Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用gpt,对标签进行筛选

Answer

以下是关于您提到的问题的相关信息:

在数据标注方面,以 ChatGPT 的追赶者们为例,如 Claude ,作者未事先培训标注员关于 helpfulness 和 harmfulness 的内容以保证数据多样性。标注员要求是美国硕士以上,通过看写作水平、表达能力等筛选出约 20 名优秀的 MTurk 标注员标注了 80%的数据,同时在 Upwork 上标注更高质量但数量较少的数据集。标注界面中用户二选一,并有不同置信度选项,还涉及 RM 和 PPO 等。

在 Embedding 增强 GPT 能力方面,OpenAI 发布的文档说明可通过两步搜索来实现:

  1. 准备搜索数据(仅一次):
    • 搜集数据:获取公开或私有数据。
    • 切块:将文档切分成短小部分。
    • 嵌入:通过 OpenAI API 对切块数据进行 Embedding 结果。
    • 存储:使用向量数据库保存大型数据集的 Embedding 结果。
  2. 搜索(每次查询一次):给定用户问题,从 OpenAI API 生成查询的 embeddings ,按与查询相关性对文本部分排序,推荐使用余弦相似性距离函数。
  3. 提问(每次查询一次):将问题和最相关部分插入发送给 GPT 的消息中返回答案。

Embedding 共有以下作用:

  • 搜索(结果按与查询字符串的相关性排名)
  • 聚类(文本字符串按相似性分组)
  • 建议(包含相关文本字符串的项目)
  • 异常检测(识别相关性小的离群值)
  • 多样性测量(分析相似性分布)
  • 分类(文本字符串按最相似标签分类)
Content generated by AI large model, please carefully verify (powered by aily)

References

(3)ChatBot是怎么炼成的?

作者并没有事先培训标注员什么是helpfullness和harmfulness,这样保证数据多样性标注员要求很高,是美国的硕士以上。并且把低质量的滤掉了,把优秀的MTurk标注员筛选出来,大概20人,标注了80%的数据。筛选的办法就是看写作水平,表达能力,简单暴力有效。同时在Upwork上标注更加高质量但是数量较少的数据集,因为Upwork是paid-by-hour,MTurk是paid-by-task标注界面如下,用户二选一,并且有不同的置信度选项RM和PPOAnthropic称RM为PM(Preference Model),并且发现PM模型越大,数据越多,是会涨点的,这个跟ChatGPT的结论不一样。ChatGPT里面说RM模型不能太大,不好训练,容易发散,所以选择6B的RM模型PPO阶段的损失函数少了InstructGPT的第三项SFT项,因为作者发现Policy模型和PM模型足够大的话,不加那一项效果也会持续提升$$r_{\text{total}}= r_{\text{PM}}-\lambda_{\text{KL}}D_{\text{KL}}(\text{policy}||\text{policy}_0)$$

认识大模型 Embedding 技术加实战

针对上面的问题,OpenAI发布过这样一篇文档,说明如何使用两步搜索来增强GPT的能力:搜索:搜索内部的知识库,检索相关文本。请求:将检索到的文本内容部分发送给GPT大模型,并向其提出问题。具体的操作步骤如下:1、准备搜索数据(仅一次)1)搜集数据:获取需要的数据,公开数据或者私有的数据2)切块:将文档切分成短小的3)嵌入:通过OpenAI API对切块的数据进行Embedding结果,4)存储:存储Embedding结果,对于大型数据集的Embedding结果,可以使用向量数据库进行保存。2、搜索(每次查询一次)给定用户问题,从OpenAI API生成查询的embeddings使用embeddings,按照与查询相关性对文本部分进行排序❝距离函数推荐使用:余弦相似性3、提问(每次查询一次)将问题和最相关的部分插入到发送给GPT的消息中返回GPT的答案[heading3]Embedding共有哪些作用[content]搜索(其中结果按与查询字符串的相关性进行排名)聚类(其中文本字符串按相似性分组)建议(建议包含相关文本字符串的项目)异常检测(识别出相关性很小的离群值)多样性测量(分析相似性分布)分类(其中文本字符串按其最相似的标签分类)

Others are asking
deepseek深度思考的机制和ChatGPT的深度思考有什么不一样
DeepSeek R1 与 ChatGPT 的深度思考机制存在以下不同: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理模型。而 ChatGPT4 采用预训练+监督微调(SFT)。 2. 思考方式:在回答用户问题前,DeepSeek R1 会先进行“自问自答”式的推理思考,从用户初始问题出发,唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。而 ChatGPT 在此方面的表现有所不同。 3. 应用场景:DeepSeek R1 适用于高难度数学和编程问题,但计算成本更高。日常查询中,ChatGPT 更快、更适合简单咨询。 4. 优势特点:DeepSeek R1 更加透明,研究细节可复现,权重可下载。
2025-02-17
DB gpt具备商用化能力了吗?
目前 DB GPT 尚未具备成熟的商用化能力。其在技术、性能、安全性、稳定性等方面可能还存在一些需要进一步完善和优化的地方。商用化需要满足一系列严格的标准和要求,包括但不限于高效的处理能力、准确的结果输出、可靠的安全性保障以及良好的用户体验等。
2025-02-17
chat gpt
ChatGPT 是通过从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络来生成类似的文本。其基本概念简单,由大量简单元素组成的神经网络,基本操作是为每个新单词生成输入并通过元素处理。 ChatGPT 能够从提示开始生成连贯的人类语言文本,遵循提示并利用所读内容,但不总是具有全局意义或对应正确计算,只是根据训练材料中的相似内容生成听起来正确的东西。 ChatGPT 在生成文本方面表现出色,结果接近人类所产生的。其基本人工神经网络结构基于大脑的理想化模型,人类生成语言的许多方面与之相似。 然而,在训练和硬件方面,ChatGPT 与大脑存在不同,需要使用可能不同且效率低于大脑的策略,内部没有循环或重新计算数据,限制了计算能力。 ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo,使用 OpenAI 的 API 可以构建应用来做很多事情,如起草邮件、写代码、回答文档问题、创建会话代理、提供自然语言接口、辅导学科、语言翻译、假扮角色等。还可以体验 OpenAI 在线编辑器的聊天格式。
2025-02-17
如何高效使用chatgpt
以下是关于高效使用 ChatGPT 的一些方法和建议: 1. 对于产品经理: 步骤 1:进行原 SQL 输入,让 ChatGPT 对需求有初步理解。 步骤 2:将真实的业务需求场景及现存问题输入给 ChatGPT,通过多轮输入输出的讨论,强化其对真实需求的认知,以获取针对性的优化建议,并输出更符合需求的代码。 步骤 3:根据 ChatGPT 给出的结果不断调试和优化,直至生成满足需求的新代码。例如,按照原 SQL 思路更新数据时存在耗时长、资源浪费严重的问题,可参考 ChatGPT 提出的优化建议,如每次更新 1 天而非 30 天的数据、创建中间结果表存储非二次计算的数据等。 2. 对于开发人员: 痛点:在 IDE 和 ChatGPT 两个软件中不断切换、拷贝代码较为麻烦。 解决方案:将 ChatGPT 装进 WebStorm 中,通过右键选中代码,让 ChatGPT 进行优化、找 BUG 等操作,并可在窗口中随时提问。具体操作如下: 第一步:获取 API Keys,可参考文章 第二步:在 WebStorm 中下载 ChatGPT 插件,并将从 OpenAI 开发平台获取到的 API keys 设置进插件的配置中。安装后可实现选中代码找 bug、优化代码、自定义指令等功能,插件底部还有对话框可实时提问,让其解释、重新生成代码等。 此外,ChatGPT 的诞生经历了一系列的研究和改进。OpenAI 团队曾侧重浏览功能,但后来减少了这方面的侧重,将指令型数据和聊天数据混合,创造出既可以处理具体任务又能流畅聊天的模型。GPT4 完成训练后,特别强调指令遵循能力,但仍存在可靠性问题。指令型模型中的某些任务描述不够清晰,增加了模型执行和数据标注的难度,而 ChatGPT 这类聊天模型则更加直观,能更好地理解和处理潜在局限性,展现出更连贯的特征和更稳定的行为。
2025-02-14
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
chatgpt公司原研发讲chatgpt的文章网页链接
以下是关于 ChatGPT 公司原研发讲 ChatGPT 的文章网页链接: 1. 育儿相关项目:https://chat.openai.com/share/40f1e3da187a4bef9150f93ca34046f4 ,该项目中使用 ChatGPT 进行了多种操作,如翻译、整理远古动物列表等。 2. AIGC 常见名词解释:https://mp.weixin.qq.com/s/ycDWZ8W46DrsyeNShC1wA ,其中对 ChatGPT 有相关解释。 3. AIGC Weekly01:https://openai.com/blog/chatgpt/ ,介绍了 ChatGPT 的发布情况。
2025-02-13
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
对图片和视频进行智能标签
以下是关于对图片和视频进行智能标签的相关内容: 用 SD 训练一套贴纸 LoRA 模型的打标方法: 1. 点击左侧菜单【WD1.4 标签器】。 2. 在 path 中粘贴素材文件夹的根目录路径。 3. 将阈值设置为 0.35(生成尽可能多的标签来描述图片内容,阈值是指 AI 理解图片内容给出关键词的评分,分数越大越确定,一般阈值设大于 0.35)。 4. 选择公认成熟稳定的 Tagger 模型作为训练 lora 的底模,其它设置基本不用更改调试。 5. 点击【启动】,会为目标文件夹里的图像素材自动打标,自动打标完成后,会在素材原文件直接生成对应图像的 txt 打标文件。 【SD】提示词标签选择器 Easy Prompt Selector 的使用: 1. 按顺序选择一些标签词,如女孩、白头发、蓝眼睛、兔子耳朵等。 2. 选择画质和视角,如最好的质量、杰作、高度详细等。 3. 选择艺术风格,如皮克斯动画、轮廓光。 4. 在负面提示词中进行选择并点击选框结尾的“负面”。 5. 选择模型,如“revAnimated”,调整尺寸后点击生图。 用 SD 训练一套贴纸 LoRA 模型的打标优化方法: 1. 方法一:保留全部标签。对标签不做删标处理,直接用于训练。一般在训练画风,或想省事快速训练人物模型时使用。优点是不用处理 tags 省时省力,过拟合的出现情况低;缺点是风格变化大,需要输入大量 tag 来调用、训练时需要把 epoch 训练轮次调高,导致训练时间变长。 2. 方法二:删除部分特征标签。训练某个特定角色时,要保留蓝眼睛作为其自带特征,那么就要将 blue eyes 标签删除,以防止将基础模型中的 blue eyes 引导到训练的 LoRA 上。一般需要删掉的标签如人物特征 long hair,blue eyes 这类;不需要删掉的标签如人物动作 stand,run 这类,人物表情 smile,open mouth 这类,背景 simple background,white background 这类,画幅位置等 full body,upper body,close up 这类。优点是调用方便,更精准还原特征;缺点是容易导致过拟合,泛化性降低。过拟合会导致画面细节丢失、画面模糊、画面发灰、边缘不齐、无法做出指定动作、在一些大模型上表现不佳等情况。
2024-08-29
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
写一个关于AI面试B端软件的需求文档,里面核心功能包括AI面试功能、背调功能(比如线上、证明人、应聘者提供的材料)、简历筛选关键词功能(比如UI设计里面负责项目包括用户调研、原型设计、需求缝隙、高保真设计、切图)、提取简历证书项目功能(比如初级设计师、建筑设计师、一级建造师)。
以下是为您生成的关于 AI 面试 B 端软件的需求文档: 一、核心功能 1. AI 面试功能 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、招聘全环节集成解决方案、先进防作弊技术及严密数据安全保障,能完成面试、初筛并自动发送面试邀约。 海纳 AI 面试:通过在线方式自动面试、评估,精准度高达 98%,面试效率比人工提升 5 倍以上,候选人到面率提升最高达 30%。 InterviewAI:在线平台提供面试职位相关问题及 AI 生成的推荐答案,候选人用设备麦克风回答,每个问题最多回答三次,会收到评估、建议和得分。 2. 背调功能 线上背调。 证明人背调。 对应聘者提供材料的背调。 3. 简历筛选关键词功能 UI 设计方面,负责项目包括用户调研、原型设计、需求缝隙、高保真设计、切图。 4. 提取简历证书项目功能 初级设计师。 建筑设计师。 一级建造师。 二、案例参考 1. HR 相关案例 HR:团队绩效管理,根据团队和个人绩效的往期数据,分析员工绩效排名,输出绩效考评和迭代改进建议。 HR:面试工具,作者开发使用 GPT4 技术的实时转录工具,帮助求职者在面试中生成完美回答。 2. 其他工作场景案例 销售:话术总结优缺点,涵盖产品特点、服务优势等方面。 销售:定制销售解决方案,涉及企业产品和服务内容等方面。 客服:定制客服话术,包含产品知识、使用方法等关键词库。 三、提示词工程师面试经验分享 某岗位面试一面完不到 2 个小时就通知二面,效率较高。 技术面:面试官直接给出同行美妆 GPT 案例,让判断实现方式,应试者提出 C 端优化方案及补充 B 端商业化方案后通过。 BOSS 面:了解学业情况、经历和意向,询问经典问题。
2024-12-02
写一个关于AI面试B端软件的需求文档,里面核心功能包括AI面试功能、背调功能、简历筛选关键词功能、提取简历证书项目功能。
以下是一份关于 AI 面试 B 端软件的需求文档,核心功能包括 AI 面试功能、背调功能、简历筛选关键词功能、提取简历证书项目功能: 一、AI 面试功能 目前市场上有一些相关产品,例如: 1. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。能帮助企业完成面试,借助人岗匹配模型自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 2. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善,到面率比之前提升最高达 30%。 3. InterviewAI:这是一个在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 二、背调功能 (此处可详细描述背调的具体流程、涵盖的内容、数据来源等) 三、简历筛选关键词功能 (说明如何设置关键词、关键词的匹配规则等) 四、提取简历证书项目功能 (阐述如何准确提取简历中的证书和项目信息) 需要注意的是,使用这些产品时,企业需要考虑到数据安全性和隐私保护的问题。
2024-12-02
请帮我筛选好用的AI logo生成平台,最好是免费的
以下为一些好用且免费的 AI logo 生成平台: 1. Looka:是一个在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答关于品牌和设计风格的问题来生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户可选择不同元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助用户创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。另外,以下也是一些不错的 AI logo 生成平台:Logomaster.ai、Free Logo Design、Logo AI、Looka logo maker(原名 Logojoy)、Brandmark、DesignEvo、Tailor Brands、Designhill 。
2024-10-10
请问现在市面上是否有已经开发出来的为微信公众号运营服务的agi。它可以实现内容搜索、分析、筛选
目前市面上有为微信公众号运营服务的 AGI 应用。例如,利用 Perplexity.AI 可以实现相关功能: 1. 其具有强大的搜索功能,访问该网站使用搜索功能,可启用 Pro 功能获取更专业深入的结果,经常使用可考虑开通会员。 2. 在搜索框输入具体 Prompt 能快速定位相关资讯。获取搜索结果后,可点击回答内容下方拷贝按钮获取引用网站链接。 3. 同理,微软的 Bing 搜索引擎等具备联网搜索功能的 AI 工具也能提供类似功能,帮助快速搜集大量相关资料,提升文章专业度和说服力。 收集完资料后,可使用月之暗面开发的 Kimi 这个 AI 会话助手进行整理。但需注意,Kimi 阅读能力有一定限制,可能无法一次性处理大量资讯或读取某些网站内容,可分批次提供资料确保其有效读取理解。
2024-08-21
用飞书搭建知识库并进行AI问答
以下是关于用飞书搭建知识库并进行 AI 问答的相关内容: 知识库问答是机器人的基础功能,可根据用户问题从知识库中找到最佳答案,这利用了大模型的 RAG 机制。RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。 简单来说,RAG 机制先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成当问复杂问题时,RAG 机制先在巨大图书馆里找相关书籍,再基于这些书籍信息给出详细回答。这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制实现知识库问答功能,首先要创建包含大量社区 AI 相关文章和资料的知识库,比如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传栏目所有文章内容,陆续将社区其他板块文章和资料导入。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回内容结合回答。 另外,全程白嫖拥有一个 AI 大模型的微信助手的搭建步骤如下: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并获取白嫖大模型接口的方法。 2. 搭建,这是个知识库问答系统,放入知识文件,接入上面的大模型作为分析知识库的大脑来回答问题。若不想接入微信,搭建到此即可使用,它有问答界面。 3. 搭建,其中的 cow 插件能进行文件总结、MJ 绘画。
2025-02-19
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
请介绍一下如何使用AI进行PPT生成
以下是使用 AI 进行 PPT 生成的方法: 1. 利用闪击: 访问国内网站 https://ppt.isheji.com/?code=ysslhaqllp&as=invite ,无需魔法。 选择模板。 将准备的大纲转换成适配闪击的语法,可参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650 。 点击文本转 PPT,并在提示框中选择确定,得到转换后的 PPT。 可在线编辑,但导出有会员限制。 2. 以爱设计为例: 导入大纲到工具生成 PPT,其他工具操作方式大同小异,基本基于 Markdown 语法的内容来完成 PPT 生成。 优化整体结构,按照公司要求自行优化字体、图片等元素,针对下载后的 PPT 可删改内容。 3. 结合 GPT4、WPS AI 和 chatPPT: 先让 GPT4 生成 PPT 大纲。 把大纲导入到 WPS 当中,启用 WPS AI 一键生成 PPT。 让 chatPPT 添加一些动画。 手动修改细节,如字体、事实性错误等。
2025-02-18
如何利用AI进行变现
以下是利用 AI 进行变现的一些方式: 1. 电商:婴儿的四维彩超 AI 预测 思路和玩法:通过 AI 工具将宝宝的四维彩超还原出模样进行变现。孕妇妈妈在孕期 22 26 周会进行四维彩超检查,很多准爸爸妈妈期待宝宝模样,从而产生市场需求。在小红书、抖音等公域平台发布相关笔记吸引咨询,将客户引流到私域接单变现。 操作流程:客户提供四维彩超原图,在 Midjourney 里进行垫图和特定描述词,整个流程不超过 10 分钟就能出图。 注意事项:平台引流要隐蔽,避免被检测导致限流或封号。 2. 写作:AI 写作变现 项目启动:确定目标客户群体,如大学生、职场人士、自媒体从业者等,选择合适的 AI 写作工具。 准备阶段:学习并实践 AI 写作技术,构建团队。 商业模式构建:确定服务内容,如提供论文、报告、文案等写作服务,制定质量控制标准。 运营与推广:在淘宝等电商平台开设店铺销售写作服务,建立写作培训社群,通过社交媒体和线下活动进行品牌和社群建设,与其他团队合作开发新项目。 项目优化与发展:持续关注 AI 技术进展,根据市场需求拓展新服务和产品,收集客户反馈优化服务。 3. 韦恩:扣子“AI 应用”进阶 变现方式:在公司给自己贴 AI 大神标签,在社交网络分享扩大影响力,承接项目开发。 二创方向:增加画板节点,结合公司 Logo 生成公司主题产品邮票,承接类似需求扩充工作流,修改提示词调整生图内容方向。 总之,技术很关键,创意更重要,好技术加上好创意才能成就好产品,祝您在 AI 应用之路增加收入。
2025-02-17
如何利用ai进行表现
以下是利用 AI 进行表现的一些方式和案例: 1. 在角色动画制作方面,如 Playhouse ,可以使用人工智能为 2D 或 3D 角色制作动画。输入文字,或打开相机并表演,无需再为 3D 角色进行绑定。生成 3D 资产,只需输入文字或上传图像,我们将其转换为 3D,并控制 3D 场景中的每个元素。前 5000 名注册用户可享受 1 个月的 Playhouse 独立计划。 2. 在 3D 场景引擎方面,Playbook 是一个基于扩散的 3D 场景引擎,利用 ComfyUI 进行图像和视频生成。它基于网络的工具和 Blender 插件,并提供 300 渲染积分。 3. 在 3D 模型生成方面,Tripo AI 是由 VAST 推出的生成式 3D 模型,可以在 8 秒内生成带纹理的 3D 网格模型,在 2 分钟内生成详细模型。此外,Tripo 还开发了自动绑定、动画和风格化功能,以使生成的模型更易于在流程中使用。Tripo API 与 ComfyUI 集成良好,可实现迭代和可控流程。Tripo AI 还拥有一个热门的 3D 创作者/开发者社区。Tripo 的最终目标是在即将到来的 3D 时代让每个人都成为超级创作者。1 个月的 Tripo 专业订阅。 4. 在剧本创作方面,SAGA 是第一款也是最好的剧本创作和故事板应用程序,由针对电影输出而精心调整的最新和最强大的生成式人工智能模型提供支持,包括 GPT 4、Claude 3.5 和 Luma Dream Machine。具有精心开发的故事、引人入胜的角色和精心策划的摄影的人工智能短片甚至音乐视频在比赛中表现更好。SAGA 为您提供最佳创意,让您在一个地方完成所有操作,无需购买一系列人工智能工具以及像 Final Draft 或 Storyboarder 这样的应用程序来将其整合在一起。1 个月的 Saga 高级订阅。 5. 在文旅宣传片创作方面,AI 离谱设工作流分享中,创作策略包括主题明确,聚焦文旅融合,展示地域文化多样性,融合现代科技,创新表现形式,讲好中国故事,传递正能量,以及鼓励互动与参与。通过这样的创作策略,“两会 AI 全国文旅宣传片”旨在通过巧妙运用 AIGC 技术手段展现中国文化旅游的魅力,同时强调文旅融合的重要性和前景,促进文化旅游行业的发展。 6. 在虚拟人物形象生成方面,Meta AI 可以从多人对话中语音中生成与对话相对应的逼真面部表情、完整身体和手势动作。这些生成的虚拟人物不仅在视觉上很逼真,而且能够准确地反映出对话中的手势和表情细节,如指点、手腕抖动、耸肩、微笑、嘲笑等。其工作原理包括数据集捕获、运动模型构建、面部运动生成、身体运动生成、虚拟人物渲染和结果展示等步骤。
2025-02-17
怎样利用AI进行广州小学语文数学英文各科的学习辅导,请给出具体可操作方案,及安排一个学期的日程。
目前没有关于利用 AI 进行广州小学语文、数学、英语各科学习辅导的具体可操作方案及学期日程的相关内容。但一般来说,可以考虑以下步骤: 首先,确定学习目标和重点。针对每门学科,明确本学期需要掌握的知识点和技能。 然后,选择适合的 AI 学习工具。例如,有一些在线学习平台或教育类的 APP ,它们可能提供课程讲解、练习题、智能辅导等功能。 在日程安排方面,可以每周安排一定的时间使用 AI 工具进行学习。比如,周一至周五每天晚上安排 12 小时,分别用于语文、数学、英语的学习。周末可以进行复习和总结。 具体到每天,可以先通过 AI 工具进行知识点的学习,然后做相关的练习题进行巩固,最后利用工具的智能辅导功能解决疑难问题。 需要注意的是,AI 只是辅助工具,不能完全替代教师和家长的指导与监督。
2025-02-17