直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何用gpt,对标签进行筛选

回答

以下是关于您提到的问题的相关信息:

在数据标注方面,以 ChatGPT 的追赶者们为例,如 Claude ,作者未事先培训标注员关于 helpfulness 和 harmfulness 的内容以保证数据多样性。标注员要求是美国硕士以上,通过看写作水平、表达能力等筛选出约 20 名优秀的 MTurk 标注员标注了 80%的数据,同时在 Upwork 上标注更高质量但数量较少的数据集。标注界面中用户二选一,并有不同置信度选项,还涉及 RM 和 PPO 等。

在 Embedding 增强 GPT 能力方面,OpenAI 发布的文档说明可通过两步搜索来实现:

  1. 准备搜索数据(仅一次):
    • 搜集数据:获取公开或私有数据。
    • 切块:将文档切分成短小部分。
    • 嵌入:通过 OpenAI API 对切块数据进行 Embedding 结果。
    • 存储:使用向量数据库保存大型数据集的 Embedding 结果。
  2. 搜索(每次查询一次):给定用户问题,从 OpenAI API 生成查询的 embeddings ,按与查询相关性对文本部分排序,推荐使用余弦相似性距离函数。
  3. 提问(每次查询一次):将问题和最相关部分插入发送给 GPT 的消息中返回答案。

Embedding 共有以下作用:

  • 搜索(结果按与查询字符串的相关性排名)
  • 聚类(文本字符串按相似性分组)
  • 建议(包含相关文本字符串的项目)
  • 异常检测(识别相关性小的离群值)
  • 多样性测量(分析相似性分布)
  • 分类(文本字符串按最相似标签分类)
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

(3)ChatBot是怎么炼成的?

作者并没有事先培训标注员什么是helpfullness和harmfulness,这样保证数据多样性标注员要求很高,是美国的硕士以上。并且把低质量的滤掉了,把优秀的MTurk标注员筛选出来,大概20人,标注了80%的数据。筛选的办法就是看写作水平,表达能力,简单暴力有效。同时在Upwork上标注更加高质量但是数量较少的数据集,因为Upwork是paid-by-hour,MTurk是paid-by-task标注界面如下,用户二选一,并且有不同的置信度选项RM和PPOAnthropic称RM为PM(Preference Model),并且发现PM模型越大,数据越多,是会涨点的,这个跟ChatGPT的结论不一样。ChatGPT里面说RM模型不能太大,不好训练,容易发散,所以选择6B的RM模型PPO阶段的损失函数少了InstructGPT的第三项SFT项,因为作者发现Policy模型和PM模型足够大的话,不加那一项效果也会持续提升$$r_{\text{total}}= r_{\text{PM}}-\lambda_{\text{KL}}D_{\text{KL}}(\text{policy}||\text{policy}_0)$$

认识大模型 Embedding 技术加实战

针对上面的问题,OpenAI发布过这样一篇文档,说明如何使用两步搜索来增强GPT的能力:搜索:搜索内部的知识库,检索相关文本。请求:将检索到的文本内容部分发送给GPT大模型,并向其提出问题。具体的操作步骤如下:1、准备搜索数据(仅一次)1)搜集数据:获取需要的数据,公开数据或者私有的数据2)切块:将文档切分成短小的3)嵌入:通过OpenAI API对切块的数据进行Embedding结果,4)存储:存储Embedding结果,对于大型数据集的Embedding结果,可以使用向量数据库进行保存。2、搜索(每次查询一次)给定用户问题,从OpenAI API生成查询的embeddings使用embeddings,按照与查询相关性对文本部分进行排序❝距离函数推荐使用:余弦相似性3、提问(每次查询一次)将问题和最相关的部分插入到发送给GPT的消息中返回GPT的答案[heading3]Embedding共有哪些作用[content]搜索(其中结果按与查询字符串的相关性进行排名)聚类(其中文本字符串按相似性分组)建议(建议包含相关文本字符串的项目)异常检测(识别出相关性很小的离群值)多样性测量(分析相似性分布)分类(其中文本字符串按其最相似的标签分类)

其他人在问
利用gpt-4模型的AI工具有哪些
以下是一些利用 GPT4 模型的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。 此外,在生成式人工智能领域,GPT4 有以下突破点: 1. 赋予模型使用工具的能力,如 OpenAI 推出的 ChatGPT 插件测试版,允许与多种工具交互。 2. 在计划和解决问题方面具有一定能力,能通过玩游戏或模拟环境快速学习和从经验中学习。 3. 在许多任务上达到人类水平的表现,对人类的理解有所提升。 4. 但也存在一些限制,如架构中的自回归特性导致缺乏规划能力等。
2024-11-12
gpt-4和文心一言
GPT4 是由 OpenAI 开发的先进且广泛使用的大型语言模型,在多种任务上表现卓越,如文本生成、理解、翻译及专业和创意写作等,通过大量数据学习,能处理复杂问题和理解上下文。 文心一言是百度开发的语言模型,文心一言 4.0 有网页版和 API 版本。在 2023 年,百度的“文心 4.0”是国内能力较好的模型之一。 除了 GPT4 和文心一言,还有其他重要的大型语言模型,如 Anthropic 公司的 Claude 3、谷歌的 Gemini、阿里巴巴的通义大模型等。在 2023 年度中文大模型基准测评报告中,对众多模型进行了评测和列举。2023 年中美在 AGI 技术上仍有差距,国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 有差距。国内大厂在冲击 AGI 方面虽有资源,但实际效果尚不明确,且受多种因素影响。
2024-11-12
chatgpt 是什么
ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。 其基本概念是从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本,能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。 它在生成文本方面表现出色,结果通常接近人类所产生的。但它最终是从积累的“传统智慧统计数据”中提取“连贯的文本线索”。 ChatGPT 目前有 GPT3.5 和 GPT4 两个版本。GPT3.5 是免费版本,GPT4 则需要升级到 PLUS 套餐,收费标准为 20 美金一个月。 ChatGPT 实质功能是“单字接龙”,长文由单字接龙的回归所生成。GPT 作为大脑需要通过材料学习不断形成模型,训练目的是学习“提问和回答的通用规律”,实现举一反三。但它不是搜索引擎的升级版,可能会出现“幻觉”,混淆记忆,无法直接查看和更新所学,且高度依赖学习材料,存在缺乏及时性和准确性的缺点。
2024-11-11
chatgpt
ChatGPT 是通过从网络、书籍等来源获取大量人类创作的文本样本进行训练,以生成“类似”的文本。其基本概念相对简单,训练神经网络能够从“提示”开始,生成类似于训练内容的连贯人类语言文本。 ChatGPT 中的实际神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”并通过其元素(无循环等)。然而,它能生成出色的文本,这表明人类语言(及背后的思维模式)的结构具有一定的“法律属性”,比想象中更简单,ChatGPT 已隐含地发现了这一点,或许我们可用语义语法、计算语言等明确揭示。 ChatGPT 在生成文本方面表现出色,接近人类所产生的,但它的工作方式与大脑并非完全相同。其基本人工神经网络结构基于大脑的理想化模型,人类生成语言时的许多方面与之相似。 在训练方面,大脑和当前计算机的“硬件”不同,ChatGPT 采用的策略可能与大脑有较大差异且效率较低,其内部没有“循环”或“重新计算数据”,限制了计算能力。目前尚不清楚如何解决此问题以让未来的 ChatGPT 能做更多类似大脑的事,但它已能做到的事情令人兴奋,为我们理解人类语言和思维过程提供了动力。 此外,还为您提供“10 分钟手搓一个 ChatGPT 语音对话机器人”的相关链接:https://b23.tv/JffIir4 。
2024-11-11
chatgpt入门
以下是关于 ChatGPT 入门的相关知识: ChatGPT 的实质功能可以用“词语接龙”四个字概括。具体来说,给它任意长的上文,它会用自己的模型生成下一个词。其通过自回归生成的方式,将生成的下一个词与之前的上文组合成新的上文,不断重复以生成任意长的下文。训练模型可以让答案更接近用户想要的答案,提示词的撰写也很重要。 ChatGPT 被称为生成模型,与搜索引擎不同。训练的主要目的不是记忆,而是学习以单字接龙的方式训练模型,学习提问和回答的通用规律,以便在遇到没记忆过的提问时能生成用户想要的回答,即实现泛化。 ChatGPT 从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络生成“类似”的文本,能够从“提示”开始生成“类似于训练内容”的文本。其神经网络由简单元素组成,基本操作也简单,但能产生成功“类似于”网络、书籍等内容的文本。 GPT 代表生成式(Generative)、预训练(PreTraining)和转换器(Transformer)。 您还可以通过以下资源进一步了解: 大白话聊 ChatGPT: 人工智能教父 Hinton:关于 ChatGPT 与 AI 发展的 11 个核心观点: (进阶内容)
2024-11-11
你的原型是chatgpt吗
我不是基于 ChatGPT 开发的。ChatGPT 于 2022 年 11 月横空出世,背后基于 GPT3.5,其训练包括多个阶段,如预训练(PT)阶段建立模型的能力上限,监督微调(SFT)阶段让模型学会对话形式,强化学习从人类反馈(RLHF)阶段细分为奖励模型(RM)和强化学习(RL)阶段以激发多种能力。 此外,Hugging Face 推出了自己的 ChatGPT 版本,Stability AI 发布了 DeepFloyd IF 图像生成模型,效率和效果都有提升。AudioGPT 是一个能理解和生成语音、音乐等的系统,具有多种特点和应用领域。
2024-11-11
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
对图片和视频进行智能标签
以下是关于对图片和视频进行智能标签的相关内容: 用 SD 训练一套贴纸 LoRA 模型的打标方法: 1. 点击左侧菜单【WD1.4 标签器】。 2. 在 path 中粘贴素材文件夹的根目录路径。 3. 将阈值设置为 0.35(生成尽可能多的标签来描述图片内容,阈值是指 AI 理解图片内容给出关键词的评分,分数越大越确定,一般阈值设大于 0.35)。 4. 选择公认成熟稳定的 Tagger 模型作为训练 lora 的底模,其它设置基本不用更改调试。 5. 点击【启动】,会为目标文件夹里的图像素材自动打标,自动打标完成后,会在素材原文件直接生成对应图像的 txt 打标文件。 【SD】提示词标签选择器 Easy Prompt Selector 的使用: 1. 按顺序选择一些标签词,如女孩、白头发、蓝眼睛、兔子耳朵等。 2. 选择画质和视角,如最好的质量、杰作、高度详细等。 3. 选择艺术风格,如皮克斯动画、轮廓光。 4. 在负面提示词中进行选择并点击选框结尾的“负面”。 5. 选择模型,如“revAnimated”,调整尺寸后点击生图。 用 SD 训练一套贴纸 LoRA 模型的打标优化方法: 1. 方法一:保留全部标签。对标签不做删标处理,直接用于训练。一般在训练画风,或想省事快速训练人物模型时使用。优点是不用处理 tags 省时省力,过拟合的出现情况低;缺点是风格变化大,需要输入大量 tag 来调用、训练时需要把 epoch 训练轮次调高,导致训练时间变长。 2. 方法二:删除部分特征标签。训练某个特定角色时,要保留蓝眼睛作为其自带特征,那么就要将 blue eyes 标签删除,以防止将基础模型中的 blue eyes 引导到训练的 LoRA 上。一般需要删掉的标签如人物特征 long hair,blue eyes 这类;不需要删掉的标签如人物动作 stand,run 这类,人物表情 smile,open mouth 这类,背景 simple background,white background 这类,画幅位置等 full body,upper body,close up 这类。优点是调用方便,更精准还原特征;缺点是容易导致过拟合,泛化性降低。过拟合会导致画面细节丢失、画面模糊、画面发灰、边缘不齐、无法做出指定动作、在一些大模型上表现不佳等情况。
2024-08-29
请帮我筛选好用的AI logo生成平台,最好是免费的
以下为一些好用且免费的 AI logo 生成平台: 1. Looka:是一个在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答关于品牌和设计风格的问题来生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户可选择不同元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助用户创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。另外,以下也是一些不错的 AI logo 生成平台:Logomaster.ai、Free Logo Design、Logo AI、Looka logo maker(原名 Logojoy)、Brandmark、DesignEvo、Tailor Brands、Designhill 。
2024-10-10
请问现在市面上是否有已经开发出来的为微信公众号运营服务的agi。它可以实现内容搜索、分析、筛选
目前市面上有为微信公众号运营服务的 AGI 应用。例如,利用 Perplexity.AI 可以实现相关功能: 1. 其具有强大的搜索功能,访问该网站使用搜索功能,可启用 Pro 功能获取更专业深入的结果,经常使用可考虑开通会员。 2. 在搜索框输入具体 Prompt 能快速定位相关资讯。获取搜索结果后,可点击回答内容下方拷贝按钮获取引用网站链接。 3. 同理,微软的 Bing 搜索引擎等具备联网搜索功能的 AI 工具也能提供类似功能,帮助快速搜集大量相关资料,提升文章专业度和说服力。 收集完资料后,可使用月之暗面开发的 Kimi 这个 AI 会话助手进行整理。但需注意,Kimi 阅读能力有一定限制,可能无法一次性处理大量资讯或读取某些网站内容,可分批次提供资料确保其有效读取理解。
2024-08-21
如何用 AI 做简历筛选
使用AI进行简历筛选可以大大提高招聘过程的效率和准确性。以下是使用AI进行简历筛选的一些步骤和工具建议: 1. 选择合适的AI工具 有许多AI驱动的简历筛选工具可供选择。以下是一些流行的工具: HireVue:提供视频面试和简历筛选服务,通过AI分析候选人的视频面试和简历。 Pymetrics:使用神经科学和AI评估候选人的认知和情感特征,并与职位要求匹配。 LinkedIn Talent Insights:利用LinkedIn的数据和AI进行人才筛选和分析。 Hiretual:一个基于AI的人才搜索和管理平台,提供简历筛选、候选人排名等功能。 Beamery:一个候选人关系管理平台,使用AI筛选和排名简历。 2. 定义职位需求 在开始筛选之前,明确职位需求,包括技能、经验、教育背景等。这样,AI工具可以根据这些标准筛选简历。 3. 设置筛选标准 关键词匹配:确定简历中需要匹配的关键词和短语,例如特定的技能、软件工具、行业术语等。 评分系统:为不同的标准分配权重,例如经验年限、教育背景、技能匹配度等。 4. 训练AI模型 一些高级的AI简历筛选工具允许你训练模型,使其更加适应你的需求: 数据收集:收集历史招聘数据,包括成功聘用的候选人的简历。 模型训练:使用这些数据训练AI模型,使其能够更准确地筛选简历。 5. 简历解析 AI工具会解析简历,提取关键信息,如姓名、联系方式、工作经验、教育背景、技能等。这些信息将用于后续的筛选过程。 6. 简历筛选 根据预设的标准和关键词,AI工具对简历进行筛选和排名: 初步筛选:排除不符合基本要求的简历。 评分和排名:根据评分系统,对符合要求的简历进行评分和排名。 7. 人工审核 虽然AI工具可以显著提高筛选效率,但建议对高评分的简历进行人工审核,以确保筛选结果的准确性和公平性。 8. 持续优化 根据筛选结果和实际招聘效果,不断优化AI筛选模型和标准,确保筛选结果越来越准确。 9. 遵循法律和道德规范 在使用AI进行简历筛选时,确保遵守相关的隐私保护法律和招聘公平性要求,避免任何形式的歧视。 实施步骤 1. 选择工具:根据需求和预算选择适合的AI简历筛选工具。 2. 定义需求:明确职位需求和筛选标准。 3. 配置工具:设置关键词、评分系统,进行模型训练(如适用)。 4. 解析简历:使用AI工具解析候选人简历。 5. 筛选和排名:让AI工具对简历进行筛选和排名。 6. 人工审核:对高评分的简历进行人工审核。 7. 优化模型:根据反馈和效果不断优化筛选模型。 通过这些步骤,使用AI进行简历筛选可以大大提高招聘效率,找到更合适的候选人。如果需要进一步的详细指导或具体工具推荐,请告诉我。
2024-07-10
我有一份PPT,我想对这个PPT进行图像设计等美观化处理,怎么来做?使用哪个工具好?
以下为您介绍一些可用于对 PPT 进行图像设计等美观化处理的工具及相关信息: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 在对 PPT 进行排版时,工具的选择可根据个人顺手程度决定,对于打工人来说,PPT 是较为熟练的选择。关于尺寸问题,如果想要打印,4:3 的比例比较适合童书绘本的比例,出图时可按此比例,文字可直接排版到画面上;若出图为 16:9 横板,排版时 4:3 可把文字放在图片下面。若要发小红书或者小绿书,竖版更合适,比例选 3:4,出图也选竖版。制作 H5 时,出图选竖版,比例选 9:16。所有排版尺寸在 PPT 里都可以选。另外,PPT 里的删除背景功能对于基础抠图很有用。用 PPT 另存为图片时,直接选 jpg 或 png 格式会降低图片清晰度,可先另存为“增强型 Windows 源文件”格式,再用画图软件打开另存为 JPG 以得到高清图。
2024-11-12
什么工具能进行AI数据表格处理
以下是一些能够进行 AI 数据表格处理的工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务,包括 Excel 中的数据分析和格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,以下是一些 AI 相关的产品数据表格排行: |AI 产品数据表格_排行|AI 产品数据表格_产品名|AI 产品数据表格_分类|AI 产品数据表格_4 月访问量(万 Visit)|相对 3 月变化| |||||| |1||表格|175|0.036| |2|Highcharts|表格|127|0.257| |3|Numerous.ai|表格|73.4|0.911| |4|Coefficient|表格|69|0.213| |5|GPTExcel|表格|37|1.139| |6|Rows AI|表格|34|0.115| |7|SheetGod|表格|26|0.016| |8|AI Excel Bot|表格|25.3|0.103| |9|OpenAI in Spreadsheet|表格|17|0.091| |10|GPT Workspace|表格|17|0.189|
2024-11-10
帮助小学生进行英语阅读的AI工具
以下是一些帮助小学生进行英语阅读的 AI 工具: 1. 浏览器插件“沉浸式翻译”: 地址:https://immersivetranslate.com/ 。它支持阅读本地 PDF 等,是实用的英文资料和网页翻译插件。 2. 浏览器插件莫妮卡(Monica):https://monica.im/ ,可对英文页面文字进行翻译。 3. 利用 GPT 辅助阅读:能从英译中到中译中,帮助理解文档内容。 对于 4 岁儿童练习英语口语的 AI 工具,有以下选择: 1. LingoDeer(https://www.lingodeer.com/):通过游戏和互动活动教英语,提供各种课程,有家长仪表板可跟踪孩子进度和设置学习目标。 2. Busuu(https://www.busuu.com/):提供英语及多种语言课程,使用多种教学方法,有社区功能可与其他孩子练习口语。 3. Memrise(https://www.memrise.com/):用抽认卡和游戏教英语,提供多种课程,有社交功能可与亲友一起学习。 4. Rosetta Stone(https://www.rosettastone.com/):采用沉浸式方法教英语,有语音识别功能帮助练习发音。 5. Duolingo(https://www.duolingo.com/):免费的语言学习应用,用游戏化方法让学习有趣,提供多种课程。 在为孩子选择 AI 工具时,要考虑年龄、兴趣、学习风格、功能和成本等因素。
2024-11-08
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
利用ai工具对视频进行解说,需要什么工具
利用 AI 工具对视频进行解说,您可以考虑以下工具和流程: 1. 分析视频内容:使用 AI 工具(如 ChatGPT)对视频内容进行分析,提取关键信息。 2. 生成角色与场景描述:借助工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将解说文本转换为语音,并添加背景音乐和音效。 4. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将生成的音频与视频进行合成。 5. 拆解视频:可以使用 Gemini 1.5 Pro 对视频进行分析和拆解。 6. 制作 AI 短片:如使用 Pika、Pixverse、Runway、SVD 等工具来生成视频内容。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-11-02
如何用AI进行建筑设计
以下是关于如何用 AI 进行建筑设计的相关内容: 能够帮助建筑设计师审核规划平面图的 AI 工具: 1. HDAidMaster:云端工具,建筑师可使用主流 AIGC 功能进行集卡式方案创作,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,能根据输入的房间面积需求和土地约束自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束生成的设计结果,保证合规性。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内的信息集成,实现数据汇总与管理。 使用 AI 进行室外设计的最佳实践: 1. 充分利用 AI 的创意生成能力,输入关键词生成多种创意方案,获取新颖灵感。 2. 结合 AI 的模拟和可视化功能,利用 AR/VR 等技术在实际环境中模拟和评估设计方案。 3. 运用 AI 的分析和优化能力,对采光、动线、材料等方面进行优化,满足实际需求。 4. 借助 AI 的自动化设计功能,自动生成符合规范的平面图、立面图等,提高效率。 5. 融合 AI 与人工设计的协作模式,发挥各自优势,在各环节充分利用 AI 能力。 关于 AI 绘画: AI 绘画是利用人工智能技术通过算法和模型让计算机生成具有艺术效果的图像。早期成果简单粗糙,随着技术进步,特别是深度学习算法应用,能生成更复杂、逼真和富有创意的图像,涵盖各种风格和题材,并在与人类艺术家互动融合中不断创新。其在广告设计、游戏开发、影视制作、建筑设计等领域有广泛应用,如广告的创意概念图生成、游戏的场景和角色创建、影视的特效场景和概念设计辅助、建筑的外观和内部布局构想等。您可以体验《AI 绘画助手》: ,BotID:7387390303403671587
2024-11-01