Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

智能客服应如何实践

Answer

以下是关于智能客服实践的相关内容:

零成本、零代码搭建一个智能微信客服的实操步骤:

  1. 访问微信客服 https://kf.weixin.qq.com/,点击开通。
  2. 勾选同意,点击下一步。
  3. 按步骤填写,勾选同意,注册企业微信。
  4. 注册成功后,会出现“企业未认证,累计仅可接待 100 位客户,认证后可提升接待上限”的提醒,个人测试无需认证,不影响使用。
  5. 完成上述步骤后,已成功 50%,接下来是复制粘贴操作:
    • 点击配置->到微信客服的企业信息,复制企业 ID ->到 coze 页面进行粘贴填写企业 ID,并点击下一步。
    • 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(如果为空,点击“随机获取”),到 coze 页面进行粘贴,点击下一步。
    • 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。
    • 第一次设置回调地址时,目前需要企业认证才可以接入微信客服。若企业未认证,配置回调 URL 时会报错:回调域名校验失败。之前未认证就发布过微信客服的不受影响。第一次设置成功后,后续修改在特定页面进行。
    • 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。

ChatGPT 在智能客服中的应用:

  1. 承担客服功能:告诉 ChatGPT 具体客服身份,要求其解答用户问题的同时,进行私域流量转化。
  2. 管理社区互动:模拟运营人的语言风格,与用户进行更自然的互动,提高用户参与度和满意度。同时支持对社区中的评论和问题进行自动分类,帮助运营团队更有效地解决问题和满足用户需求。
  3. 监测舆情和热点:从多个来源抓取互联网上的热门话题、新闻和社交媒体动态,并对抓取到的文本数据进行深度分析,识别热门话题和趋势,帮助内容运营团队及时了解市场变化。实时监测品牌、产品或服务的网络声量,识别潜在的负面舆情,并提醒运营团队采取措施。但因 ChatGPT 并不支持实时搜索,以上内容需要借助第三方插件完成。
Content generated by AI large model, please carefully verify (powered by aily)

References

皇子:零成本、零代码搭建一个智能微信客服,保姆级教程

带大家一步步配置,闭眼操作:没啥难度,也不需要特殊条件,按步骤操作即可。a.访问微信客服https://kf.weixin.qq.com/,点击开通b.勾选同意,点击下一步c.按步骤填写,勾选同意,注册企业微信d.注册成功页面e:进来后,出现“企业未认证,累计仅可接待100位客户,认证后可提升接待上限”的提醒,个人测试无需认证,不影响使用。完成以上步骤之后,已经成功了50%了,剩下的就是复制粘贴。a.点击配置->到微信客服的企业信息,复制企业ID ->到coze页面进行粘贴填写企业ID,并点击下一步b.到微信客服的开发配置,找到到回调配置,复制Token、EncodingAESKey(如果还是空的,点击“随机获取”即可),到coze页面进行粘贴,点击下一步c.到微信客服的开发配置,配置回调地址URL、复制Secret到coze的页面粘贴,到这里就差微信客服了第一次设置回调地址:注意⚠️:目前需要企业认证,才可以进行接入微信客服了。如果企业没有进行认证,则会在配置回调URL时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。第一次设置成功后,后面再修改是这个页面:d.到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到coze的页面粘贴,点击保存保存后,在coze发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布

皇子:零成本、零代码搭建一个智能微信客服,保姆级教程

带大家一步步配置,闭眼操作:没啥难度,也不需要特殊条件,按步骤操作即可。a.访问微信客服https://kf.weixin.qq.com/,点击开通b.勾选同意,点击下一步c.按步骤填写,勾选同意,注册企业微信d.注册成功页面e:进来后,出现“企业未认证,累计仅可接待100位客户,认证后可提升接待上限”的提醒,个人测试无需认证,不影响使用。完成以上步骤之后,已经成功了50%了,剩下的就是复制粘贴。a.点击配置->到微信客服的企业信息,复制企业ID ->到coze页面进行粘贴填写企业ID,并点击下一步b.到微信客服的开发配置,找到到回调配置,复制Token、EncodingAESKey(如果还是空的,点击“随机获取”即可),到coze页面进行粘贴,点击下一步c.到微信客服的开发配置,配置回调地址URL、复制Secret到coze的页面粘贴,到这里就差微信客服了第一次设置回调地址:注意⚠️:目前需要企业认证,才可以进行接入微信客服了。如果企业没有进行认证,则会在配置回调URL时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。第一次设置成功后,后面再修改是这个页面:d.到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到coze的页面粘贴,点击保存保存后,在coze发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布

运营:腾讯运营如何用ChatGPT

在ChatGPT出现之前,许多企业为了降低人工客服成本,已经在广泛使用智能客服。但现阶段的智能客服还不够智能,而ChatGPT的“角色扮演“能力,正是客服产业所需要的。以下是对ChatGPT作为智能客服的试验。首先告诉ChatGPT的具体客服身份,在要求其解答用户问题的同时,进行私域流量转化。ChatGPT承担客服功能ChatGPT能够理解社区用户的评论和问题,并生成合适的回复。可以提高社区运营效率,为用户提供实时的互动体验。[heading4]b.管理社区互动[content]ChatGPT还可以模拟运营人的语言风格,与用户进行更自然的互动,提高用户参与度和满意度。同时支持对社区中的评论和问题进行自动分类,帮助运营团队更有效地解决问题和满足用户需求。ChatGPT模拟社群运营语言风格[heading4]c.监测舆情和热点[content]ChatGPT可以从多个来源抓取互联网上的热门话题、新闻和社交媒体动态。也可以对抓取到的文本数据进行深度分析,识别热门话题和趋势,帮助内容运营团队及时了解市场变化。同时支持实时监测品牌、产品或服务的网络声量,识别潜在的负面舆情,并提醒运营团队采取措施。*因ChatGPT并不支持实时搜索,以上内容需要借助第三方插件完成,详见文章三-3.解锁更多隐藏玩法。

Others are asking
企业微信客服号能对接dify知识库,实现智能客服功能吗?
企业微信客服号能对接 Dify 知识库实现智能客服功能。以下是相关步骤: 1. 在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目并安装依赖。 3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录并对话测试。 5. 把工作流编排聊天助手接入微信,创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 另外,通过云服务器、Dify、智能微秘书免费搭建微信机器人的部署 Dify 步骤如下: https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装。 零成本、零代码搭建一个智能微信客服的步骤如下: 1. 访问微信客服 https://kf.weixin.qq.com/,点击开通。 2. 勾选同意,点击下一步。 3. 按步骤填写,勾选同意,注册企业微信。 4. 点击配置>到微信客服的企业信息,复制企业 ID>到 coze 页面进行粘贴填写企业 ID,并点击下一步。 5. 到微信客服的开发配置,找到到回调配置,复制 Token、EncodingAESKey(如果还是空的,点击“随机获取”即可),到 coze 页面进行粘贴,点击下一步。 6. 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 7. 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。 第一次设置回调地址时,注意目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。第一次设置成功后,后面再修改是特定页面。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。
2025-02-05
dify知识库能接入企业微信客服 了吗?
Dify 可以接入企业微信,以下是接入的步骤: 1. 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目:下载并安装依赖。 3. 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 5. 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat
2025-02-05
智能客服
以下是关于智能客服的相关信息: GPT 智能客服: GPTs 是 GPT 的一种 ID 账号形态,类似微信公众号,用户可开发自己垂类应用。其开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action)。GPTs 实现了目前最强的智能客服,具有对话流畅、多观点融合、答案准确等特点,但不太擅长推理计算。实现原理是将 FAQ 上传到知识库,让 GPTs 具有客服应答能力。猜测类似检索增强生成技术(RAG),将知识库(knowledge)和问题(prompt)一起做 embedding,扔给 LLM 作答。 源地址: 零成本、零代码搭建智能微信客服: 平台选择扣子(官网地址:https://www.coze.cn)。扣子是新一代一站式 AI Bot 开发平台,无论是否有编程基础,都可以在扣子平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话,还可以将搭建的 Bot 发布到各类社交平台和通讯软件上,让更多用户与搭建的 Bot 聊天。
2025-02-03
我想通过dify调整一个客服系统,但是总是不能很好的把知识库里的数据回复完整?
使用 Dify 构建知识库的具体步骤如下: 1. 准备数据: 收集需要纳入知识库的文本数据,包括文档、表格等格式。 对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集: 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式: Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用: 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化: 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。 定期更新知识库,增加新的内容以保持知识库的时效性。 总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-01-29
客服机器人
以下是关于客服机器人的相关信息: Token 在客户服务机器人中的应用:一家大型电信公司部署了基于 Token 化的客户服务机器人来处理用户查询,如账单问题、服务中断等。机器人通过分析用户已 Token 化的问题,快速提供正确答案或将问题转给适当的服务部门。 共学快闪第三期微信机器人相关: 可以在平台创建自己的 bot,并互相交流和沟通。新客户可以使用 COS 作为 API 来搭建。 举办了 cost 活动,包括图文赛道和创意赛道,参与者可以将自己的作品投稿参赛,还有奖金。 提出了 helpfulness、拟人性、语言流畅度和优雅性、OC 等评估指标,并讨论了如何通过机评和人评混合的方式进行评估。同时,也提到了一些相对主观的指标,如后验的对话轮速、对话轮次、用户的使用留存和频率等。 提供了一个问题汇总文档,记录了 119 条常见问题和解决方案。 微信机器人的搭建过程是一步一步的,可能会遇到一些卡点,最早的时候会有通信下老金、奥服等在群里面帮大家去做回复。 机器人可以实现一些小的商业化目的,比如搭建客服机器人、进行群管理等。 微信机器人的课程是全免费的,梦飞带大家完成的课程已经放在了知识库,大家可以扫码直达知识库进行学习。 prompt 属于商业机密,无法分享。赵悦给大家普及了一个知识,大模型的回复速度与输出的字符数据相关,只要输出字符数比较偏短,大模型的速度会很快。 开发航空客服 AI:聊天机器人工作得很好,可通过 LangSmith 跟踪来检查它的最新运行情况。但设计存在潜在问题,对单个提示施加了很大压力。在下一节中将展示如何通过根据用户的意图将用户引导至专业代理或子图,来更精确地控制不同的用户体验。
2025-01-27
客服系统,需要写一段提示词给大模型,需求是,先跟用户表示歉意,产品问题请咨询我另外一个同事,点击同事名称即可咨询,每次回复的内容不能一样
以下是为您生成的客服系统相关的大模型提示词示例,每次回复内容不同: 1. 非常抱歉给您带来了不便,关于产品问题,您可以咨询我的同事,点击即可进行咨询。 2. 很抱歉让您遇到了困扰,产品方面的疑问请找我的同事咨询,点击就能联系到。 3. 实在不好意思呀,产品的问题您向我的同事咨询会更清楚,点击即可开启咨询。 4. 深感抱歉,对于产品的情况,建议您咨询我的同事,点击就能和他交流。 5. 抱歉给您造成了不好的体验,产品相关问题请咨询我的同事,点击就能获取帮助。
2025-01-26
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md
2025-02-17
数据分析产品的智能体有哪些
以下是一些常见的数据分析产品的智能体类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器,根据温度传感器的输入直接控制加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能推理未来的状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:具有明确的目标,能根据目标评估不同的行动方案并选择最优行动。像机器人导航系统,有明确目的地并规划路线以避开障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣并权衡利弊。例如金融交易智能体,根据市场条件选择最优交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。比如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有一些具体的数据分析产品智能体,如颖子团队的“市场分析报告”生成智能体,它能根据输入的行业/类目关键词自动检索关联信息并生成报告,数据化呈现且附带信息来源网址便于校正,适用于企业管理层、投资者、创业者、营销人员等,可减少信息收集时间,聚焦决策判断。 在智谱 BigModel 开放平台工作流搭建中,也有相关的智能体节点,如具有自主规划任务、使用工具、记忆的 Agent 节点。
2025-02-17
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以规划、子目标和分解、反思和完善、记忆、工具使用等关键组成部分。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能通过与环境交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告主题拼装形成关键词句;必应搜索节点根据关键词句搜索相关网络内容;LinkerReader 节点获取网页详细内容;代码节点对搜索到的网页链接信息进行过滤;大模型节点生成报告内容并添加引用链接;结束节点将 7 部分内容拼接并流式输出。
2025-02-17
使用COZE搭建智能体的步骤
使用 COZE 搭建智能体的步骤如下: 1. 梳理手捏 AI Agent 的思路: 在上篇文章中提到过 Prompt 工程的必备能力,即通过逻辑思考,从知识经验中抽象表达出关键方法与要求,这一理念同样适用于在 Coze 中创建 AI Agent。 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤: 规划:制定任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能。 完善:全面评估并优化 Agent 效果。 2. 分步构建和测试 Agent 功能: 首先进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息。 点击确认后完成工作流的新建,可以看到整个编辑视图与功能。 其中,左侧「选择节点」模块中,根据子任务需要,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 而编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。 接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 3. 全面评估并优化 Agent 效果: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-02-17
coze的deepseek实践
以下是关于 coze 的 deepseek 实践的相关信息: 一个提示词让 DeepSeek 的能力更上一层楼: 效果对比:用 Coze 做了小测试,可对比查看相关视频。 如何使用:搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 Deepseek,认真阅读开场白后正式开始对话。 设计思路:将 Agent 封装成 Prompt 并储存在文件,通过提示词文件让 DeepSeek 实现同时使用联网和深度思考功能,在模型默认能力基础上优化输出质量,设计阈值系统,用 XML 进行规范设定。 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。 字节火山上线了 DeepSeek 系列模型并更改了模型服务价格: 2 月 14 日 8 点有直播,直播结束可看回放,相关学习文档可查看。 重点更新:上线 DeepSeek 系列模型,DeepSeekR1、V3 模型分别提供 50 万免费额度和 API 半价活动,即日起至 2025 年 2 月 18 日 23:59:59 所有用户均可享受价格优惠。 2024 年 7 月 18 日历史更新(归档): 《长文深度解析 Coze 的多 Agent 模式的实现机制》:艾木老师深入研究了 Coze 的多 Agent 模式机制,分析了三种节点跳转模式及应用场景和不足。 《揭秘 DeepSeek: 一个更极致的中国技术理想主义故事》:DeepSeek 以独特技术创新崭露头角,发布颠覆性价格的源模型 DeepSeek V2,创始人梁文锋是技术理想主义者。 《10 万卡集群:通往 AGI 的新门票》:分析了 10 万 GPU 集群建设的相关问题,指出数据中心设计和网络拓扑结构对大型 AI 训练集的重要性。
2025-02-16
ai实践的内容
以下是关于 AI 实践的相关内容: 社区 AI 讲师招募 招募要求: 具有丰富的企业端 AI 实践经验,涵盖以下场景之一或多个: AI 生成爆款内容,如借助 AI 分析挖掘同品类爆款,利用 AI 工具生成电商商品图、小红书图文内容、种草短视频等。 公域阵地场景,基于视频号、抖音、小红书、公众号等平台搭建企业营销推广能力,包括矩阵号和 IP 号,通过短视频、直播等方式获取 leads,涉及矩阵号工具、内容抓取分析、脚本创作、AI 剪辑、自动回复评论、无人直播工具等。 私域阵地场景,如朋友圈、小红书、社群、个人 IP 的获客转化,使用销售企微 SCRM 工具、企业智能体进行 AI 内容抓取和自动回复。 服务自动化工具,包括数据监控和预警、流程优化、自动运营等。 快速搭建数据分析看板。 跨境电商场景,如 tiktok 视频制作及投放、电商图片设计、精准营销、语言翻译、AI 独立站建设、社媒私域、批量混剪、海外达人直播、无人直播(数字人直播)等。 具备良好的表达能力,能清晰阐述技术和业务方面的沉淀。 招募流程:感兴趣的小伙伴提交个人简历(包括基本信息介绍、学历、专业、工作经验,以及 AI 企业端的案例),填写问卷,预约电话面谈,面谈通过后进行公开课试讲。 陈财猫:如何用 AI 写出比人更好的文字? AI+内容创作是现阶段的优质赛道,具有完美的产品模型匹配和产品市场匹配,且发展上限高。 AI 写作的实践成果包括营销、小说和短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,推出小财鼠程序版 agent。 好文字能引发人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣从而写出好文字。 用 AI 写出好文字的方法:选择合适的模型,评估模型的文风、语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 对 AI 创作的看法:AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活或自身是受害者,作者期望 AI 能力进一步提升以改变每个人的生活。 熊猫 Jay:用 AI+思维模型探索问题的全新解答 案例实践:利用 AI+六顶思考帽做个人 IP 定位。 推荐使用 GPT4,效果更稳定,内容质量更高。包括初始化提示词、回答每顶帽子对应的问题,最终得到答案和建议。 文心 4.0 同样包括初始化提示词、回答每顶帽子对应的问题,并得到答案和建议。 小结:该案例借助六顶思考帽提供不同思考维度,引导全面思考问题。当把思考后的信息输入给 AI 后,能总结出满意的答案和建议。开头提到人的惰性问题,借助 AI 可以更全面剖析个人决策或团队会议中的问题,找到更正确的决策方式。之后,大家可用六顶思考帽+AI 解决困扰自己的问题,无论是个人决策还是团队讨论。
2025-02-13
用Ai进行财务分析的最佳实践
以下是关于用 AI 进行财务分析的最佳实践: 1. 更动态的预测和报告: 生成式 AI 能帮助金融服务团队改进内部流程,简化财务团队日常工作。 可从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。 预测方面,能帮助编写公式和查询,发现模式,为预测建议输入并适应模型。 报告方面,能自动创建文本、图表等内容,并根据不同示例调整报告。 会计和税务方面,能帮助综合、总结并提出可能答案。 采购和应付账款方面,能帮助自动生成和调整合同、订单、发票及提醒。 2. 局限性与挑战: 生成式 AI 输出当前有局限性,在需要判断或精确答案的领域,常需人工审查。 面临的挑战包括使用金融数据训练 LLM,新进入者可能先使用公开金融数据微调模型,现有参与者可利用专有数据,但可能过于保守,新进入者有竞争优势。 模型输出准确性至关重要,金融问题答案需尽可能准确,初期人类常作为最终验证环节。 总之,生成式 AI 为金融服务带来巨大变革,有潜力催生多种优势,但也面临挑战,未来消费者将是最终赢家。
2025-02-08
用Ai进行数据分析的最佳实践
以下是关于用 AI 进行数据分析的最佳实践: 流程: 逻辑流程图如下:SQL 分析中,用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL 后执行,将结果数据传给 GPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论。个性化分析中,用户上传文件,前端解析后传给 GPT 分析数据,后续步骤与 SQL 分析一致。 个性化分析示例: 上传的数据均为假数据,包括游戏 A 流水数据、游戏产品数据、页面事件统计和用户行为数据等。包括单维度数据、多维度数据(折线图、柱状图)。有时 AI 会误将数据项作为维度分析,可输入提示告诉它用哪个字段作为维度,也可描述其他数据信息使分析更准确。 总结和展望: ChatGPT 在数据分析领域应用前景广泛,本文案例与技巧展示了其在提高效率、降低技能门槛和支持决策等方面的优势。但案例分析结果可能简单,接入业务时可定制多种分析模板,增加分析多样性。实际业务中处理大量数据时,除长类型字段限制,要指定允许查询或解析的字段,对结果数据进行两次校验。随着技术进步,相信其将为数据分析带来更多创新和突破。 问题与技巧: SQL 分析: 反复校验是否为 SELECT SQL 语句,不仅因 AI 不完全可控,还因不能相信用户输入,防止恶意操作。 到 AI 分析步骤拼接上下文,提供表结构信息和 SQL 语句,助 GPT 更好理解数据和字段意义,使分析更准确。 针对表结构长类型字段,不允许直接查询,最好告诉 GPT 允许查询的字段或 SQL 函数,使生成可控。 个性化分析: 用户上传数据解析后判断格式是否符合要求,超长可限制截取前面若干项。 前端解析用户上传数据后可直接用于渲染数据图表,无需后端返回。 支持用户补充输入,描述数据、字段意义或作用辅助 AI 分析。遇到多维度数据,GPT 可能误将其他字段作为维度分析,可输入特定提示帮助分析。
2025-02-08
企业管理咨询顾问应用AI辅助工作的最佳实践
以下是企业管理咨询顾问应用 AI 辅助工作的一些最佳实践: 对于企业管理者: 1. AI 辅助决策:在小规模决策中运用 AI 分析工具,如利用其分析客户反馈或市场趋势数据,以此作为决策参考。 2. 员工培训计划:制定 AI 工具使用的培训计划,助力团队成员在日常工作中有效利用 AI。 3. 流程优化:识别公司内可能受益于 AI 自动化的重复性任务,先从一个小流程开始测试 AI 解决方案的效果。 4. AI 伦理和政策:着手制定公司的 AI 使用政策,确保 AI 的应用符合伦理标准和法律要求。 对于商业顾问: 1. 工具服务小型企业:生成式 AI 对于小型企业是一个重要的应用场景,如 Sameday 可接电话并预约,Truelark 能处理短信、电子邮件和聊天等。 2. 特定类型企业的垂直化工具:出现了为特定类型企业工作流定制的工具,如 Harvey 和 Spellbook 帮助法律团队自动化任务,Interior AI 和 Zuma 在房地产行业发挥作用。 无论您属于哪个群体,与 AI 协作是一个学习过程。应从小处着手,保持好奇心和开放态度,将 AI 视为强大的工具而非完全依赖的解决方案。同时,始终保持批判性思维,您会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。
2025-02-06
本人一般用ai语言模型来搜索所需的市场资料,现在想自学更多ai工具以便之后用ai工具发展副业,可以从哪里开始学习与实践
以下是关于您自学更多 AI 工具以发展副业的学习与实践建议: 1. 基础理解:了解大型语言模型的工作原理和局限性,例如它们在数学计算方面主要基于语言理解和生成,而非专门的数学计算设计,可能会在处理简单数学问题时出错。 2. 学习路径: 规划:明确学习目标和步骤。 记忆:记住关键知识和操作方法。 3. 实践操作: 掌握 GPT 的使用:了解 GPT 如 GPT4 的功能和特点,包括其工具选择和行动(Action)机制。 尝试工具:如 Webpilot,它能让 GPT 支持更实时的联网功能,获取网络资源。具体操作是在新建的 GPT 里勾掉 Web Browsing,然后点击添加 Actions(Add actions),再点击 import from URL 并填入相关网址。 4. 就业与应用: 了解人工智能领域的高薪工作,如数据科学家、机器学习工程师等,学习相关技能以增加就业机会。 关注 AI 技术在金融、医疗、制造业等行业的应用,掌握相关技能以拓展副业发展的可能性。 但需要注意的是,学习 AI 有可能赚钱,但不保证每个人都能成功,是否能赚钱还取决于个人的学习能力、实际应用能力、对市场和商业的理解等因素,需要持续学习和实践。
2025-02-03