Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

利用 AI 生成培训框架

Answer

以下是为您生成的培训框架相关内容:

一、AI 在教育培训中的应用

  1. 数字教师

    • 借助大型语言模型,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。
    • 数字教师可以实现一对一辅导,不受情绪左右,提高学生参与感。
    • 能够根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,提高学习效率和成果,缓解教育资源不平等问题。
  2. 数字陪伴

    • 人工智能生成的虚拟角色可以作为孩子的玩伴,来自他人的赞美等社会奖励,促进儿童成长,提高学习成绩。

二、AI 相关技术原理与概念

  1. 概念

    • 生成式 AI 生成的内容称为 AIGC。
  2. 相关技术名词

    • AI:人工智能。
    • 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。
      • 监督学习:有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归。
      • 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。
      • 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。
    • 深度学习:参照人脑有神经网络和神经元,因有很多层所以叫深度,神经网络可用于多种学习方式。
    • 生成式 AI:可以生成文本、图片、音频、视频等内容形式。
    • LLM:大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。
  3. 技术里程碑

    • 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
Content generated by AI large model, please carefully verify (powered by aily)

References

Character.ai:每个人都可定制自己的个性化AI

古时候的苏格拉底、孔子等传道授业解惑,采用的是对话式、讨论式、启发式的教育方法。他们通过向学生提问,引导学生思考和总结出一般性的结论,从而培养学生的批判性思维和创造性思维。如今,借助大型语言模型,人工智能生成的角色可以作为数字教师。例如,让牛顿亲自授课《牛顿运动定律》,让白居易为你讲述《长恨歌》背后的故事。你可以与任何历史人物进行对话交流,知识的获取不再受时空限制。这些人工智能生成的角色博学多能、善解人意,不受情绪左右,基本上可以实现一对一的辅导,让学生的参与感更高。这种技术的发展不仅可以提高教育的效率和质量,还可以让学生更加生动地了解历史和文化,拓宽视野,增强学习兴趣。个性化的数字教师可以根据学生的学习情况、学习兴趣和学习偏好提供定制化的学习计划和学习资源,真正实现因材施教,更好地满足学生的学习需求,提高学习效率和学习成果。数字教师的个性化教育也有望缓解教育资源不平等的问题,让更多的学生有机会接触到优质的教育资源。人工智能生成的虚拟角色也可以是数字陪伴,作为孩子的玩伴,来自他人的赞美这样的社会奖励,可以促进儿童成长,提高学习成绩。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
学习AI可以从哪几个方面去学习
学习 AI 可以从以下几个方面入手: 1. 编程语言:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识。 2. 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响。 对于新手学习 AI: 1. 了解 AI 基本概念: 阅读相关入门文章,熟悉术语和基础概念。 了解人工智能的主要分支及它们之间的联系。 2. 开始学习之旅: 参考为初学者设计的课程,如李宏毅老师的课程。 通过在线教育平台按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: 根据自身兴趣选择特定模块,如图像、音乐、视频等。 掌握提示词技巧。 4. 实践和尝试: 理论学习后进行实践,巩固知识。 分享实践成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 如果希望继续精进,对于不会代码的人,可以尝试了解以下基础内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解基本概念。 4. 评估和调优: 性能评估:掌握如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-25
视频链接转文字的Ai
以下为您介绍一些关于视频链接转文字的 AI 相关信息: 在“超级 AI 助力打造计划微信超级 AI 知识助手教学(下)2024 年 12 月 11 日”中,张梦飞解答了诸多与操作、功能、风险及平台相关的问题,包括今日头条读不出、公众号视频提取内容、界面在哪、文章文件总结跳过条件等,同时提到了视频号转文字等相关内容。 ElevenLabs 推出了全自动化的 AI 配音或视频翻译工具,您只需上传视频或粘贴视频链接,该工具能在几十秒到几分钟内将视频翻译成 29 种语言,还能克隆原视频里面的声音进行配音。 有群友测试了相关工具,另外还有群友尝试了豆包的音色模仿,读了大概 20 个字的句子,5 秒就可以生成非常像的音色,之后可用自己的声音读生成的文字内容。
2024-12-25
ai技术商业应用典型案例
以下是一些 AI 技术商业应用的典型案例: 企业运营: 日常办公文档材料撰写整理。 营销对话机器人,进行市场分析和提供销售策略咨询。 法律文书起草、案例分析以及法律条文梳理。 人力资源方面的简历筛选、预招聘和员工培训。 教育: 协助评估学生学习情况,为职业规划提供建议。 针对学生情况以及兴趣定制化学习内容。 论文初稿搭建及论文审核。 帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 游戏/媒体: 定制化游戏,动态生成 NPC 互动,自定义剧情和开放式结局。 出海文案内容生成,语言翻译及辅助广告投放和运营。 数字虚拟人直播。 游戏平台代码重构。 AI 自动生成副本。 零售/电商: 舆情、投诉、突发事件监测及分析。 品牌营销内容撰写及投放。 自动化库存管理。 自动生成或完成 SKU 类别选择、数量和价格分配。 客户购物趋势分析及洞察。 金融/保险: 个人金融理财顾问。 贷款信息摘要及初始批复。 识别并检测欺诈活动风险。 客服中心分析及内容洞察。 保险理赔处理及分析。 投资者报告/研究报告总结。 制造业/汽车: 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 线上购车品牌、配置对比分析。 生命科学: 研发阶段靶点发现及产品成药性。 医学文献内容检索,重点摘要提取,相关法规整理。 医药代表培训及知识库建立。 分诊导诊助理、诊疗助理、术后护理及复建辅助。 此外,还有以下具体案例: 京东物流仓储管理系统:利用数据分析、机器学习等技术优化物流仓储管理,提高运营效率。例如通过智能算法优化货物存储位置,减少拣货时间。 BOSS 直聘简历筛选功能:利用自然语言处理、机器学习技术快速筛选简历,提高招聘效率。根据企业的招聘要求,提取关键信息,为企业推荐符合条件的候选人。 贝壳找房租赁管理功能:利用数据分析、自然语言处理技术管理房地产租赁业务,提高效率。根据租客的需求和偏好,自动推荐合适的房源。 腾讯游戏社交平台:利用数据分析、机器学习技术为玩家提供社交功能,增强游戏体验。根据玩家的游戏历史和兴趣爱好,推荐可能成为好友的玩家。
2024-12-25
未来哪些工作可以被AI替代?
未来可能被 AI 替代的工作包括一些重复性高、规则性强的工作,例如: 1. 数据输入、文档处理等单调的数据处理工作。 2. 部分制造业中的重复性生产操作。 然而,以下工作相对较难被 AI 替代: 1. 涉及团队建设、跨文化交流、创新解决方案设计等需要复杂人际交往和创新能力的工作。 2. 具有灵活性、非常规性和创造性的工作,比如艺术创作、科研创新等。 2023 年 AI 预计将会替代 4 亿 8 亿工作岗位,但同时也会增加 5.55 8.90 亿新岗位。计算被替代的岗位主要是查看岗位任务构成中可自动化任务的占比。发展中国家的某些经济发展必要步骤可能因 AI 而直接被取代,但这一观点有待辩证看待,吴恩达建议发展中国家在垂直领域完成优势积累。
2024-12-25
目前AI不能做哪些事情?
目前 AI 不能做的事情包括: 1. 尽管在某些方面取得了成功,但不能解决所有科学问题。几个世纪以来人类在科学领域逐步积累,仍有众多问题存在,AI 无法完全介入并解决所有这些问题。 2. 目前还不足以完全替代开发者进行复杂项目的开发,尚未达到“言出法随”的境界。 3. 由于技术快速发展,当前使用的某些 AI 工具可能并非最优,且需要考虑其是否适合应用目的以及存在的弱点。 4. 在使用 AI 时需要注意众多道德问题,如侵犯版权、作弊、窃取他人工作、操纵等,特定 AI 模型的构建及受益情况等问题复杂且尚不清晰,使用者有责任以道德方式使用这些工具。
2024-12-25
aipo 提示词课程链接
以下是关于 AIPO 提示词课程的相关链接: 10 月 13 日课程回放:https://www.bilibili.com/video/BV137mEYcEid/?spm_id_from=333.337.searchcard.all.click 上课请提前准备: 豆包网页端:https://www.doubao.com/chat/?channel=browser_landing_page 豆包桌面客户端: 相关资料: 作业:https://waytoagi.feishu.cn/share/base/form/shrcng2BGhOVyYXnr3AKP2pgCtg 10 月 14 日课程回放:https://www.bilibili.com/video/BV1msmEYxEZY/?buvid=YC4BD1CD531B1DE24BE79F1022B411E8311B&from_spmid=search.searchresult.0.0&is_story_h5=false&mid=E93ZXvPaf6qpZfVvaoksIA%3D%3D&p=1&plat_id=116&share_from=ugc&share_medium=iphone&share_plat=ios&share_session_id=FEFB63BF03154D5D842FEF7B6D7CA68D&share_source=WEIXIN&share_tag=s_i&spmid=united.playervideodetail.0.0&timestamp=1728927125&unique_k=TSPAHQW&up_id=259768893 上课请提前准备:吐司 https://tusiart.com/?utm_source=semsem&source_id=semsem 相关资料:https://kah8x5a2ycv.feishu.cn/docx/EknsdlsX1oxETExa5AjcDhfInWg 作业:https://waytoagi.feishu.cn/share/base/form/shrcn54GKluLZbcAuyd8GJzsX6g 10 月 15 日课程回放:https://www.bilibili.com/video/BV1G62fYCEc1/?spm_id_from=333.999.0.0 上课请提前准备:liblib https://www.liblib.art/ 推荐码:GUdRbBEP 相关资料:https://waytoagi.feishu.cn/wiki/TLmnwQgInimlP2k6zkAceDnCndf 作业:https://waytoagi.feishu.cn/share/base/form/shrcnndiUZ7FpF8IF4n9KNmvAWh
2024-12-25
假设我建立一个针对中小企业的Ai落地赋能服务中心,结合目前中国市场比较成熟的Ai产品、技术、服务、培训等等内容,应该怎么设计这个中心
目前中国市场上成熟的 AI 产品、技术、服务和培训内容丰富多样。要设计针对中小企业的 AI 落地赋能服务中心,以下是一些建议: 产品方面: 引入适合中小企业业务流程的自动化软件,如智能客服系统、智能办公软件等。 提供基于 AI 的数据分析工具,帮助企业进行市场预测和客户洞察。 技术方面: 配备专业的技术团队,能够为企业提供 AI 技术的集成和定制化开发服务。 关注前沿的 AI 技术,如机器学习、深度学习、自然语言处理等,并将其转化为可应用的解决方案。 服务方面: 提供一站式的服务,包括需求评估、方案设计、实施部署和后续维护。 建立快速响应机制,及时解决企业在使用 AI 过程中遇到的问题。 培训方面: 设计针对不同层次员工的培训课程,涵盖基础知识普及、操作技能提升和高级应用开发等。 采用线上线下相结合的培训方式,满足企业员工的多样化学习需求。 同时,服务中心还需要建立良好的沟通渠道,与中小企业保持密切联系,了解他们的实际需求和反馈,不断优化和完善服务内容和方式。
2024-12-19
亚马逊大语言模型全景培训
以下是关于亚马逊大语言模型全景培训的相关内容: Andrej Karpathy 亲授的大语言模型入门讲座提到: 1. 大型语言模型(LLMs):神经网络实际上是下一个词预测网络,通过给它一些单词来预测下一个单词。尽管下一个单词预测任务看似简单,但它迫使神经网络学习大量关于世界的信息,并将其编码在参数中。例如,预测关于露丝·汉德勒的内容时,模型参数需学习相关知识。模型推理是生成接下来的单词,通过采样选择单词并反馈回模型获取下一个单词,从而“梦想”出类似互联网文档的内容,如 Java 代码、亚马逊产品、维基百科文章等。 2. 获取辅助模型的方式:保持优化相同,更换训练数据集。过去对互联网文档训练,现在替换为手动收集的数据集,通过雇用人员按标签说明提问并写下答案。预训练阶段文本量大但质量低,第二阶段更看重质量而非数量,文档少但都是高质量对话。 该讲座的作者是天空之城城主,来源为 https://mp.weixin.qq.com/s/fmb4nvIEA9AC5JpNPWN7Q ,宝玉的另一翻译版本为 https://twitter.com/dotey/status/1728959646138880026 。讲座分为三大部分,包括第一部分的大型语言模型(LLMs)、第二部分的 LLM 的未来、第三部分的 LLM 安全性。Andrej Karpathy 近期进行了一场 30 分钟的入门讲座,虽未录制,但因受欢迎决定重新录制并上传至 YouTube 平台。
2024-12-13
企业AI培训
以下是关于企业 AI 培训的相关内容: AI 决策与创新平衡: 在企业中,AI 能提升工作效率,如自动化处理日常任务、生成报告和预测。但过度依赖 AI 可能使员工失去创新空间,如市场部依赖 AI 生成广告创意而非团队讨论。企业需在使用 AI 时确保员工有创新空间和时间,可通过设计跨部门合作项目来实现。从企业 AI 内训经验看,使用 AI 前最好有自身想法和方向,早期将其作为顾问和头脑风暴助手,后期复盘能获得不同视角,同时留意回音壁问题。 深圳 AI 变现沙龙: 包含了 ai 企业培训、ai 广告投放/用户旅程、ai 儿童教育绘本等内容,并提供了相关文档的下载链接。 2025 年数字营销趋势中的弥合 AI 技能差距: 1. 建立内部培训项目:公司应建立满足特定营销需求的 AI 培训项目,涵盖基础技能并提供工具实践机会。 2. 鼓励跨职能合作:促进营销、数据和 IT 团队合作,分享 AI 洞察和最佳实践,共同开发 AI 驱动营销策略。 3. 培养以 AI 为中心的文化:创造重视 AI 技能和创新的工作环境,奖励掌握 AI 技能和实施解决方案的员工,促进持续学习。
2024-12-11
写一份给大学生去新加坡游学的8天方案,有3天在NUS上课,课程主题:人工智能,参访4家相关高科技企业,其中包括阿里一天的培训
以下是为大学生设计的一份去新加坡游学 8 天的方案: 第一天:出发与抵达 从出发地乘坐飞机抵达新加坡樟宜机场。 入住酒店,稍作休息,适应时差。 第二天:NUS 课程第一天 上午:参加 NUS 关于人工智能的课程,了解人工智能的基础概念和发展趋势。 下午:与授课教师和同学进行交流和讨论,加深对课程内容的理解。 第三天:NUS 课程第二天 上午:继续 NUS 的人工智能课程,学习人工智能的技术应用和实际案例。 下午:分组进行项目实践,将所学知识应用到实际问题中。 第四天:NUS 课程第三天 上午:完成 NUS 课程的最后部分,进行课程总结和成果展示。 下午:参观新加坡的一家高科技企业,了解其在人工智能领域的创新成果和运营模式。 第五天:高科技企业参访 上午:参访第二家高科技企业,与企业专家交流,了解行业前沿动态。 下午:参加企业组织的研讨会,探讨人工智能在该企业的具体应用和未来发展方向。 第六天:高科技企业参访与培训 上午:参访第三家高科技企业,深入了解其研发流程和市场策略。 下午:前往阿里进行一天的培训,学习阿里在人工智能方面的先进经验和技术。 第七天:高科技企业参访与文化体验 上午:参访第四家高科技企业,对比不同企业在人工智能领域的特点和优势。 下午:自由活动,体验新加坡的城市文化和生活方式。 第八天:返程 收拾行李,办理退房手续。 前往机场,乘坐飞机返回出发地。 在整个游学过程中,要注意安排好交通、餐饮和住宿等方面的事宜,确保学生的安全和舒适,让学生能够充分学习和体验。
2024-12-03
有AI产品经理的培训课程推荐吗?
以下为您推荐一些 AI 产品经理的培训课程: 1. 《AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会》:课程对 AI 产品经理进行了个人划分,包括入门级、研究级和落地应用级,并指出对 AI 产品经理要求懂得技术框架,关注场景、痛点、价值。 2. 《谷歌 Gemini 多模态提示词培训课——Part3》:介绍了函数调用的应用,展示了 Gemini 在数字营销、教学总结和视频答中的辅助作用,以及自定义函数在处理金融信息时的有效性。 3. 《2 万字长文,如何成为一个“懂”AI 的产品经理?》:讨论了如何成为一名“懂 AI”的产品经理,强调理解 AI 产品的工程化过程和大模型的局限性,产品经理需关注大模型 API 与产品之间的转化等问题。
2024-11-29
我想成为ai培训师,该怎么做
要成为 AI 培训师,您可以参考以下步骤: 1. 扎实的知识基础:深入学习 AI 的相关理论和技术,包括神经网络、机器学习、深度学习等。 2. 教育背景:通过正规的学校教育,获取相关学科的学位,如计算机科学、数学等。 3. 实践经验:参与实际的 AI 项目,积累实践经验,了解 AI 在不同领域的应用。 4. 持续学习:AI 领域发展迅速,要不断跟进最新的研究成果和技术进展。 5. 培养教学能力:掌握有效的教学方法和技巧,能够将复杂的 AI 知识清晰地传授给学员。 6. 了解行业需求:熟悉不同行业对 AI 人才的需求,以便针对性地设计培训课程。 成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。
2024-10-29
如何利用 AIGC 技术实现游戏产业的生产力革命,请结合相关技术的原理和框架图进行阐述
利用 AIGC 技术实现游戏产业的生产力革命主要体现在以下几个方面: 1. 降低开发成本:AIGC 技术能够极大程度地减少游戏开发过程中的人力、物力和时间投入。 2. 缩减制作周期:加快游戏的制作速度,使游戏能够更快地面向市场。 3. 提升游戏质量:例如生成新的高质量游戏内容,如地图、角色和场景,改进游戏的图像和声音效果等。 4. 带来新的交互体验:为玩家提供更加丰富和独特的游戏体验。 游戏人工智能技术的未来发展方向还包括: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所,但将游戏中的技术推广到现实世界应用仍面临诸多挑战,需要进一步研究和发展。 2. 为通用人工智能的孵化给予帮助:经多个复杂游戏训练后的“玩游戏”的人工智能体,将为通用人工智能的发展提供支持。 随着游戏中生成式人工智能革命的进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能,创作者只会受到他们的精力、创造力和想象力的限制。生成式人工智能将通过使游戏创作民主化来改变和颠覆 UGC 游戏领域,让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。
2024-12-24
costar 框架
COSTAR 框架是一个获奖的提示词框架,由 Sheila Teo 开发。作者在新加坡首届 GPT4 Prompt Engineering 大赛中使用该框架并获得冠军。此框架由新加坡政府科技署(GovTech)组织的大赛中产生,汇聚了超过 400 位优秀的参与者。 COSTAR 框架涵盖以下要素: 1. Context(上下文):提供必要的背景信息,帮助大型语言模型(LLM)理解对话或请求的环境和条件。没有足够的上下文,LLM 可能会误解问题或给出不相关的信息。明确的上下文有助于确保 LLM 的回答既准确又相关。例如,如果文章是为一个特定的行业会议撰写,那么上下文中应该包含会议的主题、参与者的背景信息以及任何相关的行业趋势。 2. Objective(目标):明确说明希望从 LLM 那里得到的具体结果或行动。清晰的目标可以帮助 LLM 集中精力解决问题,并减少无关的回答。例如,如果目标是撰写一篇文章,那么应具体说明文章的目的(比如介绍新技术、分析市场趋势等)以及期望达到的效果(比如提高品牌知名度、激发行业讨论等)。 3. Style(风格):明确您期望的写作风格。您可以指定一个特定的著名人物或某个行业专家的写作风格,如商业分析师或 CEO。这将指导 LLM 以一种符合您需求的方式和词汇选择进行回应。 4. Tone(语气):设置回应的情感调。设定适当的语气,确保 LLM 的回应能够与预期的情感或情绪背景相协调。可能的语气包括正式、幽默、富有同情心等。 5. Audience(受众):识别目标受众。针对特定受众定制 LLM 的回应,无论是领域内的专家、初学者还是儿童,都能确保内容在特定上下文中适当且容易理解。 6. Response(回复):规定输出的格式。确定输出格式是为了确保 LLM 按照您的具体需求进行输出,便于执行下游任务。常见的格式包括列表、JSON 格式的数据、专业报告等。对于大部分需要程序化处理 LLM 输出的应用来说,JSON 格式是理想的选择。 在使用大语言模型时,有效的提示构建至关重要。COSTAR 框架,由新加坡政府科技局数据科学与 AI 团队创立,是一个实用的提示构建工具。它考虑了所有影响大语言模型响应效果和相关性的关键因素,帮助您获得更优的反馈。 应用 COSTAR 框架时: 1. (C)上下文:为任务提供背景信息。通过为大语言模型(LLM)提供详细的背景信息,可以帮助它精确理解讨论的具体场景,确保提供的反馈具有相关性。 2. (O)目标:明确您要求大语言模型完成的任务。清晰地界定任务目标,可以使大语言模型更专注地调整其回应,以实现这一具体目标。 3. (S)风格:明确您期望的写作风格。您可以指定一个特定的著名人物或某个行业专家的写作风格,如商业分析师或 CEO。 4. (T)语气:设置回应的情感调。设定适当的语气,确保大语言模型的回应能够与预期的情感或情绪背景相协调。 5. (A)受众:识别目标受众。针对特定受众定制大语言模型的回应,无论是领域内的专家、初学者还是儿童,都能确保内容在特定上下文中适当且容易理解。 6. (R)响应:规定输出的格式。确定输出格式是为了确保大语言模型按照您的具体需求进行输出,便于执行下游任务。常见的格式包括列表、JSON 格式的数据、专业报告等。对于大部分需要程序化处理大语言模型输出的应用来说,JSON 格式是理想的选择。
2024-12-23
输出12个精选prompt框架
以下是 12 种精选的 Prompt 框架: 1. Key Result(关键结果):明确想要的具体效果,通过试验并调整。包括改进输入、改进答案和重新生成等方法。 2. Evolve(试验并改进):三种改进方法自由组合,如从答案不足之处改进背景、目标与关键结果,在后续对话中指正 ChatGPT 答案缺点,或在 Prompt 不变情况下多次生成结果优中选优。 3. CONTEXT(上下文背景):为对话设定舞台。 4. OBJECTIVE(目的):描述目标。 5. ACTION(行动):解释所需的动作。 6. SCENARIO(方案):描述场景。 7. TASK(任务):描述任务。 8. ICIO 框架:相关链接 9. CRISPE 框架:相关链接 10. BROKE 框架:作者陈财猫,相关链接 11. PATFU 泡芙提示词框架:作者口袋君,包括清晰表述需要解决的问题、问题所在领域及需要扮演的角色、解决问题需要执行的具体任务。 12. Format(格式):详细定义输出的格式和限制条件,以及记录提示词版本并根据输出结果对提示词迭代。
2024-12-16
Prompts提示词有哪些写作框架?
以下是一些常见的 Prompts 提示词写作框架: 1. 情境:先描述所处的情境,明确要完成的任务,阐述采取的行动,最后说明期望得到的结果。 2. 假设情景:鼓励探讨假设性场景,例如“假设全球变暖持续恶化,我们需要采取哪些措施应对?” 3. 数据:鼓励使用统计数据或数据支持主张,比如“在关于电动汽车的文章中提供销售数据和环境影响数据。” 4. 个性化:根据用户偏好或特点要求个性化,像“请根据用户对喜剧电影的喜好推荐几部好看的电影。” 5. 语气:指定所需语气,如正式、随意、信息性、说服性,例如“请用正式语气编写一篇关于气候变化的文章。” 6. 格式:定义格式或结构,如论文、要点、大纲、对话,比如“请为我提供一个关于健康饮食的要点清单。” 7. 限制:指定约束条件,如字数或字符数限制,例如“请提供一个关于太阳能的 100 字简介。” 8. 引用:要求包含引用或来源以支持信息,比如“请在关于全球变暖的文章中引用权威研究。” 9. 语言:如果与提示不同,请指明回应的语言,例如“请用法语回答关于巴黎旅游景点的问题。” 10. 反驳:要求解决潜在的反驳论点,比如“针对抵制疫苗接种的观点提出反驳。” 11. 术语:指定要使用或避免的行业特定或技术术语,例如“请用通俗易懂的语言解释区块链技术。” 您可以根据具体需求选择适合的框架来编写提示词。如果您觉得这些框架过于复杂,还可以结合自己的生活或工作场景,想一个能帮助简单自动化的场景,比如自动给班级里的每个孩子起个昵称、自动排版微信群经常发的运营小文案、自动帮您安排周一到周日的减脂餐、帮您列一个清晰的学习计划等。
2024-12-09
生成文章摘要及框架的提示词
以下是关于生成文章摘要及框架的提示词相关内容: 办公通用场景: 总结助手:请帮我总结以下文章,将以下文本总结为 100 个单词,使其易于阅读和理解。摘要应简明扼要,并抓住文本的要点。避免使用复杂的句子结构或技术术语。 周报生成器:根据日常工作内容,提取要点并适当扩充,以生成周报。 相关链接: Chain of Density:为给定文章生成越来越精简且信息丰富的摘要,重复两个步骤 5 次。步骤 1 找出 1 3 项先前摘要中遗漏的信息实体“informative entity”,步骤 2 生成新的更紧凑的摘要,涵盖先前所有信息实体及缺失实体。回复格式为 JSON,包含“Missing_Entities”和“Denser_Summary”两个键值。 利用 AI 打造爆款公众号文章:关键在于提供清晰且具指导性的提示词,好的提示词能让 AI 更准确理解需求并生成符合预期的内容。可从基础提示词进阶到更详细、具创意的提示词,为 AI 设定文章语气、风格和重点,最终产出内容可能需微调以符合预期和公众号风格。
2024-12-05
智能体是什么?设计框架及关键技术是什么?如何从通用大模型搭建一款智能体
智能体是建立在大模型之上的具有特定功能的系统。 其特点包括: 1. 强大的学习能力:能通过大量数据学习,理解和处理语言、图像等多种信息。 2. 灵活性:适应不同任务和环境。 3. 泛化能力:将学到的知识泛化到新情境,解决未见过的类似问题。 智能体的应用领域广泛,如: 1. 自动驾驶:感知周围环境并做出驾驶决策。 2. 家居自动化:根据环境和用户行为自动调节设备。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理提供自动化客户支持。 6. 机器人:各类机器人中的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确需要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 从通用大模型搭建一款智能体,可参考以下流程: 本智能体的实现包含 3 个工作流和 6 个图像流,整体包含 171 个节点。采用单 Agent 管理多工作流策略,流程包括: 1. 信息聚合与数据挖掘:通过高度集成的数据采集机制,全面收集产品关键信息。 2. 卖点提炼与优化:运用先进的大模型分析信息,提炼具有市场竞争力和独特性的卖点。 3. 买点转化与策略应用:将卖点转化为消费者视角的买点,增强产品吸引力。 4. 视觉化信息呈现:设计直观且具有冲击力的卡片展示,确保信息传达的有效性和视觉吸引力。 5. 文案与脚本调整:根据目标受众偏好和媒体渠道,动态调整文案或脚本,实现内容的最佳适配。 6. 流程结果存储与分析:将处理结果系统化地存储到飞书,以供未来策略优化和决策支持。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-04
给我几个可以ai生成动画视频的免费网站
以下是一些可以免费生成动画视频的网站: 1. DomoAI:主打风格转绘,效果稳定,支持多种风格如动画风、粘土风、折纸风、像素风等,还能根据参考图切换视频风格。目前每个账号仅有 15 个免费 credits,仅能生成 3s 视频。网页版访问:https://domoai.app/ 官方推特:https://x.com/DomoAI_ 2. Runway:有网页版和 APP 版,使用方便。网址:https://runwayml.com/ 3. 即梦:剪映旗下,生成 3 秒,动作幅度有很大升级,最新 S 模型,P 模型。网址:https://dreamina.jianying.com/ 4. Kling:支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。网址:kling.kuaishou.com 5. Vidu:网址:https://www.vidu.studio/ 6. haiper:网址:https://app.haiper.ai/ 7. Pika:可控性强,可以对嘴型,可配音。网址:https://pika.art/ 8. 智谱清影:开源了,可以自己部署 cogvideo。网址:https://chatglm.cn/video 9. PixVerse:人少不怎么排队,还有换脸功能。网址:https://pixverse.ai/ 10. luma:网址:https://lumalabs.ai/ 11. Minimax 海螺 AI:非常听话,语义理解能力非常强。网址:https://hailuoai.video/ 12. SVD:对于景观更好用。网址:https://stablevideo.com/
2024-12-25
一个可以文字生成动画的网站
以下是一些可以文字生成动画的网站: 1. Anifusion: 网址:https://anifusion.ai/ Twitter 账号:https://x.com/anifusion_ai 特点:基于人工智能的在线工具,能帮助用户轻松创建专业质量的漫画和动漫作品。即使没有绘画技能,用户只需输入文本描述,AI 就能将其转化为完整的漫画页面或动漫图像。 主要功能: AI 文本生成漫画:用户输入描述性提示,AI 会根据文本生成相应的漫画页面或面板。 直观的布局工具:提供预设模板,用户也可自定义漫画布局,设计独特的面板结构。 强大的画布编辑器:在浏览器中直接优化和完善 AI 生成的艺术作品,调整角色姿势、面部细节等。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型,实现不同的艺术风格和效果。 商业使用权:用户对在平台上创作的所有作品拥有完整的商业使用权,可自由用于商业目的。 使用案例:独立漫画创作、快速原型设计、教育内容创作、营销材料制作、粉丝艺术和同人志创作等。 优点:非艺术家也可轻松进行漫画创作;基于浏览器的全方位解决方案,无需安装额外软件;快速迭代和原型设计能力;创作的全部商业权利。 2. VIGGLE: 核心技术基于 JST1 模型,是首个具有实际物理理解能力的视频3D 基础模型,能够根据用户的需求,让任何角色按照指定的方式进行运动。 核心功能: 可控制的视频生成:用户可以通过文字描述指定角色的动作和场景的细节,Viggle 将根据这些指示生成视频。 基于物理的动画:生成的视频不仅看起来真实,而且角色的动作和互动符合实际物理规律。 3D 角色和场景创建:不仅限于传统的 2D 视频制作,还能够创建 3D 角色和场景。 3. 其他文字生成视频的 AI 产品: Pika:擅长动画制作,并支持视频编辑。 SVD:熟悉 Stable Diffusion 可安装此最新插件,在图片基础上直接生成视频。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-25
网站自动生成及seo自动优化工具
以下是一些网站自动生成及 SEO 自动优化工具: 1. Wix ADI 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA 通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成的 AI 驱动 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是其 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 8. Site123 网址:https://www.site123.com/ 特点:简单易用,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。 常用的 SEO 工具包括:Semrush、Similarweb、Ahrefs、Moz、Google Trends 等。对于新手,谷歌插件 AITDK 能满足基本需求,链接:https://chromewebstore.google.com/detail/aitdkseoextension/hhfkpjffbhledfpkhhcoidplcebgdgbk 。其他免费工具: 1. Broken Link Checker:https://www.brokenlinkcheck.com/ 2. 查找同一域上重复内容:https://www.siteliner.com/ 3. 查找页面副本:https://www.copyscape.com/ 4. 检查是否为 AI 生成内容:https://undetectable.ai/ 5. 本地化网站爬虫检查:https://www.screamingfrog.co.uk/seospider/
2024-12-25
想生成宣传名片,推荐个AGI工具
以下是一些可用于生成宣传名片的 AGI 工具: 1. 谷歌图像生成工具:理解能力强,有使用门槛,不能输入中文,每日免费 500 次,生成速度快,可调整提示词和选项,能根据提示词生成不同风格和复杂程度的图像,随机种子影响生成结果,可提供参考图设置主题场景样式。 2. 纳米搜索反推提示词:可上传图片让其反推 midjourney 提示词,输出效果好,能调用多种模型,查阅资料也可用,会搜索全网并精选资料,还能看到调用的内容和参考资料。 此外,以下是一些常用于营销领域的 AI 工具,也可能对生成宣传名片有所帮助: 1. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频。提供多种定价计划,从免费到商业级不等,可用于制作营销视频、产品演示等。 2. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频。适合制作营销视频和虚拟主持人等。 3. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等。提供多种语气和风格选择,写作质量较高。 4. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容。有免费和付费两种计划。 5. Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等。提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2024-12-25
有没有这些生成式人工智能的url
以下是一些与生成式人工智能相关的 URL: 生成式人工智能简介的视频学习地址: https://youtu.be/G2fqAlgmoPo 中文版本推荐: 生成式人工智能如何改变创意工作相关的框架:NVIDIA 的 2024 年人工智能现状报告链接: 英文解读链接:
2024-12-24
现在市面上面有什么好用的生成式人工智能吗?
目前市面上有许多好用的生成式人工智能,以下为您列举部分: 在文本和图像生成方面,有 OpenAI 的 GPT3(用于文本)、DALLE2(用于图像)、Whisper(用于语音),以及 Midjourney(在艺术竞赛中表现出色)等。 在创建可信角色方面,有 Charisma.ai、Convai.com、Inworld.ai 等,它们旨在为具有情感和自主权的 3D 角色提供动力,并提供工具以便创作者给角色设定目标。 一体化平台方面,Runwayml.com 较为成功,它在一个单一的软件包中汇集了一系列广泛的创作者工具。 在企业应用方面,Menlo Ventures 投资组合公司中的 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)等都是早期突破性的代表。 此外,还有 Google 的 BERT 和 LaMDA、Facebook 的 OPT175B 和 BlenderBot 等。同时,有数百公司正在构建通用聊天机器人,如 Replika 和 Anima 等。但需要注意的是,这些模型的训练通常需要大量数据和计算能力,大多数公司难以从头开始训练自己的此类模型。
2024-12-24