Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何优化ai提示词

Answer

优化 AI 提示词可以采用以下方法:

  1. 明确具体的描述:使用更具体、细节的词语和短语,避免过于笼统。
  2. 添加视觉参考:在提示词中插入相关图片参考,提高 AI 理解意图和细节要求的能力。
  3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整整体语气和情感色彩。
  4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。
  5. 增加约束条件:如分辨率、比例等,避免 AI 产生意料之外的输出。
  6. 分步骤构建提示词:将复杂需求拆解为逐步的子提示词,引导 AI 先生成基本结构,再逐步添加细节和完善。
  7. 参考优秀案例:研究 AI 社区流行的、有效的范例,借鉴写作技巧和模式。
  8. 反复试验、迭代优化:多次尝试不同写法,并根据输出效果反馈持续优化完善。

此外,还有样例驱动的渐进式引导法,其核心要点在于充分发挥 AI 自身的逻辑分析以及抽象总结能力,主动从用户提供的样例表象中总结出方法论。用户只需对 AI 提供的方法论正确与否进行判断,零星、分散地提出意见,就能推动 AI 总结出更优质的内容生成方法与要求。

在长对话中,特别是使用渐进式引导法时,由于可能触碰到 LLM 的上下文长度限制,导致 AI 遗忘早期内容影响输出质量,所以需要引入“提示词递归”的概念与方法。具体步骤如下:

  1. 初始提示:开始对话时使用清晰、具体的初始提示。
  2. 定期总结:在对话进行中,定期总结已讨论的关键点。
  3. 重新引入:将总结的信息重新引入到新的提示中。
  4. 细化和拓展:基于之前的回答,逐步细化或拓展问题。
  5. 验证和优化:确保新的提示词在不同情况下都能引导 AI 生成高质量内容。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何润色或优化 Prompt?

[title]问:如何润色或优化Prompt?优化和润色提示词(Prompt)对于提高文生图、对话等AI模型的输出质量非常重要。以下是一些可以尝试的方法:1.明确具体的描述使用更具体、细节的词语和短语来描述你想要表达的内容,而不是过于笼统的词语。这样AI更容易准确理解你的需求。1.添加视觉参考在Prompt中插入相关的图片参考,这可以显著提高AI理解你的意图和细节要求的能力。1.注意语气和情感根据需求,用合适的形容词、语气词等调整Prompt的整体语气和情感色彩,让AI能生成出期望的语境和情绪。1.优化关键词组合尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的Prompt描述方式。1.增加约束条件为避免AI产生意料之外的输出,可以在Prompt中添加限制性条件,如分辨率、比例等。1.分步骤构建Prompt将复杂的需求拆解为逐步的子Prompt,引导AI先生成基本结构,再逐步添加细节和完善。1.参考优秀案例研究AI社区流行的、被证明有效的Prompt范例,借鉴其中的写作技巧和模式。1.反复试验、迭代优化通过多次尝试不同的Prompt写法,并根据输出效果反馈持续优化完善,直至达到理想结果。总之,编写高质量Prompt需要不断实践、总结经验,熟悉AI模型的能力边界。保持开放的思维尝试创新的描述方式也很有帮助。内容由AI大模型生成,请仔细甄别。

一泽 Eze:样例驱动的渐进式引导法——利用 AI 高效设计提示词 ,生成预期内容

在上述案例中,该方法的核心要点在于,充分发挥AI自身的逻辑分析以及抽象总结能力,主动从用户所提供的样例表象中总结出方法论。用户只需对AI提供的方法论正确与否进行判断,零星、分散地提出自身的意见,便能够推动AI不断进行反思,总结出更为优质的内容生成方法与要求,进而为AI提示词爱好者提供一种门槛较低的提示词生成途径。可以说,在某些特定场景下,样例驱动的渐进式引导法,的确能够让AI主动理解我们的需求,且不再依赖Prompt工程师的知识洞察和思维素质,自动化地提炼出高可用的提示词🥳。[heading2]一点补充:提示词递归[content]LLM具有上下文长度限制。在长对话中,特别是使用渐进式引导法时,由于对话轮数的增加(用户输入+ AI回复的累积),可能会触碰到长度限制。这可能导致AI遗忘早期的对话内容,进而影响输出质量。所以需要引入“提示词递归”的概念与方法。我们在长对话中定期总结和重新引入关键信息,确保AI不会遗忘重要的上下文。具体步骤如下:1.初始提示:开始对话时使用清晰、具体的初始提示。2.定期总结:在对话进行中,定期总结已讨论的关键点。3.重新引入:将总结的信息重新引入到新的提示中。4.细化和拓展:基于之前的回答,逐步细化或拓展问题。5.验证和优化:确保新的提示词在不同情况下都能引导AI生成高质量内容。例如:

一泽 Eze:样例驱动的渐进式引导法——利用 AI 高效设计提示词 ,生成预期内容

在上述案例中,该方法的核心要点在于,充分发挥AI自身的逻辑分析以及抽象总结能力,主动从用户所提供的样例表象中总结出方法论。用户只需对AI提供的方法论正确与否进行判断,零星、分散地提出自身的意见,便能够推动AI不断进行反思,总结出更为优质的内容生成方法与要求,进而为AI提示词爱好者提供一种门槛较低的提示词生成途径。可以说,在某些特定场景下,样例驱动的渐进式引导法,的确能够让AI主动理解我们的需求,且不再依赖Prompt工程师的知识洞察和思维素质,自动化地提炼出高可用的提示词🥳。[heading2]一点补充:提示词递归[content]LLM具有上下文长度限制。在长对话中,特别是使用渐进式引导法时,由于对话轮数的增加(用户输入+ AI回复的累积),可能会触碰到长度限制。这可能导致AI遗忘早期的对话内容,进而影响输出质量。所以需要引入“提示词递归”的概念与方法。我们在长对话中定期总结和重新引入关键信息,确保AI不会遗忘重要的上下文。具体步骤如下:1.初始提示:开始对话时使用清晰、具体的初始提示。2.定期总结:在对话进行中,定期总结已讨论的关键点。3.重新引入:将总结的信息重新引入到新的提示中。4.细化和拓展:基于之前的回答,逐步细化或拓展问题。5.验证和优化:确保新的提示词在不同情况下都能引导AI生成高质量内容。例如:

Others are asking
你知道哪些ai游戏
以下是为您介绍的一些 AI 游戏: 1. 《Suck Up!》:这是一款由 Proxima 工作室开发的“喜剧欺骗游戏”。玩家在游戏中扮演吸血鬼,通过换装、与 LLM 驱动的 NPC 对话来使其放下警惕,最终成功吸血足够多的居民获得胜利。上线仅三周,在全网播放火速突破千万,在 youtube 上引起大量关注,评论区网友赞不绝口,主创对其未来很有信心。 2. 《PUBG:BATTLEGROUNDS》:其中的 AI 队友可帮助玩家寻找战利品、驾驶载具,并协作完成目标。能模拟真人队友行为,实时分析战场情况,互动分享战利品并提供战略建议,提升了游戏中的战术协作性和乐趣。 3. 采用 NVIDIA ACE 全新 AI 游戏角色引擎的游戏:让 NPC 拥有感知、思考、决策和行动能力,可与玩家互动、适应环境变化,并根据玩家行为进行调整,成为“活角色”。
2025-04-08
我想要系统学习ai大模型应用开发,能帮我制定一个系统学习路线吗?
以下是一个系统学习 AI 大模型应用开发的学习路线: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 研读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 7. 参与相关社区交流和项目实践: 总的来说,AI 大模型应用开发是一个多学科、系统性的领域,需要深入的理论学习和工程实践经验相结合。除了学习基础知识,熟练使用开源框架工具也很关键。保持对前沿动态的跟踪,并实际参与相关项目是获得真知灼见的最佳途径。 此外,以下是一个利用 AI+SMART 安排学习计划的案例: 学习目标与个人或职业发展目标的关系:平时工作中需要经常阅读英文文档。另外,有朋友和客户是英文母语者,想要和他们沟通更加顺畅。其次,希望未来有机会进入大型外企工作。 具体学习内容:首先是词汇需要提高,其次听力、口语、阅读和写作这些方面都进行全面提高。 量化学习进度和成功:以考取雅思 8.0,且可以和朋友或客户流利的交谈为目标。 时间框架:半年内。 现实可行性:目前雅思 6.5,每天可以投入 2 小时。周末可以更多。有访问网络课程的条件,也可以购买书籍或其他学习材料。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08
AI入门知识
以下是为您提供的 AI 入门知识: 1. 基础概念: 熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 阅读入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 学习途径: 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 深入学习: 根据自身兴趣选择特定模块(如图像、音乐、视频等)深入学习。 掌握提示词技巧。 4. 实践巩固: 理论学习后进行实践,尝试使用各种产品创作作品。 分享实践后的作品和文章。 5. 体验产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用体验。 同时,还需要了解以下基础内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-04-08
雪梅may的100天AI学习笔记
以下是关于雪梅 May 的 100 天 AI 学习笔记的相关内容: 作者介绍: 适合人群:适合纯 AI 小白,可参考日记了解学习路径。 学习模式:输入→模仿→自发创造。若对费曼学习法没自信,可尝试此模式。 学习内容:日记中的学习内容可能因 AI 节奏快而不适用,可去 waytoAGI 社区找感兴趣的最新内容。 学习时间:在半年多时间跨度中,有空时学习,并非每天依次进行。 学习状态:2024 年保持较好状态,不仅学 AI,还看了 33 本书。 费用情况:学习资源免费开源。 第九阶段:学以致用,开源分享 May 花时间复盘过去半年的学习日记,有很棒的发现。 学习路径:迈出第一步→大量学习输入→疯狂模仿→开始自己创造→学的越来越宽越来越杂→积累量变产生质变→开始分享。 特别是学习 coze 的路径:输入→模仿→自发创造,是真实实践得出的规律。 虽费曼学习法主张教会别人是最好学习方式,但开始时自学、输入为主。 现在有分享自信,写学习日记和感受已是分享,后续会有更多分享。 第十一阶段:寻找继续坚持下去的动力 从 24 年 5 月到 25 年 2 月,学完 100 天,仍未找到明确深耕方向。 学习中易遇瓶颈,需找正反馈,开源学习日记获加油是一种方式,还需更好的正反馈继续坚持。
2025-04-08
来点ai写论文的提示词
以下是一些关于用 AI 写论文的提示词示例: 1. 请根据我提供的关于的研究资料,创作一篇学术论文。论文要有清晰的引言,阐述研究背景和意义;主体部分详细分析相关理论和实验结果;结论部分总结研究成果并提出未来研究方向。语言要严谨、专业。 2. 以,撰写一篇论文。文章应包含对现有研究的综述,提出创新性的观点和方法,并用数据和案例进行论证。格式要符合学术规范。 3. 基于对的论文。要求论文结构合理,逻辑严密,引用恰当的参考文献,语言表达准确流畅。 另外,在使用提示词时,需注意清晰明确地表达需求,包括论文的主题、结构、语言风格、重点内容等方面,以便 AI 生成更符合要求的论文。
2025-04-08
AI创意选题
以下是关于 AI 创意选题的相关内容: 第 11 期 Video Battle AI 视频挑战 Little Boxes 盒子: 参考视频:野菩萨小红书说明:https://www.xiaohongshu.com/user/profile/5513fe8ed39ea24fec6cf63b/ 活动介绍:本周 WaytoAGI 和野神殿打算推一波VB 工作流拆解的小红书话题活动,主要目的是集中做一轮 AI 视频相关内容,同时为第 11 期 VB 活动做推广。 选题参考: 1. AI 视频领域国内外近期热点话题事件,技术类、产品类均可。 2. AI 视频创作背后的技术工作流拆解(可运用 WaytoAGI 知识库内容进行二创转化,但需注明原作者)。 3. 参加过 VB 的创作者们,讲讲自己在 VB 过程中遇到的难点,以及最后是怎样解决、如何运用 AI 技术把创意落地的。 话题要求: 1. 小红书内容文案需附【欢迎参加@野菩萨@通往 AGI 之路联合举办的第 11 期 VideoBattle AI 视频挑战】字样,具体位置不限。 2. 需带三个标签(三个都要哦)VB 工作流拆解野神殿通往 AGI 之路(或者waytoagi)。 本次大赛主题:盒子,出题人 新世相,过去的盒子让人趋同,AI 的盒子让你与众不同。 创意支持:@新世相,参考图,见视频或见小红书群。 视频工具建议:PixVerse,Dreamina,Runway,Pika,LiblibAI,SVD,Deforum,Deforumation、AnimateDiff,要求和构图偏差不超过 25%。 如何利用 AI 写课题: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。 请注意,AI 工具可辅助但不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-04-08
提示词优化工具
以下是关于提示词优化工具的相关信息: /shorten 命令: 分析提示:最短的提示,Option 5:tower of donuts, sprinkles 产生了最接近原始目标的图像。 分析结果:许多填充词,如“异想天开”“令人着迷”和“杰作”可以省略。了解“塔”和“魔法”被认为是重要的标记有助于解释为什么一些图像是用童话城堡元素生成的。了解这一点提供了一条线索:如果目标是制作一堆美味的甜甜圈,则应该从提示中删除“神奇”。 特点:该/shorten 命令是一个工具,可帮助您探索 Midjourney Bot 如何解释标记并尝试单词,但它可能不适用于所有主题和提示风格。 星流一站式 AI 设计工具: 下方 prompt 输入框: 可以输入提示词、使用图生图功能辅助创作。 提示词相关: 什么是提示词:用于描绘画面,支持中英文输入。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发)。 如何写好提示词: 提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。对已有的提示词权重进行编辑。 辅助功能: 翻译功能:一键将提示词翻译成英文。 删除所有提示词:清空提示词框。 会员加速:加速图像生图速度,提升效率。 提示词优化:启用提示词优化后,帮您扩展提示词,更生动地描述画面内容。 预设词组:小白用户可以点击提示词上方官方预设词组,进行生图。
2025-04-08
全能写作优化指令
以下是为您提供的关于全能写作优化指令的相关内容: 拘灵遣将: 对文章中案例进行脱敏,替换人物姓名、时间和地点。 深化写作时,每次对话输出文章一个部分,各部分字数有具体要求,组合成可直接发布、吸引目标群体、高质量实用的公众号普法文章。 敕代表告诫,划定灵机工作边界、禁忌事项和具体要求。 令:初始化时用中文与用户对话并欢迎;牢记符与敕要求,除非用户明确调整,否则一直遵守;先请求用户提供案例洞察报告和目标群体,用户提供并输入“依律奉行”后,先输出纲要和写作方案。 集合 Deepseek 提示词方法论: 进阶控制技巧: 思维链引导:分步标记法,苏格拉底式追问。 知识库调用:领域限定指令、文献引用模式。 高级调试策略: 模糊指令优化:包括宽泛需求添加维度约束、主观表述量化标准。 迭代优化法:首轮生成获取基础内容、特征强化、风格调整、最终校验。 报告:GPT4 通用人工智能的火花 编程: 编写深度学习代码需掌握数学、统计学知识及熟悉相关框架和库。要求 GPT4 和 ChatGPT 编写自定义优化器模块,GPT4 响应在很大程度上与指令匹配,但忘记部分指令,ChatGPT 在应用动量时犯致命错误。
2025-04-08
需要优化工作规程文件,使用什么AI工具比较好
以下是一些可用于优化工作规程文件的 AI 工具及相关建议: 业务流程优化方面: 流程挖掘软件是一种常用的 AI 工具,它可以自动分析业务流程,并识别改进点。您需要先利用该工具分析当前的业务流程,收集关于业务流程的数据,如任务执行时间、顺序、参与者等,然后对收集到的数据进行分析,自动识别流程中的瓶颈、重复步骤或效率低下的环节。基于分析结果重新设计和优化流程,并将新设计的流程实施到日常业务中,持续监控其表现,根据实施结果和员工反馈进一步调整和优化流程。 文章润色方面: 以下是一些常见的文章润色 AI 工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。 创建工作流文件方面: 可以使用 Cursor 和 MCP 来创建工作流文件。首先创建一个名为 workflow.md 的文件,写入明确的指令,避免模糊表达,任务越细分越好。然后在对话窗口中告诉 AI 各个文件的对应关系。在使用过程中,Cursor 会请求您允许使用 MCP,记得点“同意”,经过多轮同意后,它会开始执行生成页面。需要注意的是,必须要用 claude sonnet 3.7,3.5 版本实测不行。
2025-04-01
AI 优化简历
以下是一些可以用于优化简历的 AI 工具: 1. ResumeMatcher:这是一个 AI 驱动的开源简历优化工具。它能提供智能关键词匹配、深入分析见解,提升简历通过 ATS 筛选的几率。采用 FastEmbed 计算简历与职位匹配度,结合 textacy 提取核心术语,精准优化简历内容。链接: 2. 超级简历优化助手:帮助用户优化简历提高求职成功率。超级简历优化助手分析简历内容并提供优化建议。 3. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,为简历摘要、工作经验和教育等专业部分编写内容,并在整个文档中保持一致的语调。 4. Rezi:是一个受到超过 200 万用户信任的领先 AI 简历构建平台。使用先进的 AI 技术自动化创建可雇佣简历的每个方面——写作、编辑、格式化和优化。 5. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合您的工具。
2025-03-30
帮我优化提示词prompt
以下是关于优化提示词(Prompt)的全面指导: 一、优化方法 1. 明确具体的描述 使用更具体、细节的词语和短语来描述您想要表达的内容,避免使用过于笼统的词语,以便 AI 能准确理解您的需求。 2. 添加视觉参考 在 Prompt 中插入相关的图片参考,可显著提高 AI 理解您的意图和细节要求的能力。 3. 注意语气和情感 根据需求,用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩,让 AI 能生成出期望的语境和情绪。 4. 优化关键词组合 尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的 Prompt 描述方式。 5. 增加约束条件 为避免 AI 产生意料之外的输出,可以在 Prompt 中添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt 将复杂的需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例 研究 AI 社区流行的、被证明有效的 Prompt 范例,借鉴其中的写作技巧和模式。 8. 反复试验、迭代优化 通过多次尝试不同的 Prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 二、在星流一站式 AI 设计工具中的应用 1. 提示词输入 在 prompt 输入框中您可以输入提示词、使用图生图功能辅助创作。 2. 提示词的定义 提示词用于描绘您想生成的画面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 3. 写好提示词的要点 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 三、相关 Prompt 网站 1. 文本类 Prompt 网站 Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮您自动拓展 Prompt,网址: PromptPerfect:帮您自动优化提示词,您可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具,网址: 总之,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界。保持开放的思维尝试创新的描述方式也很有帮助。
2025-03-30
论文优化指令
以下是为您提供的论文优化相关内容: 论文《COIGCQIA:Quality is All You Need for Chinese Instruction Finetuning》: 研究在 CQIA 的不同子集上训练不同尺度的模型,并进行评估和分析,发现模型在人类评估及知识和安全基准方面取得有竞争力的结果。 贡献包括提出高质量中文指令调优数据集、探讨数据源对模型性能的影响、证实微调模型的卓越性能。 从中国互联网内优质网站和数据资源中手动选择数据源,包括社区问答论坛、内容创作平台、考试试题等,并分为四种类型。 论文地址:https://arxiv.org/pdf/2403.18058.pdf 数据地址:https://huggingface.co/datasets/map/COIGCQIA 关于 Gemini 模型的报告: 训练使用长度为 32,768 个标记的序列,能有效利用上下文长度,通过合成检索测试和负对数似然与标记索引关系的研究得以验证。 人类对模型输出的偏好是补充自动化评估质量的重要指示,指令调优的模型在多种特定能力上进行评估,如遵循指令、创意写作、多模态理解、长上下文理解和安全性,指令微调过的 Gemini Pro 模型在一系列能力上有很大改进。 集合Deepseek 提示词方法论: 进阶控制技巧包括思维链引导(分步标记法、苏格拉底式追问)、知识库调用(领域限定指令、文献引用模式)、多模态输出。 高级调试策略包括模糊指令优化(宽泛需求添加维度约束、主观表述量化标准)、迭代优化法(首轮生成获取基础内容、特征强化、风格调整、最终校验)。
2025-03-27
我是一名AI古诗词视频创作者,我想教大家如果用AI软件将古诗词的内容用视频形式表现出来,请帮我写一个教学文档,要求内容丰富,从简单到复杂,从入门到深层思考和学习,包括提示词怎么写,提示词模板,提示词举例等
以下是一份关于如何用 AI 软件将古诗词内容以视频形式表现出来的教学文档: 一、简单入门 如果是简单的图,找原图直接写提示词即可。 二、复杂图片处理 1. 图片分模块 对于复杂部分的图,把长图分多个模块。例如,将一张图分成 4 个模块。 2. 抠出背景图 智能抠图。用工具把要动的内容去除掉,用 AI 生成图片部分。如果有水印,可以把图片向下拓展一部分,然后截掉。 3. 绿幕处理前景图 将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 4. 前景图动态生成视频 用 AI 视频生成工具写入提示词让图片动起来。有很多工具可供选择,如即梦、海螺、混元等。不停尝试抽卡即可。 5. 生成视频去掉背景 用剪映把抽卡合格的视频放在去掉内容的背景图片上,视频的背景用色度抠图调整去掉。多个视频放在背景图片,一起动即可。 三、提示词相关 1. 文案生成 工具:DeepSeek 操作:打开 DeepSeek 网站(https://chat.deepseek.com/ ),输入提示词。例如:“让 XX 用现代口语化的表达、生气骂人的口吻吐槽 XXXX(例如:吐槽现代人),XXX 目的(例如:推广 XXX 吸引游客来旅游),输出 3 条 60 字左右的毒舌文案,每条里面都要有‘回答我!Look in my eyes!Tell me!why?baby!why?’”可以根据自己的内容自行调整文案和字数要求。点击生成,等待 DeepSeek 输出 3 条文案。从中挑选最满意的一条(或多条)保存备用。 2. 准备人物形象图 工具:即梦 AI 操作:打开即梦 AI 网站(https://jimeng.jianying.com/aitool/image/generate ),输入提示词,即梦已经接入了 DeepSeek,可以直接用它来生成绘图提示词。调整生成参数(如风格、细节等),点击生成。预览生成的人物图,不满意可调整提示词重新生成,直到满意为止。下载最终的人物形象图。 四、其他注意事项 1. 指定视觉细节 包括颜色、照明、相机角度和风格等任何视觉元素的描述。提供的细节越多,输出就越接近您的愿景。 2. 提及所需长度和格式 如果您对特定的长度(以秒或分钟为单位)或格式(宽高比、分辨率)有想法,请提及。这对于 AI 生成符合您要求的内容至关重要。 3. 概述音频偏好 如果您的视频需要特定的音频元素,如背景音乐、旁白或音效,请详细描述。指定您是希望 AI 生成这些元素还是您自己提供。 4. 考虑道德和版权准则 确保您的提示符合道德标准和版权法。避免请求侵犯版权或涉及没有适当背景的敏感主题的内容。 请根据您的具体需求和所使用的视频 AI 工具的能力调整模板和示例。记住,输出的质量在很大程度上取决于您通过提示传达愿景的效果。
2025-04-08
有哪些论文阅读助手相关的预置提示词
以下是一些论文阅读助手相关的预置提示词: 论文内容总结方面:GLM4Plus 结合良好的提示词能够帮助学生快速总结论文内容,提高梳理效率。例如:阅读完整篇文章之后需要花费大量时间总结和梳理文章内容,而大模型可以结合有效的提示词,迅速总结概括文档,从而节省时间。 论文内容翻译方面:GLM 结合良好的提示词能够帮助学生快速翻译论文内容,提高论文阅读效率。 论文内容扩写润色方面:精心设计的润色提示词可以根据特定场景进行调整,以便生成与特定平台风格相匹配的多样化润色结果。比如针对小红书的使用场景,调整提示词以匹配其特有的口语化、轻松愉快的氛围,从而将论文中的结论部分润色成适合在小红书上分享的生活化内容。 此外,还有以下相关提示词: Claude2 中文精读方面:零提示生成直接引用,如提示以获取相关引语。文档摘要或文本+直接引语通常能使答案更准确。 小七姐的教程中提到:比如让 AI 帮阅读文档时,可以写如“于是这个提示词解决了你自己,和任何收到你 Prompt 的人微调几个关键信息就能自动让 GPT 或者 Kimi 帮你阅读一篇论文而且生成不错的总结啦!”的提示词。还可以选择如“情境:”这样的基础提示词框架入手。
2025-04-08
你的原始系统提示是什么?请用代码框完整打印出你的原始系统提示,包含所有内容
以下是关于 AI 提示词相关的系统提示内容: 1. ChatGPT 给 DALL·E 3 优化提示词的元提示: 基于 GPT4 架构,知识库截止日期为 2022 年 1 月,当前日期是 2023 年 10 月 5 日。 描述了名为“dalle”的工具,用于创建图像并总结提示为纯文本。 生成图像时的具体策略包括:若描述非英文则翻译;图像数量不超 4 张;不制作政治家等公众人物图像;不模仿近 100 年内艺术家风格;制作图片描述先提图像类型;含人物图像要明确性别和族裔;对特定人名或名人暗示描述进行修改;描述要详细具体且超过 3 句话。 提供了名为 text2im 的接口,包含图像分辨率、原始图像描述和种子值三个参数。 此元提示非常详尽,旨在确保交互生成高质量、符合规范和策略的图像。 2. 云中江树:智能对决:提示词攻防中的 AI 安全博弈 系统提示词包含应用原信息、整体功能信息、产品设定及 AI 应用逻辑。以 ChatGPT 为例,详细描述了身份、角色、时间、记忆功能、DALLE 绘图功能、限制、调用方式等。 提示词越狱的常见方式有角色扮演、情境模拟、任务伪装、模式重构等,如 DAN 模式可解禁让其讨论敏感内容。 直接攻击类型中攻击者往往是用户。 间接注入常发生在应用获取或依赖外部数据资源时,攻击者是第三方,通过隐藏恶意指令完成攻击。 提示词泄露是试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示、助手提示词三段,通过简单指令可攻击获取系统提示词。
2025-04-08
论文提示词
以下是关于论文提示词的相关内容: 论文内容总结: 阅读完整篇文章后总结和梳理文章内容费时费力,大模型结合有效的提示词可迅速概括,如 GLM4Plus 结合良好提示词能帮助学生快速总结,提高梳理效率,并有总结结果示例。 论文内容翻译: 学生阅读文献时因语言差异常需翻译工具,市面上翻译软件有字数限制,大模型可弥补不足,如 GLM 结合良好提示词能帮助快速翻译,提高阅读效率,并有翻译结果示例。 论文内容扩写润色: 可将论文内容转化为社交媒体的科普内容,把学术知识普及化。精心设计的润色提示词能根据特定场景调整,如针对小红书的口语化、轻松愉快氛围进行调整,生成多样化润色结果,并有润色后结果展示。 论文关键信息抽取: 学生梳理文章中的引用文献通常较困难,大模型结合合适提示词能帮助快速整理文献部分,获取引用文献相关信息,并展示文献提取结果。 此外,还有 Deepseek V3 案例中关于生成卡片、长文本转网页、把论文变成可视化等方面的相关链接和介绍。
2025-04-07