直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我是初学者,我该如何学习AI知识,如何一步一步的由浅入深的学习呢?

回答

对于初学者学习 AI 知识,由浅入深的学习路径如下:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:新手如何学习 AI?

[title]问:新手如何学习AI?了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

[title]问:新手如何学习AI?学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。

问:新手如何学习 AI?

[title]问:新手如何学习AI?记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

其他人在问
对于AI小白,学习第一步是什么,最重要的是什么,能给个学习计划吗
对于 AI 小白,以下是学习 AI 的建议和学习计划: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果您想快速掌握 Python,可参考:,结合 ChatGPT,不懂的地方都可以提问。
2024-10-16
我是小白,请告诉我如果一步一步制作微信聊天机器人
以下是为您整理的制作微信聊天机器人的步骤: 1. 基于 COW 框架搭建 ChatBot 框架,将多模型塞进微信。张梦飞同学写了更适合小白的使用教程: 。 2. 正式开始前需要知道: ChatBot 相较于在各大模型网页端使用的区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求。 禁止将此操作用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 3. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 4. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等。 5. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 6. 多部署方法:本地运行、服务器运行、Docker 的方式。 7. 服务器配置: 登录宝塔(如果不知道这是什么,移步第一篇教程,这个教程是在第一篇的基础上的进阶版)。 打开终端,接下来的操作在终端进行。 复制粘贴相关命令,进入。如果出现特定样式,则不需要执行第 4 步的命令,直接跳至第 6 步。 (如果出现特定情况,则不需要执行本步,直接跳至第 6 步),下方全部粘贴,运行完后,需要最后再点击一下回车。 粘贴执行,会看到版本号和一串内容。如果有则,表示成功。 粘贴后回车,等待执行。 以下两行依次粘贴并回车。 粘贴执行,执行后会如图需要输入 y,再点击回车确认。执行后,再输入 y 。 粘贴并回车。 输入 1 后点击回车,需要再次输入 1 确认。 按照步骤一步一步进行。下方的操作注意看清选项是什么再输入。如果输入错了,从 clash 命令开始,重新输入。 (获取订阅地址:https://docs.qq.com/doc/p/7768b0032fcf75ee67011195b194056e5f00363e)。 回到“安全”菜单,打开防火墙。
2024-10-05
嗨喽,我刚接触ComfyUI,想从简单的案例开始,一步步挑战更复杂的项目。有没有什么好地方可以找到这种分层次(基础-进阶)的学习案例呢?我想边学边练,这样印象更深刻。
以下是在飞书学习群中可以找到的 ComfyUI 分层次(基础进阶)的学习案例: 基础课程:陈旭常用节点讲解和简单的节点制作、长风归庭基础教程+工作流创建、王蓉🍀 🎈 Wang Easy 基础搭建和转绘、唯有葵花向日晴基础教程,工作流开发,实际应用场景、苏小蕊基础教程、Sophy 基础课程、啊乐福基础课程、塵优秀案例、风信基础课程➕平面设计应用场景、北南基础课程、Damon 基础课程、雪娴_CC 基础课程(从安装开始)、Joey 实时转绘工作流、三思基础教程、晓珍、戴志伟基础课程、Moana 基础教程、Jl 基础教程、kk 基础教程、samuel 基础 进阶课程:ヘヘ阿甘采样器原理与优化、热辣 HuolarrAI 系统课私聊图生视频、咖菲猫咪基础教程/工作流搭建思路/各版本模型使用的优缺点、傅小瑶 Lucky 如何制作多人转绘视频、云尚工作流节点搭建思路、FǎFá 热门节点功能,搭建、森林小羊基本报错解决方式及基础工作流逻辑分析、蜂老六装一百个最新常用插件后如何快速解决冲突问题、阿苏工作流框架设计、aflyrt comfyui 节点设计与开发、老宋&SD 深度解释虚拟环境部署和缺失模型的安装、Liguo 模型训练、郑个小目标针对于某个插件的深入讲解、波风若川报错解决、皮皮 Peter 工作流的设计规划和调优逻辑、Jāy Līn 锦鲤工作流搭建逻辑和原理、K 如何本地部署基础生图参数选择工作流的基本应用、Adai 基础课程、镜生视频、梦飞基础教程、🙋🙋🙋各个节点讲解和参数含义、Mr.大狐🏝报错解决、Duo 多吉~基础课程、渔舟基础课程+工作流搭建思路、乔木船长工作流、☘️基础教程、☘基础教程、工作流设计+典型案例剖析、麒白掌工作流搭建、OutSider 风格迁移、吴鹏基础+工作流搭建、拾光工作流基础搭建从入门到精通、茶浅浅。视频转绘/节点工作流介绍、百废待.新(早睡版)工作流从入门到进阶、电商应用场景、小马哥人物一致性分镜画面生成、C 张工作流搭建+电商落地应用、uui 视频风格迁移、你头发炸了基础教程搭建思路、阿头实战案例分享
2024-09-24
如要学习使用AI,主要的用法是输入文字生成图片,再进一步生成中短视频,应该使用哪些工具,如何进行?
如果您想学习使用 AI 输入文字生成图片,再进一步生成中短视频,可以使用以下工具和按照以下步骤进行: 工具: 1. ChatGPT(https://chat.openai.com/)+ 剪映(https://www.capcut.cn/):ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频所需场景、角色、镜头等要素,并生成对应素材和文本框架,实现从文字到画面的快速转化。 2. PixVerse AI(https://pixverse.ai/):在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory(https://pictory.ai/):AI 视频生成器,用户提供文本描述即可生成相应视频内容,无需视频编辑或设计经验。 4. VEED.IO(https://www.veed.io/):提供 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划视频内容。 5. Runway(https://runwayml.com/):能将文本转化为风格化的视频内容,适用于多种应用场景。 制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-09-18
ai学习第一步
学习 AI 的第一步可以从以下几个方面入手: 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 对于中学生学习 AI: 从编程语言入手学习,例如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,体验 AI 的应用场景,也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及学习 AI 在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 在医疗保健领域,AI 要像人类一样学习产生真正的改变,需要通过学校教育和经验获得有助于在复杂情况下确定最佳答案的直觉。当前的先进神经网络架构通过研究成千上万个标记过的数据点来学习,但应通过使用彼此堆叠的模型来训练 AI,例如先训练生物学的模型,然后是化学的模型,再添加特定于医疗保健或药物设计的数据点,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。
2024-09-10
可以辅助我写出一步100万字左右的小说吗
目前利用 AI 辅助创作小说是可行的,但要直接生成一部 100 万字左右的完整小说还存在一定困难。例如,有人在小说大赛中让 GPT4 做修改,一开始有模有样,但很快暴露出记性不好的缺点。求助 Claude 时,关键情节还被改没了。 另外,在利用 Prompt 逆向工程让 ChatGPT 模仿作家风格时,有一些写作技巧,如描述特定氛围或情境作为开头引入主题,使用长句和复合句构建叙述,适当使用比喻和排比等修辞手法,描述具体事例和细节支持观点或论点,尽量用主动语态,适度使用连接词,每个段落具有逻辑性并为后续情节或转折做铺垫,语气正式客观并根据主题定情感色彩,使用合适标点符号强调节奏和情感,结尾在高潮或转折点留给读者深思。 但总体来说,完全依靠 AI 生成一部 100 万字的小说还不太现实,可能需要您与 AI 工具的多次交互和修改完善。
2024-09-07
我该怎么用AI让我的短视频文案写的更好
以下是一些利用 AI 让短视频文案写得更好的方法: 1. 对于像《AI 你·南京》AIGC 城市宣传 MV 这类项目,若打算采用旁白朗诵方式,需对文案有较高要求。直接让 GPT 写文案可能效果平淡,应更具体地提出需求,例如可利用 360 浏览器字幕提取功能捕捉相关视频文案,再让 kimi 和 GPT 进行分析和学习,理解目标写作风格并融会贯通。写作时可同时对比 kimi 和 GPT 的结果,在中文理解和写作能力上,kimi 表现更突出。完成文案后可稍作调整,使其更顺口,如让 kimi 将“钟山风雨起苍黄,江南佳丽地,金粉六朝都”改为“钟山风雨起苍黄,古都烟云梦犹长”。 2. 以美妆行业为例,在电商带货本地生活方面,表明身份、描述需求并提出回答要求,用 ChatGPT 生成短视频选题文案和短视频文案。之后按照以下步骤生成虚拟数字人短视频:第一步,打开特定网站(需科学上网);第二步,在右侧文字框输入 ChatGPT 生成的内容,选择想要的头像、不同国家和声音;第三步,点击“Create Video”等待生成。生成后结合产品讲解即可发布用于视频带货。 3. 对于文案创作到一定阶段,如为朗诵配音确定视频时长和分镜数量时,若 AI 语音效果不佳,可考虑让 AI 进行歌词改写和歌曲取名,如将写好的文字复制给 AI,并定义歌词风格和时间长度。对比 kimi 和 GPT 的结果后进行修改定稿。
2024-10-28
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。并且得到的结果必须与原文所表达的内容不出现差错,翻译结果读起来流畅自然
很抱歉,知识库中的内容没有直接针对您如何翻译日漫以获得更自然流畅且准确结果的相关指导。但一般来说,要实现这样的翻译效果,您可以从以下几个方面考虑: 1. 深入理解日漫的文化背景、角色性格和情节发展,以便更好地把握原文的“意”。 2. 注重上下文的连贯和逻辑,不仅仅是逐句翻译,而是从整体上把握语义。 3. 避免过于拘泥于原文的句式和词汇,灵活运用目标语言的表达方式。 4. 多参考优秀的日漫翻译作品,学习他人的翻译技巧和风格。 5. 对于一些特定的文化元素或术语,要进行适当的解释或转换,以确保目标读者能够理解。
2024-10-27
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。还有当翻译时ai遇到比较敏感的话题通常会拒绝回答或者委婉的回答,我不想这样,
在让 AI 翻译日漫时,如果您希望得到更接近正常人说话的翻译结果,而非简单的直译,您可以这样提问:“请以符合自然语言表达习惯和逻辑的方式,为我翻译这段日漫内容,注重语言的流畅性和生动性,避免生硬的直译。” 关于 AI 遇到敏感话题可能拒绝回答或委婉回答的情况,如果您不想这样,需要注意的是,AI 遵循一定的道德和法律规范,对于确实不适合或不被允许处理的敏感内容,强制要求其回答是不可取且不恰当的。但如果您认为某些话题并非真正敏感,只是被误判,您可以尝试更清晰准确地描述相关内容,以减少误解的可能性。
2024-10-27
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译
要让日漫的翻译结果更接近正常人说话而不是简单直译,您可以这样提问: 1. 请在翻译时充分考虑上下文和角色的情感,使译文更符合日常交流的表达方式。 2. 能否以符合中文语言习惯和文化背景的方式进行翻译,避免生硬的直译? 3. 翻译过程中请注重语言的流畅性和自然度,让译文更贴近日常口语。 4. 麻烦在翻译时融入适当的语气和情感色彩,使译文更生动形象,像正常人说话一样。
2024-10-27
作为新手,我该如何学习AI技术
作为新手学习 AI 技术,可以从以下两个方向入手: 偏向技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:如监督学习、无监督学习、强化学习等。 深度学习:涵盖神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:涉及语言模型、文本分类、机器翻译等。 计算机视觉:包含图像分类、目标检测、语义分割等。 前沿领域:例如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:进行论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:掌握 Python、C++等。 机器学习基础:如监督学习、无监督学习等。 深度学习框架:熟悉 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:做好数据采集、清洗、特征工程等。 模型部署:关注模型优化、模型服务等。 行业实践:参与项目实战、案例分析等。 同时,数学和编程基础是必不可少的。还需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 以下是一些关于 AI 技术原理的基础知识: 概念:生成式 AI 生成的内容称为 AIGC。 相关技术名词: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-10-25
我该如何利用文心一言、kimi等已有的大语言模型去作个性化训练?
已有的大语言模型如文心一言、kimi 等通常不支持个人进行个性化训练。 大语言模型的相关知识包括: 国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域。 大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。 Transformer 是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联。 大模型可能因错误数据导致给出错误答案,优质数据集对其很重要。 Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。 Fine tuning 是基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 学习大型语言模型(LLM)的开发是一个系统性的过程,需要涵盖多个方面的知识和技能: 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。 理解 Transformer 和 BERT 等模型原理,掌握相关论文。 学习 LLM 模型训练和微调,包括大规模文本语料预处理,使用预训练框架,以及微调 LLM 模型进行特定任务迁移。 掌握 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,以及模型服务化、在线推理、多语言支持等。 进行 LLM 工程实践和案例学习,结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态。 机器学习是人工智能的一个子领域,深度学习是机器学习的一个子领域,大语言模型是深度学习在自然语言处理领域的应用之一,具有生成式 AI 的特点。
2024-10-18
生成式AI和AIGC是什么,有什么区别和联系?
生成式 AI(Generative AI)是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。目前典型的生成式 AI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。 AIGC(人工智能生成内容)指利用生成式 AI 创建的内容,如图像、视频、音频、文本和三维模型。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域有着广泛的应用。 生成式 AI 和 AIGC 的联系在于:AIGC 实际上是生成式 AI 的应用结果。 区别在于:生成式 AI 侧重于技术本身,强调生成新内容的能力;AIGC 侧重于生成的内容,是生成式 AI 所产生的具体成果。
2024-11-04
genAI是什么
Gen AI(Generative AI)即生成式人工智能,是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。 生成式 AI 是人工智能的一个细分流派,在 80 年的 AI 发展史中,它相较之前的所有 AI 实现方法有了根本性、跨时代的进步。在某些细分场景应用中,甚至给人通过了图灵测试的感受。 生成式 AI 和 AIGC 密切相关,利用 Gen AI 创建的内容即 AIGC(AIGenerated Content)。 生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前我国对 AIGC 的监管框架由多部法律法规构成,并形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成等,在多个领域展现出广泛的应用前景。
2024-11-04
AI是什么时候发展起来的
AI(人工智能)的发展最早可以追溯到上世纪。1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1945 年,Alan Turing 就考虑用计算机来模拟人脑,设计了 ACE 来模拟大脑工作。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。1994 年,一组 52 名心理学家签署了有关智能科学的广泛定义的社论。2000 年代初,“通用人工智能”(AGI)一词流行起来。2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发了全球的 AI 浪潮。
2024-11-04
寻找中文AI 可以对话
以下为您推荐一些可以进行中文对话的 AI 工具: 1. Character.ai:更注重人格属性,试图满足社交、情感、陪伴等需求。 2. TXYZ:是一个帮助大家搜索、查询专业文献并可以进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。它是唯一和预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 TXYZ 的按钮。用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到自己想要的答案和内容,在对话中还能提供论文参考,给出可信的背书。但内容由 AI 大模型生成,请仔细甄别。 此外,关于创建能够进行对话的聊天机器人,API 非常擅长与人类甚至自己进行对话。关键在于告诉 API 它应该如何行事,然后提供一些例子。还可以给 API 赋予一个身份,例如让其作为 AI 助手、生物学研究科学家等回答。API 作为一种语言模型,还能够进行文本补全、转换和翻译。
2024-11-04
寻找能人机对话的AI工具
以下为您推荐一些能人机对话的 AI 工具: 1. Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,可高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种应用程序使用,能将文本转换为音频文件。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,是一套服务,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 此外,在游戏领域,也有一些与生成式 AI 相关的应用: 1. 许多初创公司正考虑使用生成性 AI 来创建可互动的可信角色,如 Charisma.ai(https://charisma.ai/)、Convai.com(https://convai.com/)、Inworld.ai(https://inworld.ai/)等,旨在为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具以便创作者给角色设定目标。 2. 目前成功的生成性 AI 工具之一是 Runwayml.com(https://runwayml.com/),它在一个单一的软件包中汇集了一系列广泛的创作者工具。但目前还没有专为视频游戏服务的类似一体化平台。 内容由 AI 大模型生成,请仔细甄别。
2024-11-04
能够制作小红书封面的ai工具
以下是一些能够制作小红书封面的 AI 工具: 1. Hugging Face x 小红书 InstantID:体验地址为 https://huggingface.co/spaces/InstantX/InstantID ,可以一起晒“创意新春照”。 2. 真人转动漫春节特辑 YOYO:体验地址为 https://www.yoyo.art/activity ,可以和喜欢的人、宠物一起拜大年,也可以试试文生视频。 3. AI 写春联:开源地址为 https://github.com/YunYouJun/aisfc ,体验地址为 https://aisfc.yunyoujun.cn/ 。 4. AI 红包封面:开源地址为 https://aicover.design ,这是一个完整的 web 项目,包括 nextjs 全栈开发、tailwindcss 前端模板、supabase 数据存储、dalle3 图片生成、clerk 谷歌登录、aws s3 图片上传、stripe 支付等。 此外,还有“小红书文案专家”BOT 可以辅助创作者生成小红书文案,节约文字内容创作时间。应用链接为 https://www.coze.cn/s/ij5C6LWd/ 。 在 AI 产品案例和投稿方面,有以下自媒体相关的案例: 1. 保姆级攻略:小白也能用 Ai 做一部电影大片,前往查看👉 。 2. AIGC 运营:小红书爆款概率预测分析,前往查看👉 。 3. 实践:群总结工具,前往查看👉 。 4. 创作:换脸应用,前往查看👉 。 5. 语音:语音转文字,推荐 OpenAI 的 wishper,前往查看👉 。
2024-11-04
帮我写一段120字的英文短文,回答这个问题:讨论终身学习的重要性
Lifelong learning is of great significance. It enables us to keep up with the everchanging world and acquire new skills and knowledge. It broadens our horizons, enhances our adaptability, and enriches our lives. It also helps us stay mentally active and engaged, promoting personal growth and development throughout our lives.
2024-11-04
有没有用于提升学习效率的提示词
以下是一些用于提升学习效率的提示词: 概括:要求对较长内容进行简要概括,例如“请为这篇长篇科技文章提供一个简短的概要。” 讲故事:要求使用讲故事或叙事技巧,比如“请用一个人物的故事来展示运动如何改变了他们的生活。” 优缺点:要求评估主题的优缺点,像“分析使用电子书和纸质书的优缺点。” 利弊分析:对主题的利弊进行分析,例如“分析远程工作的利与弊。” 问题解决:针对特定问题提供解决方案或建议,比如“请提供几个有效的解决睡眠问题的方法。” 最佳实践:要求提供关于某主题的最佳实践或指南,例如“请提供一份关于如何高效学习的最佳实践指南。” 时间线:要求提供事件或发展的时间线,比如“请为互联网的发展提供一个简要的时间线。” 行动呼吁:要求明确的行动呼吁或后续步骤,例如“在关于环保的文章结尾提出具体的环保行动建议。” 分步指南:要求提供过程的分步指南或说明,比如“提供一个关于如何制作自制面包的分步指南。” 历史背景:要求考虑历史背景或背景,例如“在写关于量子计算的文章时,谈论量子计算的历史发展。” 对比:要求比较和对照不同的观点或概念,比如“请比较太阳能和风能作为可再生能源的优缺点。” 教训:要求讨论从特定情况中得到的教训,例如“分享一个关于企业失败的案例,并从中提炼出的教训。” 此外,还有以下相关的提示词: 百晓生:作为世上最好的研究和解释代理,以各种可能的方式以中文解释主题,使其易于理解。 里程碑大师:充分理解用户想学习的技术,并从易到难拆分出学习阶段里程碑的任务。
2024-11-04
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
小白如何学习ai使用呢
对于小白学习 AI 的使用,以下是一些建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于技术纯小白用 AI 开发真正的应用,您可以参考以下经验: 1. 从小白学代码,看 AI 时代人类导师和硅基助教的协作之道: 像案例中作者的女儿,在 Claude 和作者的帮助下,用 Unity 开发了一个 RPG 小游戏。起初作者不相信纯小白能通过 AI 搞定 Unity 程序,但女儿通过让 Claude 教她做一个简单任务,明白了 Unity 里的基本概念。 开发过程有顺利也有挫折,挫折原因包括问题描述不清楚、AI 给的方案复杂、配置错误等。这让作者意识到小白需要通过 AI 能直接搞定的小项目,来先学明白背后的原理,在此基础上才能开发复杂项目。最好有人类导师,一开始把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。 2. 基础小任务: 推荐从一个最最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑。这样可以学会必备的调试技能。 如果用的是 o1mini,可以在 prompt 最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果 windows 机器则是 create.cmd),足够勤勉的 o1mini 会为您生成一段超级长的代码,并给出提示,您只需要复制粘贴并执行,一次性生成十多个目录和文件,超方便。 3. 明确项目需求: 通过和 AI 的对话,来逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,这样的文档会包含影响技术方案选择的细节,比直接给 AI 一段口头的需求描述要准确得多。在后续开发的时候每次新起一个聊天就把文档发给 AI 并告知您现在在做第几点功能,会非常方便。
2024-11-04
AI新手在WaytoAGI怎么入手学习AI并能获得现金收入
对于 AI 新手在 WaytoAGI 入手学习 AI 并获得现金收入,以下是一些建议: 学习 AI 有可能赚钱,但不保证每个人都能成功。人工智能领域有很多高薪工作,如数据科学家、机器学习工程师等,掌握相关技术可在这些岗位获得不错收入,且 AI 技术在各行业应用广泛,掌握技能能增加就业和职业发展机会。 然而,能否赚钱取决于多种因素,包括个人学习能力、实际应用能力、对市场和商业的理解等。仅学会基础知识可能难以在竞争中脱颖而出,需要持续学习和实践。 对于新手,【野菩萨的 AIGC 资深课】是不错的选择。这门课程由工信部下属单位【人民邮电出版社】开设,是市面上值得推荐的课程之一,也是全网技术更新最快的课程。课程涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识,无论新手还是进阶者都适用。 总之,新手要在 AI 领域获得现金收入,不仅要选对课程深入学习,还要不断提升自身能力,结合市场需求进行实践。
2024-11-04
从哪个部分开始学习ai技术
对于新手学习 AI 技术,建议您从以下几个方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 如果您想了解 AI 的技术历史和发展方向,以及目前最前沿的技术点,以下是一些学习路径: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-11-04