直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

上下文的含义

回答

上下文指对话聊天内容前、后的内容信息。在 AI 领域,其英文通常翻译为 context。使用时,上下文长度和上下文窗口都会影响 AI 大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。

从算法视角看,更宽的上下文窗口允许模型在推理时纳入训练数据中未找到的大量新的、特定于任务的信息,从而提高各种自然语言或多模式任务的性能。对越来越长的上下文进行数据建模的能力有着发展历程:从 Shannon 1948 提出的 2-gram 语言模型、到 1990 年代和 2000 年代的现代 n-gram 模型(5 个上下文 token),2010 年代的循环神经网络(RNN)达到数百个 token(Jozefowicz 等),到 2023 年 Anthropic 将上下文扩展到几十万 token。

从产品视角看,长上下文意味着 LLM 理解能力增强。从提示词到 RAG,都是为了增加给模型的上下文,进而让需求更明确,让模型理解得更好。从用数据训练模型、到指令微调,到提示词和 RAG,到大模型的超长下文,机器越来越像人了。提示词和 RAG 正在快速被弱化,但出于工程和商业考量,目前在很多领域还是主流,未来依然可能是一个混合状态。

模型上下文长度覆盖了书籍、电影、长视频等产品的通用长度,应该会引发相关链路上产品交互层的变化,这一点值得观察。

在提示词中,上下文包含外部信息或额外的上下文信息,能够引导语言模型更好地响应。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Gemini1.5笔记 | 100万token上下文意味着什么

算法视角:更宽的上下文窗口允许模型在推理时纳入训练数据中未找到的大量新的、特定于任务的信息,从而提高各种自然语言或多模式任务的性能……对越来越长的上下文进行数据建模的能力follow了这个发展历程:从Shannon 1948提出的2-gram语言模型、到1990年代和2000年代的现代n-gram模型(5个上下文token),2010年代的循环神经网络(RNN)达到数百个token(Jozefowicz等),到2023年Anthropic将上下文扩展到几十万token。产品视角:长上下文意味着LLM理解能力增强。从提示词到RAG,都是为了增加给模型的上下文,进而让需求更明确,让模型理解得更好。从用数据训练模型、到指令微调,到提示词和RAG,到大模型的超长下文,机器越来越像人了。提示词和RAG正在快速被弱化,但出于工程和商业考量,目前在很多领域还是主流,未来依然可能是一个混合状态。模型上下文长度覆盖了书籍、电影、长视频等产品的通用长度,应该会引发相关链路上产品交互层的变化,这一点值得观察。One more thing:在公众号发送“1.5",获取Gemini1.5技术报告的中英文版。-END-

走入AI的世界

[title]走入AI的世界[heading2]3清楚原理:必须理解的核心概念和听得懂的底层原理[heading4]3.1必须理解的核心概念首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

提示词要素

[title]提示词要素如果您接触过大量提示工程相关的示例和应用,您会注意到提示词是由一些要素组成的。提示词可以包含以下任意要素:指令:想要模型执行的特定任务或指令。上下文:包含外部信息或额外的上下文信息,引导语言模型更好地响应。输入数据:用户输入的内容或问题。输出指示:指定输出的类型或格式。为了更好地演示提示词要素,下面是一个简单的提示,旨在完成文本分类任务:提示词在上面的提示示例中,指令是“将文本分类为中性、否定或肯定”。输入数据是“我认为食物还可以”部分,使用的输出指示是“情绪:”。请注意,此基本示例不使用上下文,但也可以作为提示的一部分提供。例如,此文本分类提示的上下文可以是作为提示的一部分提供的其他示例,以帮助模型更好地理解任务并引导预期的输出类型。注意,提示词所需的格式取决于您想要语言模型完成的任务类型,并非所有以上要素都是必须的。我们会在后续的指南中提供更多更具体的示例。

其他人在问
现在的大模型应用都没有记忆能力需要在每次调用时输入上下文?
目前的大模型应用本质上通常没有直接的记忆功能。以 ChatGPT 为例,它能理解用户的交流内容并非因为自身具备记忆能力,而是每次将之前的对话内容作为新的输入重新处理。这种记忆功能实际上是通过在别处进行存储来实现的。 对于大模型的工作原理,在回复时是一个字一个字地推理生成内容,会根据输入的上下文来推测下一个字。但大模型的学习数据规模庞大,若每次计算都带入全量数据,算力难以承受,且仅算字的概率容易受不相干信息干扰,词向量机制和 transformer 模型中的 attention 自注意力机制解决了这些难题。 另外,系统的内存是大模型的上下文窗口,如 Google Gemini 1.5 Pro 实验版已将其提升到一千万。但窗口越大推理越慢,且模型可能失焦降低准确度,研发团队需平衡吞吐量、速度和准确度。在模型外,操作系统的其他部件如文件系统能让模型具备无限记忆的能力,而大模型应用领域常用的方法如 RAG 能让模型用自定义数据生成结果,处理无尽的私有数据。
2024-10-08
微信机器人回答问题联系上下文
以下是关于微信机器人回答问题联系上下文的相关信息: 对于纯 GPT 大模型能力的微信聊天机器人搭建,有以下疑问解答方式: 1. 查阅官方文档和教程:极简未来平台、宝塔面板和 Docker 都有详细的官方文档和教程,可解决大部分问题。 2. 联系技术支持:极简未来平台提供技术支持服务,可联系其技术团队寻求帮助。 3. 加入技术社群:加入相关技术社群,向有经验的用户请教,获取问题解决方案。 4. 在线论坛和社区:在在线论坛和社区发布问题,寻求其他用户的帮助和建议。 若担心运维时间长会忘记操作步骤,可采取以下措施: 1. 制作操作手册:将每一步操作记录下来,方便日后查阅。 2. 定期操作:定期登录服务器,进行简单操作和维护,保持熟练度。 3. 视频教程:录制自己的操作视频,日后查看更直观。 4. 自动化脚本:对于常见运维任务,编写自动化脚本简化操作步骤。 DIN 提供的全程白嫖的 AI 大模型微信助手,能解答任何问题,可接入微信或群聊为用户提供自动答疑服务,还能投喂特定知识,成为客服、专业老师或知识备忘录。无需技术知识,小白也能轻松搭建,全程只需复制粘贴,可自定义知识库,满足不同需求,支持多场景应用,如客服、教育、个人知识管理等,全程免费。 张梦飞的超级微信机器人当前能力已接入,但仍有优化点需要调整,比如分段发送、收图发图、无需@等,后续会更新。若遇到问题,可添加其微信获得帮助。
2024-09-02
你在设计大模型语音座舱功能,怎么设计上下文多轮对话的场景,比如否定、指代、延展等
在设计大模型语音座舱功能中的上下文多轮对话场景时,对于否定的情况,需要准确识别用户表达的否定意图,并据此调整后续的回应策略。例如,当用户说“不要这样做”,系统要理解并停止当前可能进行的相关操作。 指代方面,要能够解析用户话语中的各种指代关系,比如“那个东西”“这个方案”等,通过上下文和语境来明确其具体所指。 延展的场景设计则要鼓励用户进一步展开话题,例如当用户提到一个主题后,系统可以通过提问或提供相关信息来引导用户深入阐述,比如“能再多和我讲讲吗?”或者“那您对这方面还有其他的想法吗?”
2024-08-27
Poe上免费可用的模型中,哪一个可接受的上下文最长
Cocos Creator 是一个跨平台的游戏开发工具,它支持开发者使用JavaScript和TypeScript来创建2D和3D游戏。以下是一些学习 Cocos Creator 的基本步骤: 1. 了解基础知识: 学习基本的游戏开发概念,如游戏循环、物理引擎和用户输入。 了解JavaScript或TypeScript的基础知识,因为Cocos Creator主要使用这两种语言。 2. 下载并安装 Cocos Creator: 访问 Cocos Creator 的官方网站并下载最新版本。 安装软件,并确保你的计算机满足所有系统要求。 3. 阅读官方文档: Cocos Creator 官方文档是学习的最佳资源,它详细介绍了如何使用编辑器、创建游戏、编写代码等。 4. 观看教程: 网络上有许多视频教程,这些教程可以帮助你快速入门。 官方也提供了一些入门教程,适合初学者。 5. 创建第一个项目: 按照教程或文档中的指导,创建并运行你的第一个项目。 熟悉项目结构、编辑器界面和基本操作。 6. 学习编辑器功能: 学习如何使用场景编辑器、动画编辑器、粒子系统等。 理解资源管理器、组件系统和脚本编写。 7. 编写代码: 学习如何编写脚本来控制游戏对象的行为。 熟悉Cocos Creator的API和框架。 8. 实践: 通过创建小项目来实践所学知识。 尝试实现不同的游戏机制和功能。 9. 加入社区: 加入Cocos Creator社区,如论坛、QQ群、微信群等。 与其他开发者交流,获取帮助和灵感。 10. 阅读源码: 研究官方示例项目的源代码,了解如何实现特定功能。 11. 持续学习: 游戏开发是一个不断变化的领域,持续学习新技术和最佳实践。 12. 构建项目: 学习如何构建项目,以便在不同的平台上运行,如iOS、Android、Web等。 13. 调试和优化: 学习如何调试代码和优化游戏性能。 14. 发布游戏: 了解如何将游戏发布到不同的平台。 通过这些步骤,你可以逐步建立起对 Cocos Creator 的深入理解,并开始创建自己的游戏项目。记得实践是学习的关键,不断尝试和犯错将帮助你更快地成长。
2024-05-28
多模态上下文语义识别
多模态上下文语义识别是指通过理解和分析多种不同模态的信息(如文本、图像、声音等)来识别和解释其背后的含义和上下文关系的技术。这种技术在人工智能和机器学习领域正变得越来越重要,因为它可以帮助机器更好地理解和模拟人类的多感官体验。 例如,在处理一段包含文本和图像的新闻报道时,多模态上下文语义识别技术可以同时分析文本内容、图像中的物体和场景,以及可能的语音信息,从而更准确地理解整个报道的主题和情感倾向。 这项技术涉及的几个关键点包括: 1. 数据融合:如何有效地结合来自不同模态的信息,以便进行统一的语义理解。 2. 跨模态学习:通过训练模型来识别和关联不同模态之间的潜在联系。 3. 上下文理解:不仅理解单个模态的局部信息,而且理解多个模态组合在一起时的整体上下文。 4. 语义表示:如何将不同模态的信息转换为统一的语义表示形式,以便进行进一步的分析和处理。 在应用层面,多模态上下文语义识别技术已经在诸如情感分析、信息检索、智能问答、内容审核等多个领域展现出其潜力。随着技术的不断进步,未来这一领域有望实现更多突破性的应用。
2024-04-18
Ai相关缩写及对应含义
以下是一些常见的 AI 相关缩写及对应含义: AI:Artificial Intelligence,人工智能,一种目标,让机器展现智慧。 GenAI:Generative AI,生成式人工智能,一种目标,让机器产生复杂有结构的内容。 LLMs:Large Language Models,大语言模型,是一类具有大量参数的“深度学习”模型。 AIGC:Artificial Intelligence Generated Content,人工智能生成内容,是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等。 ANI:artificial narrow intelligence,弱人工智能,只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 AGI:artificial general intelligence,通用人工智能,能做任何人类可以做的事。
2024-11-08
AI相关常见缩写及对应含义,包含例如prompt,rag
以下是一些 AI 相关的常见缩写及对应含义: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可理解为与大模型说的话或下达的指令,其质量会显著影响大模型回答的质量。 Token:大模型语言体系中的最小单元。不同厂商的大模型对中文的文本切分方法不同,通常 1Token≈12 个汉字。大模型的收费计算及输入输出长度限制常以 token 为单位计量。 上下文(context):指对话聊天内容前、后的内容信息,其长度和窗口会影响大模型回答的质量。 在 AI 绘画中,常见的画面构图提示词有: 视图相关:Bottom view(底视图)、front,side,rear view(前视图、侧视图、后视图)、product view(产品视图)、extreme closeup view(极端特写视图)、look up(仰视)、firstperson view(第一人称视角)、isometric view(等距视图)、closeup view(特写视图)、high angle view(高角度视图)、microscopic view(微观)、super side angle(超博角)、thirdperson perspective(第三人称视角)、Aerial view(鸟瞰图)、twopoint perspective(两点透视)、Threepoint perspective(三点透视)、portrait(肖像)、Elevation perspective(立面透视)、ultra wide shot(超广角镜头)、headshot(爆头)、a crosssection view of)
2024-11-08
Ai常见缩写及含义
以下是一些 AI 常见缩写及含义: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),即处理和理解人类语言 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多 chatGPT:由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM 此外,还有一些相关的术语: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用 关于机器学习: 机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近 30 多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 关于自然语言: 自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。自然语言处理是人工智能和语言学领域的分支学科,此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。 关于 AI 的推理: 推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。 关于 AI 的训练: 训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。
2024-11-08
AI常见缩写及对应含义
以下是 AI 常见的缩写及对应含义: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing) LLM:大型语言模型(Large Language Model) chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 此外,还有一些其他相关缩写及含义: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用 AI 的应用场景包括: 1. 医疗保健: 医学影像分析:AI 可用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据,辅助投资者决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题,解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(未给出具体应用场景)
2024-11-08
AI 大模型命名 带有-instruct的含义
AI 大模型中带有“instruct”通常与指令微调相关。在大模型的训练过程中,指令微调是其中一个重要阶段。此阶段模型被训练以理解并执行具体指令,例如翻译文本等,从而能够回答问题。指令微调阶段输入的内容通常包括三个部分,如“Instruct:请你翻译下面这段话”“Input:一段英文”“Output:一段中文”。通过指令微调,模型能够更好地按照人类的期望和具体要求进行输出。
2024-09-19