直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

人工智能的定义

回答

人工智能是一门研究如何使计算机表现出智能行为的科学。最初,计算机遵循着明确的程序和算法进行受控计算。但对于一些任务,如根据照片判断一个人的年龄,我们无法明确其解法和步骤,无法编写明确程序让计算机完成,这类任务正是人工智能感兴趣的。

“智能”的概念没有明确的定义。阿兰·图灵提出了图灵测试,将计算机系统和真人进行比较,若人类评审员在文本对话中无法区分真人和计算机系统,则认为该计算机系统是“智能”的。

在相关研究中,对于智能、人工智能和人工通用智能的定义存在多种观点和定义方式,但都存在问题或争议。例如,有以目标为导向的定义、围绕技能获取效率展开的定义等,但各自都有局限性。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

人工智能简介和历史

人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅ “根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?

人工智能简介和历史

[title]人工智能简介和历史[heading1]“智能”的定义与图灵测试当我们谈到“智能”这个概念的时候,一大问题是它没有明确的定义。有人说“智能”与抽象思维或自我意识有关,但我们依然无法恰当地定义它。想要了解“智能”一词的模糊性,可以尝试去回答一个问题:“猫是有智力的吗?”不同的人往往会给出不同的答案,因为并没有一个国际公认的测试来证明这一说法的真假。如果你认为有这样的测试,那就试试让你的猫去做个智商测试吧……✅想一想你是如何定义“智能”的。一只能解开迷宫并获得食物的乌鸦是有智力的吗?人类的小孩是有智力的吗?当谈到通用人工智能(AGI)时,我们需要一些方法来判断我们是否创造了一个真正的智能系统。[阿兰·图灵](https://en.wikipedia.org/wiki/Alan_Turing)提出了一种名为“[图灵测试](https://en.wikipedia.org/wiki/Turing_test)”(Turing Test)的方法,该方法目前也被用作“智能”的定义。图灵测试将某一计算机系统和真人进行比较,由于任何自动的检测方法都有可能被计算机系统绕开,图灵测试使用人类评审员来判断结果。如果这位人类评审员在文本对话中无法区分真人和计算机系统,那么这个计算机系统就会被认为是“智能”的。

报告:GPT-4 通用人工智能的火花

[title]报告:GPT-4通用人工智能的火花[heading1]10.方向与结论[heading2]10.1智能、AI和AGI的定义在本文中,我们使用了一组心理学家在1994年提出的智能定义[GOT97]作为探索GPT-4人工智能的指导框架。这个定义涵盖了智能的一些重要方面,如推理、问题解决和抽象,但它也是模糊和不完整的。它没有指定如何衡量或比较这些能力。此外,它可能不反映人工系统的特定挑战和机遇,这些系统可能具有与自然系统不同的目标和限制。因此,我们承认这个定义不是关于智能的最终说法,而是我们研究的有用起点。目前有丰富而持续的文献试图提出更正式和全面的智能、人工智能和人工通用智能的定义[Goe14,Cho19],但它们都存在问题或争议。例如,Legg和Hutter[Leg08]提出了一个以目标为导向的人工通用智能定义:智能衡量代理的能力,在广泛的场景中实现目标。然而,这个定义不一定囊括了智能的全部,因为它排除了可以在没有任何内在动机或目标的情况下执行复杂任务或回答问题的被动或反应性系统。可以想象一个通用人工智能,如一个出色的神谕,没有代理或偏好,但可以提供任何主题或领域的准确和有用的信息。此外,目标在广泛的环境中实现的定义也意味着一定程度的普适性或最优性,这可能不现实(肯定人类智能在任何方面都不是普适或最优的)。要识别先验知识的重要性(而不是普适性)在Cholet于[Cho19]提出的定义中得到了强调,该定义将智能围绕着技能获取效率展开,或者换句话说,强调了1994年定义的一个关键弱点:从经验中学习(这也是LLMs的关键弱点之一)。来自Legg和Hutter[LH07]的另一个人工通用智能的候选定义是:一个可以做任何人类能做的事情的系统。然而,这个定义也存在问题,因为它假定人类智力或能力有一个单一的标准或度量,这显然不是事实。人类具有不同的技能、才能、偏好和局限性,没有一个人能做到其他任何人能做的一切。此外,这个定义还暗示了一定的人类

其他人在问
人工智能相关的销售行业
以下是与人工智能相关的销售行业的一些信息: 与销售工作有关的 AI 工具: Salesforce 爱因斯坦:能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 Clari:专门从事智能收入运营的软件,能统一各种来源数据并以易于理解的方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 关于大模型与利润分配:大模型拿走产业绝大部分利润取决于两个前提,一是 AGI 能否实现,二是大模型公司能否实现垄断。AGI 能否实现是个黑盒,行业内顶级专家对此有分歧。在 AGI 未达到时,大模型公司难以低成本提供所有端到端的解决方案,客户需要具体的解决方案,应用层公司在其中发挥作用。以 AI 销售为例,需根据客户类型和场景应用大模型能力,不同销售场景和客户类型意味着背后的产品不同,需要精心设计,不仅是模型层面能解决的问题。
2024-12-19
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
人工智能会出现自主意识吗
目前对于人工智能是否会出现自主意识尚无定论。 一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。 另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。 总之,关于人工智能是否会出现自主意识仍在探讨和研究中。
2024-12-18
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
全球人工智能治理报告
以下是关于全球人工智能治理的相关报告内容: 英国: 创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。 AISA 还发布了 Inspect 框架,用于 LLM 安全评估,涵盖核心知识、推理能力和自主能力等方面。 宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。 政府报道称计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。 美国: 能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 大型实验室努力应对欧洲监管。 对中国实施更严格的出口管制和投资限制,商务部要求美国制造商停止向我国半导体制造商进行最先进设施的销售,采取措施阻止或限制中国初创企业的投资,并向国际合作伙伴施压。 欧洲: 《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区,执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 中国: 是第一个开始制定生成式人工智能监管框架的国家,审查机构已介入。 持续生产 SOTA 模型,由国家互联网信息办公室监督。 政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。 禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。
2024-12-18
大模型的定义是什么?有官方权威定义吗
大模型的定义可以从以下几个方面来理解: 1. 从技术角度:以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”主要指用于表达 token 之间关系的参数多,例如模型中的权重(weight)与偏置(bias),像 GPT3 拥有 1750 亿参数。 2. 通俗来讲:大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。 3. 类比角度:可以用『上学参加工作』这件事来类比大模型的训练、使用过程,包括找学校(需要大量计算资源)、确定教材(需要大量数据)、找老师(选择算法)、就业指导(微调)、搬砖(推导)等。 4. 分类角度:大型模型主要分为两类,一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 参考:
2024-12-13
AI的定义
AI(人工智能)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 对于AI的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 从任务角度来看,对于像“根据照片判断一个人的年龄”这类无法明确编程的任务,因为我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,而这类任务正是AI所感兴趣的。 另外,OpenAI 分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2024-12-04
人工智能将如何重新定义我们的学习
人工智能将通过以下方式重新定义我们的学习: 1. 元学习:凭借神经网络基础,通过元学习更快地获取知识,带动人类共同进步。 2. 构建堆叠模型:开发具有潜在空间层次结构的堆叠 AI 模型,以帮助理解模式和关系,可能会平行于人类教育范例发展,并可能专门发展以培养新型专业知识。 3. 特定领域专家 AI:创建特定领域的专家 AI 比创建全能 AI 更容易,且需要多样化的方法和避免复制危险偏见。 4. 学习方式的改变:让 AI 像人类顶尖人才一样学习,从基础开始,通过正规教育和实践,培养处理复杂情况和细微差别的直觉。例如在医疗保健领域,医生将把文档工作交给 AI 书记员,初级医疗服务提供者将依赖聊天机器人进行分诊等。 总之,人工智能将在学习的模式、方法和应用等方面带来不可逆转的改变。
2024-12-02
我要用prompt定义一个智能助手,最佳格式是什么样的
以下是定义智能助手的一些最佳格式和建议: 1. CRISPE 框架: Capacity and Role(能力与角色):明确智能助手的角色和能力,例如“你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析”。 Insight(洞察):提供背景信息和上下文,比如“处理一起复杂的合同纠纷案件,我们可以向智能助手提供案件的关键事实、相关法律以及案件涉及的背景”。 Statement(陈述):清晰说明希望智能助手做什么,例如“要求智能助手总结此案件中双方的诉求、检索法条、预测可能的判决结果”。 Personality(个性):指定智能助手回答的风格或方式。 Experiment(举例):通过举例进一步说明需求。 2. 学校通用场景中的示例: 创建课程计划助手:“我是教{……}的老师,帮我创建一份课程计划”。 写作素材收集助手:“提供{指定主题}的结论和数据,帮我提供写作素材”。 雅思写作助手:“我希望你作为雅思写作考官,帮我提升英语。我们现在开始,我的第一个问题是……” 3. 视频相关的提示格式: Specify Visual Details(指定视觉细节):包括颜色、灯光、摄像机角度和风格等视觉元素的描述。 Mention Desired Length and Format(提及期望的长度和格式):说明具体的时长(秒或分钟)或格式(宽高比、分辨率)。 Outline Audio Preferences(概述音频偏好):详细描述所需的音频元素,如背景音乐、旁白或音效,并说明是由智能助手生成还是自行提供。 Consider Ethical and Copyright Guidelines(考虑道德和版权准则):确保提示符合道德标准和版权法,避免侵权或涉及敏感话题。 您可以根据具体需求和使用的工具对这些模板和示例进行调整。记住,输出的质量很大程度上取决于您通过提示传达需求的清晰程度。
2024-11-28
传统的agent是怎么定义的
传统的 agent 定义如下: 在古希腊哲学中,对“行动者”(Agent)的探讨深刻影响了后世对道德责任和个体决策的理解。尽管当时未使用现代意义的“Agent”术语,苏格拉底、柏拉图和亚里士多德等哲学家已为其奠定基础。 亚里士多德在《尼各马科伦理学》中探讨德性伦理学,认为人的善良和幸福源自由理性和智慧引导的德性生活,区分了“被动行为”与“主动行为”,强调有道德价值的行为应是个体自愿且有明确意图的选择,个体作为行动者不仅要靠理性指导行为,还要对自愿行为承担道德责任。 苏格拉底通过独特对话法促使人们自我反省,考察行为是否符合道德标准,提出“无人有意作恶”,认为错误源于无知,主张通过增长智慧和美德引导正确决策。 柏拉图在《理想国》中构建理想社会模型,探讨灵魂三部分关系,认为理性主导时个体才能做出正确选择,将知识与道德紧密相连。 虽然古希腊哲学家未直接讨论“自由意志”,但他们关于个体自主决策及对结果负责的思考,对后世关于自由意志和道德责任的讨论影响深远,亚里士多德强调人作为理性动物应依据内在理性及外在自然法则实现德性和善。 在 20 世纪 60 年代,马文·明斯基定义“Agent”为一个自主、独立运行的计算或认知实体,具备感知、决策和执行任务的能力,有自己的目标、行为和策略,能与其他 Agent 交互和协作,可视为智能系统中的功能模块,在不同层次执行不同功能,通过协作实现复杂智能行为。在其著作《心智社会》中,深入探讨了人类思维和人工智能的复杂关系。
2024-10-28
我想用AI工具生成PPT,已经有文字内容了,需要AI帮我排版,我可以自定义PPT模板吗?如果可以的话,推荐几个合适的AI工具
您可以自定义 PPT 模板。以下为您推荐几个合适的 AI 工具: 免费工具:讯飞智文(http://zhiwen.xfyun.cn) 付费工具:百度文库、Gamma.app 有的网站,如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。呈现 AI 生成的 PPT 结果,若用户不满意可以自行选择模板。 此外,对于 AI 文章排版工具,以下是一些流行的选择: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 Latex:虽不是纯粹的 AI 工具,但广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的 AI 排版工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎,因其提供强大排版功能和广泛学术支持。对于一般文章和商业文档,Grammarly 和 PandaDoc 等工具可能更适用。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-08