直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我要按怎样的步骤学习AI

回答

以下是学习 AI 的步骤:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库查看大家实践后的作品、文章分享,并分享自己的实践成果。
  5. 体验 AI 产品:
    • 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

对于中学生学习 AI,建议如下:

  1. 从编程语言入手学习:
    • 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。
  2. 尝试使用 AI 工具和平台:
    • 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。
    • 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识:
    • 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等)。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:
    • 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:
    • 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。
    • 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。

为了在医疗保健中让 AI 产生真正的改变,应投资创建一个模型生态系统,让“专家”AI 像优秀的医生和药物开发者那样学习。成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,从该领域出色的实践者那里学习,获得有助于在复杂情况下确定最佳答案的直觉。对于 AI,应通过使用彼此堆叠的模型来训练,而不是仅依靠大量数据和期望一个生成模型解决所有问题。例如,先训练生物学的模型,再是化学的模型,然后添加特定于医疗保健或药物设计的数据点。预医学生的课程从化学和生物学基础开始,设计新疗法的科学家也需要经历多年相关学习和研究,这种学习方式有助于培养处理涉及细微差别决策的直觉。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家” AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

其他人在问
我要做GPTs
做 GPTs 的原因主要有以下几点: 1. 从社会层面看,虽然 AI 信息充斥,但大多数人对其了解有限,直接面对大模型时交流有限。而 Character.ai 因创造具体角色,数据居高不下,这表明需要明确的引导,而 GPTs 的创作者们可以做到这一点。 2. 对于平台来说,需要场景反哺产品,也需要先行者带动,形成双赢的共存生态。 3. 从从业者角度,如作者自身,虽有丰富经验,但在做 LLMs 应用时面临诸多问题,如找不到落脚点、技术与业务的断档等。懂技术的人不懂业务,熟悉业务的人对新技术没概念。 4. 从产品角度,普通用户的简单交流大模型难以明白其意图,而 GPTs 通过对话引导逐步获取用户信息,将生成高质量 Prompt 的过程拆解为以一轮对话为最小单元任务的重复,解决了用户说什么以及低门槛生成高质量 Prompt 的问题。
2024-11-21
我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。
以下是使用 WebUI 为图像添加噪音的详细步骤: 1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。 2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。 3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。 4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
2024-11-18
我有一张图像,我要如何用stable Diffusion给它添加噪音
要使用 Stable Diffusion 给一张图像添加噪音,以下是相关的原理和过程: 在 Stable Diffusion 中,与 GAN 等生成式模型一样,它学习拟合训练集分布,并能够生成与训练集分布相似的输出结果。但与 GAN 相比,SD 模型训练过程更稳定,且具备更强的泛化性能,这归功于其核心的前向扩散过程和反向扩散过程。 在前向扩散过程中,SD 模型持续对一张图像添加高斯噪声直至变成随机噪声矩阵。而在反向扩散过程中,SD 模型进行去噪声过程,将一个随机噪声矩阵逐渐去噪声直至生成一张图像。 Stable Diffusion 的整个训练过程在最高维度上可以看成是如何加噪声和如何去噪声的过程,并在针对噪声的“对抗与攻防”中学习到生成图片的能力。 其训练逻辑为: 1. 从数据集中随机选择一个训练样本。 2. 从 K 个噪声量级随机抽样一个 timestep t。 3. 将 timestep t 对应的高斯噪声添加到图片中。 4. 将加噪图片输入 UNet 中预测噪声。 5. 计算真实噪声和预测噪声的 L2 损失。 6. 计算梯度并更新 SD 模型参数。 在训练时,需要把加噪的数据集输入模型中,每一次迭代用 random 函数生成从强到弱各个强度的噪声,通常会生成 0 1000 一共 1001 种不同的噪声强度,通过 Time Embedding 嵌入到训练过程中。Time Embedding 由 Timesteps(时间步长)编码而来,引入 Timesteps 能够模拟一个随时间逐渐向图像加入噪声扰动的过程。每个 Timestep 代表一个噪声强度(较小的 Timestep 代表较弱的噪声扰动,而较大的 Timestep 代表较强的噪声扰动),通过多次增加噪声来逐渐改变干净图像的特征分布。 以下是一个简单的加噪声流程示例:首先从数据集中选择一张干净样本,然后再用 random 函数生成 0 3 一共 4 种强度的噪声,然后每次迭代中随机一种强度的噪声,增加到干净图片上,完成图片的加噪流程。 在训练过程中,首先对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。接着,让 SD 模型学习去噪过程,最后抽象出一个高维函数,这个函数能在纯噪声中不断“优化”噪声,得到一个干净样本。其中,将去噪过程具像化,就得到使用 UNet 预测噪声,并结合 Schedule 算法逐步去噪的过程。加噪和去噪过程都是逐步进行的,假设进行 K 步,那么每一步,SD 都要去预测噪声,从而形成“小步快跑的稳定去噪”。与此同时,在加噪过程中,每次增加的噪声量级可以不同,假设有 5 种噪声量级,那么每次都可以取一种量级的噪声,增加噪声的多样性。
2024-11-18
我要用数字人AI做教学讲课
数字人 AI 用于教学讲课具有诸多优势: 1. 突破时空限制:可以让历史人物如牛顿亲自授课《牛顿运动定律》,白居易讲述《长恨歌》背后的故事,学生能与任何历史人物对话交流,不受时空约束。 2. 个性化教学:能根据学生的学习情况、兴趣和偏好提供定制化学习计划和资源,因材施教,提高学习效率和成果,缓解教育资源不平等问题。 3. 提高参与感:数字教师博学多能、善解人意且不受情绪左右,基本可实现一对一辅导,让学生参与感更高。 4. 丰富教学形式:如卡尔的 AI 沃茨的数字人课程,包含 15 节视频课,持续更新并增加最新内容,还有课外社群辅导。课程回顾了 2023 年数字人领域的破圈事件,如 AI 马斯克对谈 AI 乔布斯等。 5. 优化工作流:数字人的出现能在制作个人 IP 短视频、配音、直播、智能客服、虚拟偶像等领域完成赋能。 关于数字人课程的学习: 1. 推荐卡尔的 AI 沃茨的数字人课程,建立了完整的数字人学习体系。 2. 报名方式可通过扫码查看课程详细内容和介绍。 在与 AI 交互方面: 1. 对于提示词工程和学习提示词,有人持反对观点,认为像打字和写作一样,不断尝试和大模型交互是最佳方法。 2. 和大模型交互不一定需要遵循规则,未达成目的可锲而不舍地开新窗口再尝试,或更换模型。 3. 用 Markdown 格式清晰表达问题有助于提高与大模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-11-17
我现在是一个AI小白,我想学习AI相关知识,我要怎么进阶学习?
对于 AI 小白的进阶学习,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作自己的作品。 分享实践后的经验和成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的体验,激发对 AI 潜力的认识。 同时,您还需要掌握以下基础知识: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-14
我要用Sd做图片细化,要怎么做?给出具体方法
以下是使用 SD 做图片细化的具体方法: 1. 对于更精确的蒙版,如人物的眼睛或配饰等,可使用 Segment Anything 中的 GroundingDINO。启用 GroundingDINO 后,AI 会自动下载模型,若没有魔法,可去云盘下载并放到指定文件目录下。在检测提示词中输入相关内容,如“eye”,AI 可自动检测并设置蒙版,还可通过预览箱体得到编号来选择调整单一部分。选择要修改的蒙版上传到重绘蒙版中,并添加提示词,如“闭眼”,点击生成即可完成修改。 2. 给人物换背景时,加载生成的背景蒙版。大模型选择 revAnimated_v122,正向提示词可设为“简单背景、花、国画、工笔”,蒙版模式选择“重绘非蒙版内容”。若头发部分没抠好,可将其放入图生图中,使用 tile 模型做整体细化,还能给人物衣服添加国风元素。 3. SD 扩图时,若原本图片尺寸为 1152x1152 需增高高度,可设置为(1152x1526)。ControlNet 设置方面,若无法识别处理,可采取以下措施:提高 ControlNet 的权重(增加预处理权重,降低引导介入时机直到为 0,增加引导终止时机直到为 1);降低重绘幅度(高清修复大图时使用);把原始的黑白二维码叠加在二维码上方(正片叠底,保留 4 个定位点,擦去其他地方),调节透明度;使劲抽卡。 4. SD 放大通常重绘幅度设置在 0.3 以下,使用 tile 模型时可提高重绘幅度,如保持重绘幅度为 1 放大 1.5 倍绘图,能加强画面细节且不崩坏。对于草图,可将其导入 ControlNet 中,添加提示词进行细化,还可通过改变控制模式和增加关键词来优化效果,如实现随机提示词转换,用提示词对参考图做出调整。
2024-11-09
AI分镜
以下是关于《李清照》AI 视频创作的分镜内容: |分镜|子分镜|分镜主视觉|配音|角色|配音|画面| |||||||| |8|0801<br>0802|嗯~谁在叫我<br>小姑娘,你从哪里来?你叫什么名字呀?|王维||| |9|0901 疑惑<br>0902 诗文|疑惑自言自语<br>疑惑的表情<br>看到明月松间照,清泉石上流惊喜|我叫什么名字呢?(疑惑)<br>哦~(惊讶)<br>李清照吟诵:明月松间照,清泉石上流。|少年李清照|| |10|1001 惊喜<br>1002 照清高亮|李清照灵机一动<br>墙上诗:明月松间照,清泉石上流。照和清高亮显示|背景音效:灵机一动|||| |11|11 得意|李清照脸部特写,惊喜表情|我叫李清照(高兴)|少年李清照|| |12|12 王维沉思|王维沉思|李清照~李清照,好名字、好名字|王维|| |13|13 夜景|明月下溪水潺潺|王维吟诵:明月松间照,清泉石上流。|王维|| |20|20|画面穿越到当代写字楼办公室|忙乱和电话铃声|背景声|| |21|21|面对电脑的李清照一脸茫然|||| |22|22|旁边两个同事聊天|你们打算什么时间要孩子?<br>要孩子,要什么孩子,我们是丁克家庭。|同事甲<br>同事乙|| |23|23|李清照满脑子疑惑,丁克是什么意思|疑问背景音|背景声|| |24|24|李清照查询丁克的意思,发现是不要孩子的家庭。|||| |25|25|旁边两个同事聊天|那你不打算结婚吗?<br>我才 30 岁,结哪门子婚,我的环游世界梦想还没有实现呢|同事甲<br>同事乙|| |26|26|李清照满脑子疑惑,为什么可以不结婚?怎么生活?|疑问背景音|背景声|| |27|27|李清照开始查阅资料|清照~清照~你不下班吗?<br>哦哦~我查点资料|同事甲<br>李清照|| |1||远景一个古装小女孩草丛中嬉戏|背景音乐:小女孩嬉戏声|||| |2|0201 欢快<br>0202 疑惑|李清照与蝴蝶对话:远景、特写|蝴蝶:你叫什么名字呀?(欢快)<br>李清照:嗯~嗯~我叫什么名字呢?(疑惑)|蝴蝶<br>少年李清照|| |3|0202 放大|李清照特写|||| |4|04 穿越唐代|李清照满是疑惑|画外音:这是什么地方?(疑惑)|少年李清照|| |5|《辋川别业》建筑|写有《辋川别业》的古代建筑|辋川别业、辋川别业,难到这是王维的住处!(恍然大悟)|少年李清照|| |6|06|《维摩诘诗集》特写|真的是王维(高兴)|少年李清照|| |7|07|李清照高兴奔向王维|王伯伯~王伯伯~(高兴)|少年李清照||
2024-11-23
学习AI
以下是针对新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-23
有什么 ai 辅助打工人学习的工具推荐
以下是为打工人推荐的一些 AI 辅助学习工具: 英语学习工具: 1. Speak:这是一款 AI 英语学习 APP,利用先进的 AI 语言学习技术,提供全面实时反馈,支持随时随地练习口语,且 OpenAI 曾投资该公司。 2. Duolingo:提供游戏化学习平台,通过 AI 辅助教学,帮助学习新词汇和短语,其口语练习功能有助于练习发音和口语表达。 3. Call Annie:在发音过程中能根据发言调整表情和动作,让人感觉如同与真人对话,可随时通过视频或语音进行英语对话。 英语和数学通用学习方法: 1. 利用智能辅助工具,如英语写作助手 Grammarly 进行写作和语法纠错。 2. 借助语音识别应用,如 Call Annie 进行口语练习和发音纠正。 3. 使用自适应学习平台,如 Duolingo 为您量身定制学习计划。 4. 运用智能导师和对话机器人,如 ChatGPT 进行会话练习和对话模拟。 数学学习工具: 1. 自适应学习系统,如 Khan Academy,结合 AI 技术提供个性化学习路径和练习题。 2. 智能题库和作业辅助工具,如 Photomath,通过图像识别和数学推理技术提供数学问题解答和解题步骤。 3. 虚拟教学助手,如 Socratic,利用 AI 技术解答数学问题、提供教学视频和答疑服务。 4. 参与交互式学习平台,如 Wolfram Alpha 的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 内容仿写工具: 1. 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,能一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-23
如何理解AI的边界
AI 的边界可以从以下几个方面来理解: 1. 从生态位角度:AI 是一种似人而非人的存在,无论其技术如何发展,都处于这样的生态位。在与 AI 相处时,要基于其“非人”的一面,通过清晰的语言文字指令压缩其自由度,明确告诉它需要做什么、边界在哪里、目标是什么、实现路径和方法以及提供所需的正确知识。 2. 在品牌卖点提炼中的应用:在搭建智能体提炼品牌卖点前,要先明确 AI 的能力边界。例如,AI 对公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、依赖的核心渠道、核心购买人群、使用过的营销手段、在新渠道的期望结果等方面了解程度接近于 0。AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。因此,智能体更适合作为引导型的灵感提问助手。 3. 在编程方面:在许多情况下,我们给 AI 下达明确命令完成一次性任务。当期待提高,希望进一步解脱繁琐日常任务时,需要了解 AI 编程的边界和限制。编程准则第一条是能不编尽量不编,优先找线上工具、插件、本地应用,对于 API 功能,先找现成开源工具,然后考虑付费服务,都找不到时才考虑自己编程,且编程时要以终为始,聚焦目标。
2024-11-23
如何对ai祛魅
以下是关于对 AI 祛魅的相关内容: 在游戏 PV 制作方面: AI 抠图:可直接抠图或在 PS 里操作,图片上传即可抠图,用于制作素材,如叶子飘落、战斗时石头等素材的氛围动画。 声音素材:包括背景音乐,团队曾尝试制作但有难度,利用工具生成背景音乐,还使用分离人声的 AI 软件处理音乐。旁白方面,使用微软 AI 语音,其语音库支持 147 种语言,还有定制声音。 在使用 AI 做事方面: AI 可能“产生幻觉”并生成看似合理但错误的内容,需要检查其输出。 人工智能不会真正解释自己,给出的解释可能是编造的,理解系统中的偏见较困难。 存在被不道德使用来操纵或作弊的可能,使用者要对输出负责。 在写作方面: 以前人们在写作的普遍期望和写作的固有困难之间承受巨大压力,如今 AI 使写作压力消散。 这将导致世界分为会写和不会写的人,中间水平的写作者可能消失。 写作是一种思考方式,技术使写作技能消失是不好的。
2024-11-23
ai怎么帮英语老师进行教学
以下是 AI 帮助英语老师进行教学的一些方式: 1. 生成作业和测试题:AI 能够模仿中高考、托福雅思、SAT、GRE 等各类考试的题型,为老师提供源源不断的真题库,同时也能为学生生成错题练习库。例如,在选词填空这类题型上,通过合适的提示词,AI 可以发挥作用,这种逻辑还能迁移到语文学科。 2. 实现个性化教学:2022 年教育部颁布的新课程标准提到“开展差异化教学”“加强个别指导”,但一线教师行政任务繁重。借助大模型,AI 可以为每个学生量身定制个性化学习和定制化作业。 3. 实时交流与反馈:想象一个由 AI 驱动的语言老师,能够实时与学生交流,并对发音或措辞给予反馈。 4. 协助教学评估:AI 可以作为出题小助手,帮助老师进行教学评估。 5. 提升学生写作水平:像 Grammarly、Orchard 和 Lex 这样的工具可以帮助学生克服写作难题,提升写作水平。 6. 辅助创建演示文稿:例如 Tome 和 Beautiful.ai 可以协助创建演示文稿。 需要注意的是,由于人工智能可能会产生幻觉,对于关键数据,应根据其他来源仔细检查。
2024-11-23
我是新手AI使用者,想使用chatgpt,操作步骤是什么
以下是新手使用 ChatGPT 的操作步骤: 1. 获得 API Key(扣费凭证): 以 OpenAI API 为例,您可以在这个页面找到 API Key:https://platform.openai.com/apikeys 。 打开后,点击「Create new secret key」即可获取。 请注意:通常,您需要绑定支付方式,才可以获取有效 Key。 2. 获得 API 使用的示例代码: 以 OpenAI API 为例,您可以在 Playground 这个页面获取 API 调用的示例代码:https://platform.openai.com/playground 。 并且可以将您和 GPT 的对话,转换成代码。 注意,这里有两个值可以定义,一个是: SYSTEM:对应 ChatGPT 里的 Instructions,用来定义这个 Bot 的功能/特点。 USER:对应 ChatGPT 里,用户发出的信息。 这里,我将 SYSTEM 定义成了缩略信息助手,而在 USER 中输入了文章内容。 运行后,结果很令人满意。 点击右上方 View Code,获取生成这一内容的示例代码。 3. 再问 ChatGPT:顺着之前的对话,让 ChatGPT 帮我们继续写代码。 4. 对于在 Colab 中抓取网页正文内容,如抓取 https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ 的正文内容: 在 Colab 中抓取网页的正文内容,您可以使用 Python 的 requests 库来获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。 首先,确保您已经在您的 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果没有安装,您可以使用以下命令安装: 然后,使用以下代码抓取并解析指定的网页内容: 这段代码会打印出您提供的微信公众号文章的正文内容。请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即 soup.find 那一行)可能需要根据实际的 HTML 结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。 运行您的代码: 先复制第一段:!pip install beautifulsoup4 requests ,运行后得到结果。 接下来,点击左上方「+代码」按钮,新建一个新的代码块。 最后,复制后面的代码,并运行,获得结果。
2024-11-23
AI如何在平面设计工作流中提高效率,具体的步骤有哪些
以下是 AI 在平面设计工作流中提高效率的具体步骤和相关信息: 1. 工具选择 主要工具:Midjourney 和 Stabel Diffusion。 辅助工具:RUNWAY 和 PS beta 等。 2. 工作流效果 创意多样:设计解决方案更为多样和创新,项目中不同创意概念的提出数量增加了 150%。 执行加速:AI 生成的设计灵感和概念显著缩短了创意阶段所需时间,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效:在整体项目的设计时间减少了 18%。 3. 提升能力的方法 建立针对性的 AI 工作流:使用 lora 模型训练的方式,生成特定的形象及 KV 风格,建立包含品牌形象、风格视觉 DNA 的模型,并根据实用场景进行分类。 实用的模型训练:在营销活动期间,根据市场环境和消费者偏好的变化迅速调整 lora 模型。 AI 设计资产储备:建立和管理 AI 设计资产,沉淀相关知识、技能、工具,促进团队内部的知识积累和提升。 此外,对于建筑设计师审核规划平面图,以下是一些可用的 AI 工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入需求自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据的汇总与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-11-12
学习AICG的步骤
学习 AICG(AI 与计算机图形学)通常可以遵循以下步骤: 1. 基础知识储备:了解计算机图形学的基本概念,如几何建模、渲染、动画等,同时掌握一定的数学基础,包括线性代数、微积分等。 2. 学习编程语言:例如 Python,它在 AICG 领域应用广泛。 3. 熟悉相关框架和库:如 TensorFlow、PyTorch 等深度学习框架,以及 OpenCV 等计算机视觉库。 4. 掌握机器学习和深度学习知识:包括神经网络、监督学习、无监督学习等。 5. 研究 AICG 应用案例:通过实际案例了解 AICG 在图像生成、风格迁移、虚拟角色创建等方面的应用。 6. 实践项目:自己动手实现一些 AICG 项目,加深对知识的理解和应用能力。 7. 持续学习和跟进最新技术:关注领域内的最新研究成果和技术发展趋势。
2024-11-12
有没有关于工作任务分解为具体步骤的提示词
以下是关于将工作任务分解为具体步骤的提示词相关内容: 提示词工程的任务可分解为两个步骤,如 Pryzant 等人(2023)所做:第一步,模型预期检查当前提示词和一批样本;第二步,模型预期编写一个改进的提示词。 对于复杂任务,可将其分解成更小的步骤,并在提示词中明确每个步骤的具体操作,引导模型逐步完成任务。例如,使用以下逐步说明:步骤 1 用户将提供用三重引号引用的文本。用一个句子总结这段文本,并以“摘要:”作为前缀。步骤 2 将步骤 1 的摘要翻译成西班牙语,前缀为“翻译:”。 如果将任务分解,Claude 在执行任务时犯错或遗漏关键步骤的可能性会降低。 为了鼓励模型仔细检查批次中的每个示例,并反思当前提示词的局限性,可指导提案模型回答一系列问题,如输出是否正确、提示词是否正确描述了任务、是否有必要编辑提示词等。 实际操作中,提示词插入整个输入序列的位置是灵活的,可能位于输入文本之前用于描述任务,也可能出现在输入文本之后以激发推理能力。在元提示词中应明确提示词和输入之间的相互作用。
2024-10-21
我是一个老师,相信AI时代人人都能成为学霸,我认为学霸具有三个心法和一个方法,方法一,建立学霸的信念系统(我行、我能、我可以),方法二,不要和别人比,方法三、主动积极的思考力。学霸的终极方法是自学。自学+AI无所不能。你觉得我怎么能帮助每一个学生成为学霸,有哪些步骤和要点?
在 AI 时代帮助每个学生成为学霸,以下是一些步骤和要点: 1. 培养获取知识的能力:教导学生掌握利用 AI 技术获取和处理信息的方法,提高获取知识的效率。 2. 促进知识内化:引导学生将获取的信息和知识有效内化,转化为智慧。例如,通过实践反思、交流讨论等方式,提升知识的转化速度和质量。 3. 建立信念系统:帮助学生树立“我行、我能、我可以”的信念,增强学习的自信心。 4. 培养独立思考:鼓励学生主动积极思考,不盲目与他人比较,专注自身的成长和进步。 5. 强调自学:引导学生重视自学,让他们明白自学结合 AI 能够带来强大的能力。 6. 培养创造能力: 鼓励学生勇于尝试新事物,将失败视为学习的一部分。 培养批判性思维,不盲目跟从权威。 引导学生从实践中反思,提炼洞见。 促进学生与不同背景的人交流,激发新的思路。 持续学习和不断创造是相辅相成的,通过积累知识和经验,并将其转化为实际价值,学生能够在 AI 时代更好地成长和发展。
2024-10-08
国内的,AI学习类关于阅读和听力提升的应用(具备AI能力的应用)或者工具有哪些?
目前国内具备 AI 能力、有助于提升阅读和听力的应用和工具相对较多。例如,流利说英语在听力和口语训练方面表现出色,它能通过 AI 技术为用户提供个性化的学习方案和精准的发音纠正。还有百词斩,其在单词记忆和阅读拓展方面有独特的功能,利用 AI 算法推荐适合用户水平的阅读材料。此外,网易有道词典也具备一定的 AI 辅助功能,能帮助用户提升听力理解和阅读能力。
2024-11-23
AI学习类关于阅读和听力提升的应用或者工具有哪些?
以下是一些有助于提升阅读和听力的 AI 学习应用或工具: 英语学习方面: 1. 智能辅助工具:如 Grammarly,可进行英语写作和语法纠错,改进英语表达和写作能力。 2. 语音识别和发音练习:例如 Call Annie,用于口语练习和发音纠正,提供实时反馈和建议。 3. 自适应学习平台:像 Duolingo,利用 AI 技术为您量身定制学习计划,提供个性化学习内容和练习。 4. 智能导师和对话机器人:比如 ChatGPT,可进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习方面: 1. 自适应学习系统:如 Khan Academy,结合 AI 技术提供个性化数学学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:例如 Photomath,通过图像识别和数学推理技术提供数学问题解答和解题步骤。 3. 虚拟教学助手:如 Socratic,利用 AI 技术解答数学问题、提供教学视频和答疑服务。 4. 交互式学习平台:如 Wolfram Alpha,参与数学学习课程和实践项目,进行数学建模和问题求解。 此外,在教育领域,还有一些其他的应用: 1. 语言学习:Speak、Quazel、Lingostar 等,提供实时交流和发音反馈。 2. 数学指导:Photomath、Mathly 帮助学生解决数学问题。 3. 历史学习:PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。 4. 写作辅助:Grammarly、Orchard、Lex 帮助学生克服写作难题,提升写作水平。 5. 内容处理:Tome、Beautiful.ai 协助创建演示文稿。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2024-11-23
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
如何起步开始学习ai设计
以下是关于如何起步开始学习 AI 设计的一些建议: 1. 阅读相关文章: 如 ,了解市场动态和生成式 AI 商业模式的相关问题。 ,认识到尽早学习的重要性,避免被其他熟练掌握 AI 动力设计技巧的设计师超越。 ,了解设计的当前状态、常见问题及实用技巧。 ,学习最佳实践和利用 UX 策略使 AI/ML 系统更易于解释和透明。 2. 利用工具: 了解星流一站式 AI 设计工具,在入门模式下,熟悉右侧生成器的图片参考部分,如快速参考、风格迁移、Tile 分块、重新上色等功能。 掌握基础模型,包括星流通用大模型及基础模型 F.1、基础模型 XL、基础模型 1.5 等,了解它们在效果和生成速度上的差异。 了解增强模型,可通过收藏、查看例图和选择风格等方式进行使用。
2024-11-22