建一种能够展示如 1994 年共识定义所捕捉到的广泛智能能力的人工系统,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等能力,并且这些能力要在或超过人类水平。在 2000 年代初开始流行,许多相关研究和讨论都围绕着它展开。
2025-01-15
AGI是什么的缩写?
AGI 是 artificial general intelligence 的缩写,意思是通用人工智能,即能够做任何人类可以做的事。OpenAI 在其内部会议上分享了 AGI 的五个发展等级,分别为: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2024-12-27
Ai相关缩写及对应含义
以下是一些常见的 AI 相关缩写及对应含义: AI:Artificial Intelligence,人工智能,一种目标,让机器展现智慧。 GenAI:Generative AI,生成式人工智能,一种目标,让机器产生复杂有结构的内容。 LLMs:Large Language Models,大语言模型,是一类具有大量参数的“深度学习”模型。 AIGC:Artificial Intelligence Generated Content,人工智能生成内容,是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等。 ANI:artificial narrow intelligence,弱人工智能,只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 AGI:artificial general intelligence,通用人工智能,能做任何人类可以做的事。
2024-11-08
AI相关常见缩写及对应含义,包含例如prompt,rag
以下是一些 AI 相关的常见缩写及对应含义: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可理解为与大模型说的话或下达的指令,其质量会显著影响大模型回答的质量。 Token:大模型语言体系中的最小单元。不同厂商的大模型对中文的文本切分方法不同,通常 1Token≈12 个汉字。大模型的收费计算及输入输出长度限制常以 token 为单位计量。 上下文(context):指对话聊天内容前、后的内容信息,其长度和窗口会影响大模型回答的质量。 在 AI 绘画中,常见的画面构图提示词有: 视图相关:Bottom view(底视图)、front,side,rear view(前视图、侧视图、后视图)、product view(产品视图)、extreme closeup view(极端特写视图)、look up(仰视)、firstperson view(第一人称视角)、isometric view(等距视图)、closeup view(特写视图)、high angle view(高角度视图)、microscopic view(微观)、super side angle(超博角)、thirdperson perspective(第三人称视角)、Aerial view(鸟瞰图)、twopoint perspective(两点透视)、Threepoint perspective(三点透视)、portrait(肖像)、Elevation perspective(立面透视)、ultra wide shot(超广角镜头)、headshot(爆头)、a crosssection view of)
2024-11-08
AI常见缩写及对应含义
以下是 AI 常见的缩写及对应含义: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing) LLM:大型语言模型(Large Language Model) chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 此外,还有一些其他相关缩写及含义: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用 AI 的应用场景包括: 1. 医疗保健: 医学影像分析:AI 可用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据,辅助投资者决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题,解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(未给出具体应用场景)
2024-11-08
AGI是什么的缩写
AGI 是通用人工智能(Artificial General Intelligence)的缩写,指的是能够像人类一样思考、学习和执行多种任务的人工智能系统。 例如,OpenAI 在相关计划中涉及 AGI 的研究和发展,如原本计划发布的 Q 2025(GPT8)将实现完全的 AGI 等。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型则并非如此。
2024-10-14
AGI的含义
AGI 即 artificial general intelligence,指的是通用人工智能。 它具有以下特点和表现: 能够做任何人类可以做的事。 是具有人类水平的智能和理解能力的 AI 系统,有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 OpenAI 提出 AGI 有五个发展等级,分别为: 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 目前 AGI 还没有取得巨大进展,仍处于研究和发展阶段。
2025-01-02
AI的含义是什么
AI 是一种让计算机或机器能够像人类一样思考和学习的技术。对于不具备理工科背景的人来说,可以将其视为一个黑箱,即只需要知道它是能够理解自然语言并输出自然语言、似人而非人的存在即可。AI 既是人类智慧的结晶,又是对自身认知极限的探索,它跨越存在与非存在的边界,虽不存在于物理世界,却时刻影响着现实。在与 AI 相处时,需要通过清晰的语言文字指令来压缩其自由度,明确告知其任务、边界、目标、实现路径和所需知识。在小学课堂上,为了让三年级的孩子理解,会用他们能听懂的语言来解释,先倾听孩子们的想法,再引出相关概念。
2024-12-24
帮我找下含义这句类似话的文章,学习ai不是让我们放弃思考
以下是为您找到的与“学习 AI 不是让我们放弃思考”类似含义的文章内容: 在“他山之石|如何防止 AI 取代人类思考一切?”这篇文章中提到: 使用人工智能时,我们不希望机器代替我们进行学习,应从学习任务开始,用学习目标来驱动人工智能,而非相反。比如在编程课程中可能对学生使用生成型人工智能创建代码严格控制,而在健康课程中可能不在乎学生是否使用来编写代码。 认知萎缩会在我们因不活动而失去参与心理过程的能力时发生。在人工智能的世界中,我们需要意识到认知萎缩的危险,以继续保持好奇心、创造力和深度学习。 苏格拉底曾担心写作的出现及其对“斐德罗篇”中记忆和知识的影响,认为写作会导致思维记忆和回忆信息的能力下降,因为人们会依赖外部书面来源而非内部记忆。 作者担心聊天机器人的问答性质可能导致缺乏富有成效的挣扎,担心即时答案以及无聊和困惑等对学习过程非常必要的东西的缺失。作者喜欢 AI 对构思的帮助,但不希望它成为头脑风暴的默认方式。能看到 AI 在创意过程中的价值,但担心将创意工作外包给机器会使学生无法成为创造者和问题解决者。总之,担心我们可能会过度依赖 AI 而失去某些类型的思考能力。 希望以上内容对您有所帮助。
2024-12-10
整理一下Midjourney的全部指令列表、指令的含义、指令的可选项
以下是 Midjourney 的指令列表、指令含义及可选项: /ask:获得一个问题的答案。 /blend:将两个图像混合在一起。 /daily_theme:获取 dailytheme 频道更新的通知提醒。 /fast:切换到 Fast 模式。 /help:显示 Midjourney 机器人的基础使用信息或者提示。 /imagine:通过指令生成图像。 /info:查看有关您的账户以及任何排队或正在运行的作业的信息。 /stealth:针对专业版订户,切换到隐形模式。 /public:针对专业版订户,切换公共模式。 /subscribe:生成用户账户页面的个人链接。 /settings:查看和调整 Midjourney 机器人的设置。 /prefer option:创建或管理自定义选项。 /prefer option list:查看您当前的自定义选项。 /prefer suffix:指定要添加到每个提示结尾的后缀。 关于 /imagine 指令的使用: 1. 输入 /imagine prompt: 或者从指令弹框选择 /imagine 指令。 2. 在 prompt 字段中输入一个简短而具体的描述。 3. 按下回车键发送消息指令。 控制画面提示词指令: cref/cw:主要作用是保证人像一致性。使用 cw 需要用 cref 指令,cw 参数范围为 0 100。强度 100(cw 100)是默认值,会使用面部、头发和衣服,cw 为 0 的话仅保证脸部一致。基础格式:cref 图片链接,cw 100。参考链接: sref/sw:主要作用是保证画面风格和参考图一致(例如:背景基调、画风等)。使用 sw 需要用 sref 指令,sw 参数范围为 0 1000。基础格式:sref 图片链接,sw 100。参考链接:
2024-11-25
常见的AI变现途径有哪一些
常见的 AI 变现途径主要包括以下几种: 1. 开发智能体:例如像 May 用 coze 捏了一个口语陪练 bot,并在豆包 APP 上随时使用。 2. AI 绘画相关: 用 AI 制作服装,如单价 239 元的 AI 小绿裙卖了 1160 多份,销售额达 27 万。熟练者可用 sd 或 mj 制作,新手可用 mewxai 或幻火。 用 AI 定制萌娃的头像,单价 19.9 元,卖了 2675 份,销售额达 5 万。 3. 针对特定群体的服务:如针对宝妈群体的婴儿四维彩超 AI 预测,后续还包括头像定制、绘画收徒、宝宝起名字、售胎毛纪念品、母乳纪念品、宝宝出生后的相关产品等。如果懂得私域的精细化运营,做好朋友圈运营,宝妈群体具有超高经济价值。
2025-01-15
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在选择 GPU 作为 AI 基础设施时,需要考虑多个因素: 训练与推理方面:训练大型 Transformer 模型通常需要在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。许多模型在 NVIDIA H100 上最具成本效益,但获取较难且通常需要长期合作承诺。如今,NVIDIA A100 常用于大多数模型训练。对于大型语言模型(LLM)的推理,可能需要 H100 或 A100,而较小的模型如 Stable Diffusion 则对 VRAM 需求较少,初创公司也会使用 A10、A40、A4000、A5000 和 A6000 甚至 RTX 卡。 内存要求方面:大型 LLM 的参数数量众多,无法由单张卡容纳,需要分布到多个卡中。 硬件支持方面:虽然绝大多数工作负载在 NVIDIA 上运行,但也有公司开始尝试其他供应商,如谷歌 TPU 和英特尔的 Gaudi2,但这些供应商面临的挑战是模型性能高度依赖软件优化。 延迟要求方面:对延迟不太敏感的工作负载可使用功能较弱的 GPU 以降低计算成本,而面向用户的应用程序通常需要高端 GPU 卡来提供实时用户体验。 峰值方面:生成式 AI 公司的需求经常急剧上升,在低端 GPU 上处理峰值通常更容易,若流量来自参与度或留存率较低的用户,以牺牲性能为代价使用较低成本资源也有意义。 此外,算力可以理解为计算能力,在电脑中可直接转化为 GPU,显卡就是 GPU,除了 GPU 外,显存也是重要参数。GPU 是一种专门做图像和图形相关运算工作的微处理器,其诞生是为了给 CPU 减负,生产商主要有 NVIDIA 和 ATI。
2025-01-06
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在 AI 基础设施的考虑因素中,比较 GPU 时需要关注以下几个方面: 训练与推理: 训练 Transformer 模型除了模型权重外,还需要存储 8 字节的数据用于训练。内存 12GB 的典型高端消费级 GPU 几乎无法用于训练 40 亿参数的模型。 训练大型模型通常在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。 许多模型在 NVIDIA H100 上最具成本效益,但截至目前很难找到在 NVIDIA H100 上运行的模型,且通常需要一年以上的长期合作承诺。如今,更多选择在 NVIDIA A100 上运行大多数模型训练,但对于大型集群,仍需要长期承诺。 内存要求: 大型 LLM 的参数数量太多,任何卡都无法容纳,需要分布到多个卡中。 即使进行 LLM 推理,可能也需要 H100 或 A100。但较小的模型(如 Stable Diffusion)需要的 VRAM 要少得多,初创公司也会使用 A10、A40、A4000、A5000 和 A6000,甚至 RTX 卡。 硬件支持: 虽然绝大多数工作负载都在 NVIDIA 上运行,但也有一些公司开始尝试其他供应商,如谷歌 TPU、英特尔的 Gaudi2。 这些供应商面临的挑战是,模型的性能往往高度依赖于芯片的软件优化是否可用,可能需要执行 PoC 才能了解性能。 延迟要求: 对延迟不太敏感的工作负载(如批处理数据处理或不需要交互式 UI 响应的应用程序)可以使用功能较弱的 GPU,能将计算成本降低多达 3 4 倍。 面向用户的应用程序通常需要高端 GPU 卡来提供引人入胜的实时用户体验,优化模型是必要的,以使成本降低到可管理的范围。 峰值: 生成式 AI 公司的需求经常急剧上升,新产品一经发布,请求量每天增加 10 倍,或者每周持续增长 50%的情况并不罕见。 在低端 GPU 上处理这些峰值通常更容易,因为更多的计算节点可能随时可用。如果这种流量来自于参与度较低或留存率较低的用户,那么以牺牲性能为代价使用较低成本的资源也是有意义的。 此外,算力可以直接转化成 GPU,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,显存也是很重要的参数。GPU 的生产商主要有 NVIDIA 和 ATI。GPU 作为一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器,其诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作。
2025-01-06
提示词的常见结构
提示词常见的结构包括以下几种: 1. 视频模型 Vidu 的提示词结构: 基本构成:主体/场景——场景描述——环境描述——艺术风格/媒介。需调整句式和语序,避免主体物过多/复杂、分散的句式描述,避免模糊术语表达,使用流畅准确的口语化措辞,避免过度文学化叙述,丰富、准确和完整的描述以生成特定艺术风格、满足需求的视频。 与画面联想程度的说明:以单帧图像为例,通过具体详实的位置描述/环境描述进行构图,帮助构建画面基本呈现效果;通过艺术风格描述进一步提升效果和氛围,统一画面风格。 2. DALL·E 自动优化提示词结构: 提示词生成指南:强调使用精确、视觉化的描述而非难以捉摸的概念,清晰明确的指示有助于生成高质量图像。 提示词结构:是一个包括媒介、主题、背景、风格特点等多个元素的模板。媒介指定图像应模仿的艺术形式;主题是图像焦点,包括颜色、姿势和视角等;背景描述主题与环境的关系,包括时间、光线方向等;风格特点包括图像的独特艺术特点。还提供了生成图像和提出新想法的具体步骤和要求,默认设置除非另有说明会使用默认宽高比和风格,同时提醒避免使用违反服务条款的词语或概念。 3. Runway 提示词结构: 基本提示:纯文本提示遵循清晰结构,将相机运动、场景和主题的细节划分为单独部分时最有效。非纯文本提示为图片+基本提示词结构,使用输入图像时应专注描述希望在输出中看到的动作,而非图像内容。
2025-01-06
面试AI岗位的,常见面试题
以下是面试 AI 岗位常见的面试题相关内容: 1. 关于 AI 面试官的相关产品: 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、招聘全环节集成解决方案、先进防作弊技术和严密数据安全保障,能完成面试、初筛和自动发送面试邀约。 海纳 AI 面试:在线方式自动面试、评估,精准度高达 98%,面试效率提升 5 倍以上,候选人到面率提升最高达 30%。 InterviewAI:在线平台提供面试职位相关问题和 AI 生成的推荐答案,候选人用麦克风回答,会收到评估、建议和得分。使用时需考虑数据安全性和隐私保护问题。 2. 成为“AI 提示词工程师”的岗位技能要求: 市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象集成互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 对于零基础小白,建议找网上教程,看科普类教程,阅读 OpenAI 文档,理解参数作用,推荐练手的 Prompt 工具和相关教程文档。 3. AI 产品案例: 销售:话术总结优缺点、定制销售解决方案。 客服:定制客服话术。 HR:团队绩效管理、面试工具。
2024-12-13
AI在办公领域的常见应用有哪些
以下是 AI 在办公领域的一些常见应用: 1. 腾讯文档分类功能:利用数据分析和机器学习,自动分类办公文件,方便管理,市场规模达数亿美元。 2. WPS Office 中的智能排版、语法检查等功能:借助自然语言处理和机器学习,提高办公效率,实现自动化办公流程,市场规模达数十亿美元。 3. 联想设备管理平台:通过数据分析和物联网技术,对企业办公设备进行管理,包括设备状态监测、故障预警、软件更新等,提高设备利用率,市场规模达数亿美元。
2024-11-22