在慢病管理中,大语言模型具有以下应用:
[title]走入AI的世界[heading2]3清楚原理:必须理解的核心概念和听得懂的底层原理[heading4]3.1必须理解的核心概念首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)
“小模型”确实有其优势,尤其是在特定任务上表现得非常出色。比如,如果你训练了一个专门识别猫🐱或狗🐶的模型,它在这个任务上可能非常精准。然而,这个模型就无法用于其他任务(因为用来训练模型的数据主要是由猫猫狗狗的照片组成的)。而“大模型”则不同,它像一个多功能的基础平台(有时也被称为“基座模型”)。大模型可以处理多种不同的任务,应用范围非常广泛,并且拥有更多的通识知识。这就是为什么尽管“小模型”在某些特定领域内表现优异,我们仍然需要“大模型”的原因:它们能够在更广泛的场景中提供支持和解决问题。[heading1]问题十一、大模型拥有无限知识吗?[content]大模型并不拥有无限知识。大模型的知识来源于它们在训练过程中接触到的数据,而这些数据是有限的。虽然大模型可以处理和生成大量的信息,但它们的知识来自于它们所训练的数据集,这些数据集虽然庞大,但仍然是有限的。因此,大模型只能回答它们在训练过程中见过或类似的问题。大模型在训练之后,其知识库不会自动更新。也就是说,它们无法实时获取最新的信息,除非重新训练或通过其他方式更新模型。大模型在某些特定或专业领域的知识可能不够全面,因为这些领域的数据在训练集中可能较少。[heading1]问题十二、大型语言模型的运作机制是什么?[content]大型语言模型的运作机制主要是通过大量的数据训练来学习语言的结构和模式,然后根据输入生成相应的文本。这些模型通过阅读大量的文本数据,学习到语言中的词汇、语法、句子结构以及上下文关系。当你给它一个输入时,它会根据这些学习到的知识生成一个连贯的回答。所以它永远在猜测下一个字符将要生成什么,类似于词语接龙游戏。
[title]ChatGPT是在做什么,为什么它有效?[heading2]那么这些概率从何而来呢?那么我们该怎么办?大的想法是制作一个模型,让我们估计序列应该出现的概率,即使我们在查看的文本语料库中从未明确看到这些序列。而ChatGPT的核心正是一个被称为“大型语言模型”(LLM)的模型,,它的设计使得它在估计这类概率方面做得很好。