直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI模型

回答

以下是关于 AI 模型的相关信息:

  • OpenAI API 由多种具有不同功能和价位的模型提供支持,还可通过微调针对特定用例对原始基本模型进行有限定制。具体模型包括:
    • GPT-4 Beta:一组改进 GPT-3.5 的模型,能理解和生成自然语言或代码。
    • GPT-3.5:一组改进 GPT-3 的模型,能理解并生成自然语言或代码。
    • DALL·E Beta:能在给定自然语言提示的情况下生成和编辑图像的模型。
    • Whisper Beta:能将音频转换为文本的模型。
    • Embeddings:一组能将文本转换为数字形式的模型。
    • Codex Limited Beta:一组能理解和生成代码的模型,包括将自然语言转换为代码。
    • Moderation:能检测文本是否敏感或不安全的微调模型。
    • GPT-3:一组能理解和生成自然语言的模型。
  • OpenAI 于 9.12 发布新模型,开发了一系列旨在花更多时间思考后再做出响应的新 AI 模型,能推理完成复杂任务并解决更难问题。已发布该系列在 ChatGPT 和 API 中的第一个,这是一个预览,期待定期更新和改进,还包括下一次更新的评估,目前正在开发中。
  • 大模型与当下智能语音技能的 NLU 存在本质差别。语音技能 NLU 是通过一系列规则、分词策略等训练而成,运作逻辑规律可观测,具有 if-else 式逻辑性。而大模型凭借海量数据在向量空间中学习知识的关联性形成,运作逻辑难以观测,脱离了 if-else 的层面。汪华老师认为此次 AI 变革量级 100%能抵达与移动互联网同一级别,50%有可能发展至与蒸汽机出现同量级,能否到达 AGI 尚不明确。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

模型(Models)

[title]模型(Models)[heading2]概述OpenAI API由具有不同功能和价位的多种模型提供支持。您还可以通过[微调(fine-tuning)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf),针对您的特定用例对我们的原始基本模型进行有限的定制。|模型|描述|<br>|-|-|<br>|[GPT-4](https://platform.openai.com/docs/models/gpt-4)Beta|一组改进GPT-3.5的模型,可以理解和生成自然语言或代码|<br>|[GPT-3.5](https://platform.openai.com/docs/models/gpt-3-5)|一组改进GPT-3的模型,可以理解并生成自然语言或代码|<br>|[DALL·E](https://platform.openai.com/docs/models/dall-e)Beta|可以在给定自然语言提示的情况下生成和编辑图像的模型|<br>|[Whisper](https://platform.openai.com/docs/models/whisper)Beta|可以将音频转换为文本的模型|<br>|[Embeddings](https://platform.openai.com/docs/models/embeddings)|一组可以将文本转换为数字形式的模型|<br>|[Codex](https://platform.openai.com/docs/models/codex)Limited Beta|一组可以理解和生成代码的模型,包括将自然语言转换为代码|<br>|[Moderation](https://platform.openai.com/docs/models/moderation)|可以检测文本是否敏感或不安全的微调模型|<br>|[GPT-3](https://platform.openai.com/docs/models/gpt-3)|一组可以理解和生成自然语言的模型|

OpenAI 新模型9.12发布:OpenAI o1-WaytoAGI整理

[title]OpenAI新模型9.12发布:OpenAI o1-WaytoAGI整理[heading1]OpenAI o1-previewWe've developed a new series of AI models designed to spend more time thinking before they respond.They can reason through complex tasks and solve harder problems than previous models in science,coding,and math.我们开发了一系列新的AI模型,旨在花更多时间思考,然后再做出响应。他们可以推理完成复杂的任务并解决比以前的科学、编码和数学模型更难的问题。Today,we are releasing the first of this series in ChatGPT and our API.This is a preview and we expect regular updates and improvements.Alongside this release,we’re also including今天,我们发布了ChatGPT和我们的API中该系列的第一个。这是一个预览,我们期待定期更新和改进。除了此版本,我们还包括[evaluations](https://openai.com/index/learning-to-reason-with-llms/)for the next update,currently in development.[对](https://openai.com/index/learning-to-reason-with-llms/)下一次更新的评估,目前正在开发中。

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

在深入了解了AI的运作原理,并盘了众多当前市面上AI的落地产品之后,我们不妨重新回到最开始的问题。此次AI大模型究竟引发了怎样的变革?在思考这个问题之前,我想先分享下去年刚接触大模型时,困扰我的一个问题。即大模型与当下的智能语音技能的NLU存在什么差异?此前,我也曾涉足过一些语音产品的设计逻辑,知道语音技能链路其实就是把声音转为ASR,再对文本进行NLU理解,然后映射到对应的语音技能表中,最后让程序依据相应的语音技能指令完成逻辑。乍看起来,大模型能实现的,通过语音技能似乎也能达成,那我们引入大模型的意义在哪里呢?抱着这样的疑问,我尝试去理解了大模型的原理。当我在初步理解大模型的原理之后,我发现二者还是存在本质性的差别的。差别在于,后者的语音技能NLU仅是通过一系列规则、分词策略等训练而成的产物。而且NLU的运作逻辑规律都是可观测的,具有if-else式的逻辑性。而大模型,则是凭借海量的数据,在向量空间中学习知识的关联性从而形成的,其运作逻辑难以观测,已然脱离了if-else的层面。所以,我们再度审视这个问题,此次的AI变革到底带来了什么?汪华老师在前不久的分享中,对于此次AI变革的量级提出了观点:他认为这次AI的变革量级,100%能够抵达第一个阶段,即与移动互联网处于同一级别;50%有可能发展至第二个阶段,即与蒸汽机的出现同量级;至于能否到达第三个阶段,即AGI,尚不明确。在这一点上,我的看法与他一致。因为我觉得,AI此次带来的变革,已然脱离了传统互联网基于if-else的最底层逻辑,这几乎等同于重塑了互联网,这不就相当于蒸汽机级别般的变革吗?

其他人在问
如何优化ai提示词
优化 AI 提示词可以采用以下方法: 1. 明确具体的描述:使用更具体、细节的词语和短语,避免过于笼统。 2. 添加视觉参考:在提示词中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:如分辨率、比例等,避免 AI 产生意料之外的输出。 6. 分步骤构建提示词:将复杂需求拆解为逐步的子提示词,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、有效的范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,并根据输出效果反馈持续优化完善。 此外,还有样例驱动的渐进式引导法,其核心要点在于充分发挥 AI 自身的逻辑分析以及抽象总结能力,主动从用户提供的样例表象中总结出方法论。用户只需对 AI 提供的方法论正确与否进行判断,零星、分散地提出意见,就能推动 AI 总结出更优质的内容生成方法与要求。 在长对话中,特别是使用渐进式引导法时,由于可能触碰到 LLM 的上下文长度限制,导致 AI 遗忘早期内容影响输出质量,所以需要引入“提示词递归”的概念与方法。具体步骤如下: 1. 初始提示:开始对话时使用清晰、具体的初始提示。 2. 定期总结:在对话进行中,定期总结已讨论的关键点。 3. 重新引入:将总结的信息重新引入到新的提示中。 4. 细化和拓展:基于之前的回答,逐步细化或拓展问题。 5. 验证和优化:确保新的提示词在不同情况下都能引导 AI 生成高质量内容。
2024-11-04
ai 把图片上的文字转换成繁体字
以下是关于将图片上的文字转换成繁体字的相关信息: 可以参考 Nenly 同学的视频教程,步骤如下: 将中文字做成白底黑字,存成图片样式。 使用文生图的方式,使用大模型真实系,如作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 输入关键词,如奶油的英文单词“Cream + Cake”(加强质感),反关键词“Easynegative”(负能量),反复刷机,得到满意的效果即可。 同理可输出 C4D 模型,可自由贴图材质效果,如 3d、blender、oc rendering。 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 打开高清修复,分辨率联系 1024 以上,步数:29 60。 还提到 https://firefly.adobe.com/也可以,但 stable diffusion 感觉可操控性更强,尤其是中文字体。 另外,还有一些相关的 tips: 给 AI 多一点空间,增加图片和文字之间的留白空间,以便给 AI 更多的发挥空间。如果太挤的话,AI 可能无法完全发挥效果。一模一样的关键词,出来的效果也可能不一样。 做字体的时候 Seg controlnet 模式比较容易出现字躺在地上。 一个整体偏粉色的图。出了一张主体很好看但是图背景比较脏,就控制随机种子,在负向关键词中加入不要蓝色和灰色。
2024-11-04
国内可用的修改校对WORD的ai软件
以下是一些国内可用的修改校对 WORD 的 AI 软件: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。
2024-11-04
可以自动修改word的AI
以下是一些可以自动修改 Word 的 AI 工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。但需注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-04
AI生成ppt有哪些工具
以下是一些常见的 AI 生成 PPT 的工具: 1. MindShow:具有一定的功能和专业模板,适合追求高度专业和个性化展示的群体。 2. 爱设计:有其独特的特点和适用场景。 3. 闪击:能帮助用户快速高效地完成 PPT 设计。 4. Process ON:是一款可用的工具。 5. WPS AI:也是生成 PPT 的选择之一。 目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作: 1. AI 生成 PPT 大纲。 2. 手动优化大纲。 3. 导入工具生成 PPT。 4. 优化整体结构。 推荐您参考以下 2 篇市场分析文章: 1. 《》 2. 《》 同时提醒您,内容由 AI 大模型生成,请仔细甄别。
2024-11-04
帮我写一段200字的英文,回答这个问题:Discuss the impact of technology on daily life.
Technology has had a profound impact on daily life. It has made communication faster and more convenient, allowing people to connect with others around the world instantly. Online shopping has transformed the way we purchase goods, offering a wide range of choices and doorstep delivery. Education has also been revolutionized, with online courses and educational apps accessible to all. Moreover, in healthcare, advanced technologies have improved diagnosis and treatment options. However, it has also brought challenges such as information overload and privacy concerns. Overall, technology is a doubleedged sword that has both enhanced and complicated our lives.
2024-11-04
开源大模型ChatGLM 系列有哪些版本
ChatGLM 系列的开源版本包括: ChatGLM36B:第三代 ChatGLM 对话模型,采用全新设计的 Prompt 格式,原生支持工具调用、代码执行和 Agent 任务等复杂场景。 ChatGLM36Bbase:第三代 ChatGLM 基座模型,采用更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的基础模型中性能较强。 ChatGLM36B32k:第三代 ChatGLM 长上下文对话模型,在 ChatGLM36B 的基础上进一步强化了对长文本的理解能力,能处理最多 32K 长度的上下文。
2024-11-04
智谱清言的开源大模型哪些种类
智谱清言的开源大模型种类包括: 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,具备 GUI 图像的 Agent 能力。代码链接:、始智社区。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩优异。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 RDM:Relay Diffusion Model,级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。代码链接:。 此外,智谱清言是智谱 AI 和清华大学推出的大模型产品,基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上,推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。智谱清言在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。总体来看,智谱清言更擅长专业能力,但在代码能力上还有一定优化空间,知识百科与其他第一梯队模型相比稍显不足。综合来看,智谱清言是一个很有竞争力的大模型。可应用的场景相对广泛,根据 SuperCLUE 测评结果,优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。另外在较复杂推理应用上的效果会比较不错,在广告文案、文学写作方面也是一个很好的选择。
2024-11-04
通义千问开源大模型种类
通义千问开源了多种大模型,其中 Qwen 2 模型性能超越目前所有开源模型和国内闭源模型。以下是相关信息: 性能突破:在中国大模型领域,开源模型显示出超越最强闭源模型的势头,从性能到生态都具备了媲美美国 Llama3 的能力。开源模型用实力证明其正在变得越来越强。 开源历程:2023 年 8 月,阿里云成为国内首个宣布开源自研模型的科技企业,推出通义千问第一代开源模型 Qwen;2024 年 2 月,1.5 代开源模型 Qwen1.5 发布;不到 4 个月后,Qwen2 开源。不到一年时间,通义先后开源数十款不同尺寸的模型,包括大语言模型、多模态模型、混合专家模型、代码大模型。 性能特点:Qwen 2 包括 5 种尺寸的预训练和指令调整模型,如 Qwen20.5B、Qwen21.5B、Qwen27B、Qwen257BA14B 和 Qwen272B。除英语和中文外,还接受过另外 27 种语言的数据训练,在大量基准评估中表现出最先进的性能,代码和数学性能显著提高,全面超越 llama3,增大了上下文长度支持。相比 Qwen1.5,Qwen2 实现了整体性能的代际飞跃。在国际权威测评中,Qwen272B 获十几项世界冠军,超过美国的 Llama3。 体验和下载:Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已经上线中国大语言模型评测竞技场 Compass Arena,所有人都可以登录体验 Qwen2 的性能,或者选择 Qwen2 模型与其他大模型进行对比测评。测评地址为。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 您还可以通过玉宝搞的 LLM 在线评估(https://www.llmrank.cn/)查看国内各个闭源大模型的 HUMANEVAL 测评得分,并与 QWEN2 对比。
2024-11-04
联想异能者配置i5-12450八核,32GB内存,1TB固态硬盘,用于本地部署开源大模型可以部署哪些开源大模型
以下是一些您的联想异能者配置(i512450 八核,32GB 内存,1TB 固态硬盘)可部署的开源大模型及相关信息: ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快。ComfyUI 最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,所以最好把软件和模型部署在 SSD(固态硬盘)上。 截止 2024 年 5 月,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。一些知名品牌包括微软第 11 代 Surface Pro、微星 Creator/Workstation 系列、技嘉 Aero/Aorus 系列、戴尔 Precision 移动工作站、惠普 ZBook 移动工作站、联想 ThinkPad P 系列。这些笔记本通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存(32GB 以上)和高速固态硬盘,还通常预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具。但这类高端 AI 笔记本价格相对较高,通常在 2000 美元以上。用户可根据自身需求和预算选择合适型号,并关注散热、续航等实际使用体验。 请注意,配置上不封顶,您可根据自己的需求和预算来选择。
2024-11-04
用户体验设计与大模型的关系
用户体验设计与大模型密切相关。 在构建基于大模型的应用方面: 开发大模型应用复杂,涉及众多步骤和环节,包括框架选择、提示词设计等。 提示词的精心设计和调试至关重要,直接影响模型输出质量和应用效果。 构建有效的大型语言模型应用需要遵循一系列要点,如进行工程化、选择合适框架、了解业务需求、设计提示词、遵守安全和伦理标准、测试迭代、持续维护更新等。 在 AI 战场的发展趋势方面: 2023 年认为训练最好的模型就能吸引用户,但 2024 年大量消费者 AI 应用将通过提供最佳用户体验而非单纯提升模型性能来竞争,大模型可作为差异化优势之一,但老式护城河仍可能决定长期赢家。 关于大模型的道德观念: 大型语言模型本身不具有真正的道德观念或意识,它们是通过大量数据训练模拟语言统计规律的。 开发者和研究人员会采取多种方法确保模型输出符合社会道德和伦理标准,如数据清洗、算法设计、制定准则、保持透明度、用户反馈、持续监控、人工干预、教育和培训等,但这仍是复杂且持续的挑战。
2024-11-04
有没有对监控图像清晰度处理较好的模型
以下为一些对监控图像清晰度处理较好的模型及相关方法: 1. 【SD】超清无损放大器 StableSR: 需要使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 还有一个 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。 测试表明,StableSR 的放大效果在处理一些图像时,能够较好地保留人物细节,如眼神更锐利等。 2. 【SD】最强控制插件 ControlNet 的 tile 模型: 可用于高清修复小图,如将分辨率不高的食物图片进行高清化处理。 能修复和增加图像细节,如处理细节不足或结构错误的小屋图像。 3. 图像高清修复放大流程: 整个流程分为输入原始图像、修复图像、放大并重绘图像三部分。 图像输入时不建议上传大分辨率图片,以免处理时间过长。 图像高清修复时,Checkpoint 大模型使用 Iceclear/StableSR,并搭配 Stable SR Upscaler 模型,提示词应包含想要达到的目的内容。 图像高清放大时,用 realisticVision 底膜,使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升画面细节感,然后用合适的高清放大模型进行二次放大。
2024-11-04