Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

部署ai有哪些步骤?

Answer

部署 AI 通常包括以下步骤:

  1. 选择合适的部署方式:
    • 本地环境部署
    • 云计算平台部署
    • 分布式部署
    • 模型压缩和量化
    • 公共云服务商部署 根据自身的资源、安全和性能需求进行选择。
  2. 准备训练所需的数据和计算资源:
    • 确保有足够的训练数据覆盖目标应用场景。
    • 准备足够的计算资源,如 GPU 服务器或云计算资源。
  3. 选择合适的预训练模型作为基础:
    • 可以使用开源的预训练模型如 BERT、GPT 等。
    • 也可以自行训练一个基础模型。
  4. 针对目标任务进行模型微调训练:
    • 根据具体应用场景对预训练模型进行微调训练。
    • 优化模型结构和训练过程以提高性能。
  5. 部署和调试模型:
    • 将训练好的模型部署到生产环境。
    • 对部署的模型进行在线调试和性能优化。
  6. 注意安全性和隐私保护:
    • 大模型涉及大量数据和隐私信息,需要重视安全性和合规性。

此外,还有一种将 AI 接入微信的具体部署步骤:

  1. 点击菜单中的“终端”。
  2. 依次粘贴以下代码并回车:
    • 第一步:cd/root||exit 1
    • 第二步:下方两行粘贴进入,等待下载完成。(若有卡点,可手动下载文件并上传至指定文件夹)
    • 第三步:rm -f Anaconda3-2021.05-Linux-x86_64.sh
    • 第四步:/root/anaconda/bin/conda create -y --name AI python=3.8
    • 第五步:依次粘贴以下代码并回车:echo'source /root/anaconda/bin/activate AI'>>~/.bashrc
  3. 执行完成后,刷新重新进入终端,若最左侧出现“(AI)”字符,则成功。

想要成功构建和部署人工智能,还需要一个复杂的流程,涉及多个独立的系统。首先,需要对数据进行采集、清理和标记;然后,必须确定预测所依据的特征;最后,开发人员必须训练模型,并对其进行验证和持续优化。从开始到结束,这个过程可能需要几个月或者是数年,好在除了算法和模型本身之外,组装智能架构中每个环节的效率都在提升,更高的算力和分布式计算框架,更快的网络和更强大的工具。在每一层技术栈,我们都开始看到新的平台和工具出现,它们针对 Machine Learning 的范式进行了优化,这里面机会丰富。

Content generated by AI large model, please carefully verify (powered by aily)

References

张梦飞:【保姆级】一步一图,手把手教你把AI接入微信

下边将出现代码,复制的时候,注意复制全。代码我已经分好步骤,每次只需要粘贴一行,然后点击一次回车。回车后,只有最左边显示[]中括号时,才是上一个命令执行完毕了。没有出现[]中括号对话前缀时,不要操作。如果你发现ctrl+v粘贴不进去,试试shift+ctrl+v粘贴。点击菜单中,下边的“终端”,然后开始把代码粘贴进入。1、第一步:cd/root||exit 12、第二步:下方两行粘贴进入,然后点击回车,等待下载完成。(如果这里有了卡点,进行不下去,可能是因为服务器网络问题,去拉取的时候下载不全,可以复制网址,手动去下载到电脑上。然后进入文件夹,找到root文件夹,把下载的文件上传进去就好了。)2.2、再粘贴下方代码,出现下图,就代表在执行中了。3、然后把下边这行粘贴进去,点击回车。rm-f Anaconda3-2021.05-Linux-x86_64.sh4、继续粘贴:/root/anaconda/bin/conda create-y--name AI python=3.85、继续,一行一行依次粘贴,依次回车:echo'source/root/anaconda/bin/activate AI'>>~/.bashrc6、执行完成后。刷新一下,重新进入终端,你会看到,最左侧出现了(AI)的字符。如果出现了,那么恭喜你。7、继续,一行一行依次粘贴,依次回车:cd/root

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

想要成功构建和部署人工智能,需要一个复杂的流程,这里涉及多个独立的系统。首先,需要对数据进行采集、清理和标记;然后,必须确定预测所依据的特征;最后,开发人员必须训练模型,并对其进行验证和持续优化。从开始到结束,现在这个过程可能需要几个月或者是数年,即使是行业中最领先的公司或者研究机构。好在除了算法和模型本身之外,组装智能架构中每个环节的效率都在提升,更高的算力和分布式计算框架,更快的网络和更强大的工具。在每一层技术栈,我们都开始看到新的平台和工具出现,它们针对Machine Learning的范式进行了优化,这里面机会丰富。配图14:Intelligence Infrastructure from Determined AI参照智能架构领域的投资专家Amplify Partners的分类,简单做个技术栈说明。

问:如何部署和训练自己的AI开源模型

根据搜索结果,以下是部署和训练自己的大模型的主要步骤:1.选择合适的部署方式本地环境部署云计算平台部署分布式部署模型压缩和量化公共云服务商部署根据自身的资源、安全和性能需求选择合适的部署方式。2.准备训练所需的数据和计算资源确保有足够的训练数据覆盖目标应用场景准备足够的计算资源,如GPU服务器或云计算资源3.选择合适的预训练模型作为基础可以使用开源的预训练模型如BERT、GPT等作为基础也可以自行训练一个基础模型4.针对目标任务进行模型微调训练根据具体应用场景对预训练模型进行微调训练优化模型结构和训练过程以提高性能5.部署和调试模型将训练好的模型部署到生产环境对部署的模型进行在线调试和性能优化6.注意安全性和隐私保护大模型涉及大量数据和隐私信息,需要重视安全性和合规性总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。内容由AI大模型生成,请仔细甄别

Others are asking
什么是AI大模型?
AI 大模型是一个复杂且涉及众多技术概念的领域。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-05
如何驯化ai
驯化 AI 可以从以下几个方面考虑: 1. 对于特定领域的 AI,开发具有潜在空间层次结构的堆叠模型,帮助其理解模式和关系。这可能会平行于人类教育范例发展,并可能形成针对特定任务专门设计的神经架构。 2. 创造多样化的专家 AI,在编码、数据和测试方面采用不同方法,并提供多个意见。 3. 让 AI 从在线基础转移到现实世界,让熟练的人类专家配备可穿戴设备,收集现实世界的互动供其学习。 4. 让专家 AI 接触顶级从业人员的多样化视角,避免复制危险的偏见。 5. 认识 AI 时,可将其视为黑箱,只关注其能理解和输出自然语言。例如,对于不具备理工科背景的人,不必深究其内部原理,知道其是模仿人类思维的工具即可。 6. 驱动 AI 工具时,要像传统道教的拘灵遣将一样,通过特定文字和仪轨程式引用已有资源,驱使它达成预设效果。同时,基于其“非人”的一面,要尽可能通过清晰的语言文字压缩其自由度,包括清晰告知任务、边界、目标、实现路径方法,甚至直接提供所需的正确知识。
2025-02-05
如何学习ai做视频
以下是学习使用 AI 做视频的步骤和相关工具推荐: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 相关工具推荐: 动画工具:用于在视频中为人脸制作动画的 DiD,用于从文本创建视频的 Runway v2。 语音克隆:ElevenLabs
2025-02-05
小白如何开始学习AI之路呢
对于小白来说,开始学习 AI 之路可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 此外,还有像二师兄这样的案例,他在七彩虹的售后群接触到 AI 绘画,通过下载安装包和教学视频迈出了第一步,之后不断学习和实践,包括炼丹、尝试项目等。您也可以借鉴他人的经验,找到适合自己的学习方式。
2025-02-05
教我怎么做AI绘画
以下是关于学习 AI 绘画的一些指导: 1. 您可以体验《AI 绘画助手》,它是一位专业且贴心的学习导师。无论您是新手小白还是进阶爱好者,都能为您提供优质实用的指导。它能将复杂的神经网络、生成对抗网络以及卷积神经网络等知识用通俗易懂的语言解释清楚,让您理解 AI 绘画背后的机制。对于市面上流行的 AI 绘画工具如 DALLE、MidJourney、Stable Diffusion 等,它不仅熟悉,还能介绍使用步骤和独特之处,帮助您找到适合自己的工具。它擅长风格迁移技术、生成对抗网络在图像生成和编辑中的应用,以及获取高分辨率精美图像的方法,并传授关键要点和操作技巧。它还拥有丰富的实战案例经验,能为您答疑解惑并规划学习路径。 网址:https://www.coze.cn/store/bot/7387381204275904521?panel=1&bid=6d1aji2c86g1m 2. 学习 Recraft 的效果和教程: 视频教程:【【AI 绘画】新皇登基!Recraft 力压 SD、Flux、MJ!【新手教程】】 图文教程: 打开网址:https://www.recraft.ai/invite/r8D2TaM6b2 选择 hard flash 输入提示词 3. 线稿上色 Midjourney + Stable Diffusion 教程: 先使用 Midjourney 生成线稿,然后用 PS 稍微修正错误的地方,再用 Controlnet 控制,最后用 Stable Diffusion 上色。多套 AI 组合使用,可以快速生成效果惊艳的图。 Midjourney 生成线稿的关键词:Black and white line drawing illustration of a cute cat cartoon IP character,black line sketch,wearing a fortune hat,wearing a collar around the neck,Carrying a huge bag containing scrolls and ingots,matching rope and straps at his wrists,Chinese element style,popular toys,blind box toys,Disney style,white backgroundniji 5style expressive 希望这些内容对您学习 AI 绘画有所帮助。
2025-02-05
AI应用有哪些好的方向
以下是一些 AI 应用的好方向: 1. 医疗药品零售领域: 药品推荐系统:利用机器学习算法分析用户数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 药品库存管理:通过分析历史销售数据等因素,预测药品需求量,优化库存管理策略,降低成本。 药品识别与查询:借助计算机视觉技术,用户可通过手机拍摄药品图像,AI 系统自动识别并提供相关信息查询服务。 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手回答顾客关于购药、用药、保健等常见问题,减轻人工客服工作压力。 药店运营分析:AI 分析药店销售、顾客流量、库存等大数据,发现潜在运营问题和优化空间,为决策提供参考。 药品质量监控:通过机器视觉等技术,AI 自动检测药品包装、标签、颜色等是否合格,及时发现问题。 药品防伪追溯:利用区块链等技术,AI 实现全流程药品溯源,确保药品供应链的安全性和真实可信度。 2. 改善大模型产品的使用体验,使其面对细分领域需求时变得更好用。 3. 助力用户工作流,对已有场景进行优化。 4. 细分场景独立实用工具。 5. AI 社区。 6. Chatbot。 7. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 8. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助金融机构做出贷款决策。 投资分析:辅助投资者做出投资决策。 客户服务:提供 24/7 服务,回答常见问题。 9. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 10. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 11. 交通运输:(具体应用未详细列举)
2025-02-05
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
如何用飞书搭建自己的智能体详细步骤
以下是用飞书搭建自己的智能体的详细步骤: 1. 了解智能体的基本概念: 智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。 基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。 提示词的设计对智能体的表现和输出结果有直接影响。 2. 动手实践: 基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等)尝试开发。 具体步骤: 点击“浏览 GPTs”按钮。 点击“Create”按钮创建自己的智能体。 使用自然语言对话进行具体设置或手工设置。 开始调试智能体并发布。 3. 利用 Coze + 飞书多维表格搭建: 配置得到两个可用的工作流(整理入库、选择内容)。 编排成为完整的智能体,配置过程包括: 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”(测试下来,通义对提示词理解、执行效果最好)。 把配置好的工作流添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可按需求和实际效果优化调整)。 完成上述步骤后,可在「预览与调试」窗口与 AI 稍后读智能体对话并使用全部功能。
2025-01-26
我是一名数据产品经理,想转行ai产品经理,该从哪里入手。你的知识库里有哪些可以帮到我。最好把他们列举出来,具体一些最好有步骤
以下是为您整理的从数据产品经理转行 AI 产品经理的相关知识和建议: 一、AIPM 技能树 1. 理解产品核心技术 了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通 掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性 在产品规划阶段,能更准确地判断某些功能的技术可行性。 4. 把握产品发展方向 了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力 发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力 掌握相关知识,提升数据分析能力。 二、AI 提示词工程师岗位技能要求 1. 学历和专业背景 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 AI 工具 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目经验 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术理解 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析与决策 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 技术关注 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程能力 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 三、AI 市场与 AI 产品经理分析 当前有两个场景: 1. 企业(包括传统企业和互联网企业)如何实现 AI 转型或用好 AI。 2. 产品经理如何转型 AI 产品经理。 希望以上内容对您有所帮助。
2025-01-21
学习AI的步骤
以下是学习 AI 的步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 此外,雪梅 May 的学习经验表明: 学习路径可以是迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。 特别是学习 Coze 的路径:输入→模仿→自发创造。 虽然费曼学习法告诉我们,学习最好的方式是教会别人,但一开始学习 AI 时,自学和输入为主也是可行的。如果能量和勇气足够,可以更早地开始输出倒逼输入。一切弯路都值得走,不需要给自己太大压力,只要迈开脚步,就是进步。
2025-01-18
Coze扣子这个智能体搭建平台是什么?能做什么?作为一个非IT专业的普通人,怎么学习用它来创建智能体?学习的路径和步骤
Coze 扣子是一款基于自然语言处理和人工智能技术的智能助手平台,具有以下特点和功能: 1. 提供丰富的插件生态,能帮助用户快速实现个性化的智能应用,无需编写复杂代码。 2. 经过一年多的用户打磨,插件生态和分发渠道对个人用户够用,上手难度不高,信息获取插件丰富。 3. 推出专业版服务,主要特性包括企业级 SLA 保障、高级特性支持(如批量处理、私有数据等)以及更优惠的计费项。 对于非 IT 专业的普通人,学习用它来创建智能体的路径和步骤如下: 1. 体验和了解 Coze 扣子平台的基本功能和操作,熟悉其界面和常用工具。 2. 学习相关的基础知识,例如自然语言处理的基本概念、智能体的工作原理等。 3. 参考平台提供的教程和示例,逐步尝试创建简单的智能体。 4. 加入相关的学习交流群,与其他用户交流经验,共同学习进步。 需要注意的是,目前提示词攻击在业内是公开的秘密,像扣子这样的智能体编排平台,其热门智能体的核心提示词可能会被轻易获取,存在一定的安全风险。
2025-01-12
我想全面了解学习 ai 写作步骤相关的知识
以下是全面学习 AI 写作步骤的相关知识: 利用 AI 写课题的步骤: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据,使用 AI 数据分析工具处理和解释。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。 利用 AI 写行业调研报告的步骤: 1. 让 AI 阅读学习:一篇优秀的行业调研报告,总结方法论,输出研究方法和操作框架。 2. 问 AI:文章收集行业数据时使用的一手和二手数据,推荐靠谱的行业资料收集网站。 3. 要求 AI:参考上述内容,写一份“XXX 行业调研报告”,推荐 10 个“XXX 行业”信息网站和 5 个“XXX 行业”研究微信公众号,并输出框架。 4. 要求 AI:针对框架丰富每一章节内容,每章字数大于 200 字。 5. 完成初稿后,根据需求让 AI 完善章节内容,结合自身经验和知识润色调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 写作时,应保持批判性思维,确保研究质量和学术诚信。“有深度”可通过自身对行业的了解整理深度洞察和见解,或深度咨询 AI 并借助其知识,边学习、研究、总结。获取操作示例可点击链接: 欢迎交流,共同进步!
2025-01-10
如何本地部署deepseek
要本地部署 DeepSeek,您可以参考以下步骤: 1. 访问网页链接:www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek。 3. 认真阅读开场白之后,正式开始对话。 需要注意的是,DeepSeek 是一个非常强大且具有创新性的推理模型,它具有比肩 O1 的推理能力、参数少、训练开销与使用费用小、开源、免费、联网、本土开发等诸多优势。如果您在部署过程中遇到问题,建议您仔细检查每一个步骤是否正确操作。
2025-02-05
如何在服务器上部署deepseek r1
以下是在服务器上部署 DeepSeek R1 的步骤: 1. 环境配置: 访问 DeepSeek 的官网(https://www.deepseek.com/)。 进入右上角的 API 开放平台。 若没有赠送的余额,可以选择充值,支持美元和人民币两种结算方式以及各种个性化的充值方式。 创建一个 API key,注意 API key 只会出现一次,请及时保存下来。 2. 设置代码编辑器: 下载 Cursor(https://www.cursor.com/)或 VSCode(https://code.visualstudio.com/),只要代码编辑器可以下载插件即可。 以 Cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline。 安装完后,打开三角箭头,就可以看到 RooCline。 选中 RooCline,并点击齿轮,进入设置,依次设置: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 语言偏好设置。 记得把 HighRisk 选项都打开,这样 AI 才能帮你自动生成文件。最后做完所有不要忘记点击 Done 保存修改。 3. 在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。
2025-02-05
如何在极空间部署deepseek
以下是在极空间部署 DeepSeek 的相关信息: 1. 效果对比:用 Coze 做了小测试,可对比查看 2. 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 4. 完整提示词:v 1.3 5. 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手 6. 环境配置指南: DeepSeek 平台设置:首先到 deepseek 的官网(https://www.deepseek.com/),进入右上角的 API 开放平台。早期 deepseek 有赠送额度,没有赠送余额可选择充值,支持美元和人民币两种结算方式及各种个性化充值方式,创建一个 API key,注意 API key 只会出现一次请及时保存。 设置代码编辑器:下载 cursor(https://www.cursor.com/)或 vscode(https://code.visualstudio.com/),以 cursor 为例,下载安装后在插件页面搜索并安装 Roocline,安装完后打开三角箭头可看到 RooCline,选中并点击齿轮进入设置,依次设置。配置基本参数:API Provider 选择 DeepSeek,API Key 填入已创建的 key,模型选择 DeepSeekreasoner,设置语言偏好。小贴士:记得把 HighRisk 选项都打开,最后做完所有不要忘记点击 Done 保存修改。在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。 7. 评论:游戏科学创始人、黑神话悟空制作人冯骥表示,DeepSeek 可能是个国运级别的科技成果。DeepSeek 具有强大的推理能力、便宜、开源、免费、联网、本土等优势。如果看到这条微博,应直接访问网页链接马上用起来,也有移动 APP。
2025-02-05
为本地部署的stable diffusion增加中文提示词支持
要为本地部署的 Stable Diffusion 增加中文提示词支持,可以采取以下方法: 1. 如果使用的秋叶整合包,里面包含提示词联想插件。输入简单字符如“1”,能看到下方联想热门提示词,适合英文不好、记不住单词的朋友。 2. 一般情况可使用翻译软件,如 DeepL 翻译(网址:https://www.deepl.com/translator ,可下载客户端)或网易有道翻译(可通过 ctrl+alt+d 快速截图翻译),但复制粘贴来回切换较麻烦。 3. 介绍自动翻译插件 promptallinone,安装方式:在扩展面板中搜索 promptallinone 直接安装,或把下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下。安装完成后重启 webUI,可看到提示词区域变化。 一排小图标中,第一个用来设置插件语言,直接设为简体中文。 第二个图标是设置,点开后点击第一个云朵图标可设置翻译接口,点击第一行下拉菜单能选择翻译软件,有一些免费软件可任意选择并试验哪款翻译准确。 关于 Stable Diffusion 文生图写提示词: 1. 下次作图时,先选模板,点击倒数第二个按钮可快速输入标准提示词。 2. 描述逻辑通常包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)等,通过这些详细提示词能更精确控制绘图。 3. 新手可借助功能型辅助网站写提示词,如: http://www.atoolbox.net/ ,通过选项卡方式快速填写关键词信息。 https://ai.dawnmark.cn/ ,每种参数有缩略图参考,更直观选择提示词。 还可去 C 站(https://civitai.com/)抄作业,每张图有详细参数,点击复制数据按钮,粘贴到正向提示词栏,点击生成按钮下第一个按键,Stable Diffusion 可自动匹配所有参数,但要注意图像作者使用的大模型和 LORA,也可取其中较好的描述词使用。
2025-02-03
deepseek如何部署
DeepSeek 的部署方式如下: 1. 您可以直接访问网页链接马上用起来,也有移动 APP。 2. 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 3. 模型(1B):https://huggingface.co/deepseekai/JanusPro1B 4. 下载地址:https://github.com/deepseekai/Janus 需要注意的是,DeepSeek 全面开源,支持商用,采用 MIT 协议,部署使用便捷。
2025-02-02
Deepseek本地部署
DeepSeek 是一项非常出色的科技成果,由一家小规模的年轻中国公司开发完成。它具有以下显著特点: 1. 强大的推理能力,可与 O1 比肩。 2. 成本低廉,参数少,训练开销与使用费用小。 3. 开源,任何人都可自行下载与部署,并提供了详细的论文说明训练步骤与窍门,还有可运行在手机上的 mini 模型。 4. 免费,官方提供的服务完全免费,任何人随时随地可用。 5. 支持联网搜索,是暂时唯一支持联网搜索的推理模型。 如果您想使用 DeepSeek,可以直接访问相关网页链接或移动 APP 马上用起来。 另外,关于本地部署,SDXL 在生成时间上,对于高配电脑如 4080ti 显卡,速度在十秒左右,配置较低的需要自行测试。还可以安装 refine 插件,在文生图界面直接使用 refine 模型进一步绘画。 此外,基于多模态大模型的相关代码开源,有动手能力的小伙伴可以自己部署,如在手机上部署 llava,采用 server 方式需要 9 秒,最快只能加速到 1.5 秒,要达到毫秒级,移动端侧推理才是王道。
2025-02-01