Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大语言模型慢病管理

Answer

以下是关于大语言模型的相关知识:

  1. 大模型对于数学计算的解决办法:
    • 引入编程插件:将数学问题转化为编程问题,引入插件处理,编写代码执行计算并返回结果。
    • 教会模型数学法则:教导语言模型数学计算规则,定义计算步骤。
    • 标准化自然数加法计算 prompt 模板:创建标准模板,让模型按规则执行加法计算。
    • 结合图像模型:对于涉及空间概念的数学问题,结合图像模型辅助处理。
    • 提供充足的语料和样本:提供更多数学计算样本和语料,通过训练提高模型计算能力。
  2. 大语言模型设置:
    • Temperature:参数值越小,模型返回结果越确定;调高参数值,结果更随机、多样化或具创造性。对于质量保障等任务设低值,诗歌生成等设高值。
    • Top_p:用于控制模型返回结果的真实性,需要准确答案时调低,想要多样化答案时调高,一般调整其中一个参数。
    • Max Length:控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。
    • Stop Sequences:指定字符串阻止模型生成 token,控制响应长度和结构。
    • Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。
  3. RAG 系统开发中的备用模型策略:在使用大语言模型时,可能担心遇到如 OpenAI 模型的访问频率限制错误等问题,此时需要一个或多个备用模型。如 Neutrino 路由器,它是能够处理各种查询的大语言模型集群,利用先进预测模型智能选择适合问题的模型,提升处理效果、节约成本并减少等待时间。LlamaIndex 已通过其 llms 模块中的 Neutrino 类加入对 Neutrino 的支持。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:大模型对于数学计算的一些解决办法

[title]问:大模型对于数学计算的一些解决办法大型语言模型在处理数学计算时,尤其是复杂的数学问题时,可能会遇到一些困难。以下是一些解决办法,以帮助大型语言模型更好地处理数学计算:1.引入编程插件:一种解决方案是将数学问题转化为编程问题,并引入编程插件来处理。通过编写代码来执行数学计算,然后将结果返回给语言模型,以获取正确答案。2.教会模型数学法则:类似于小学生学习加法法则的方式,可以教导语言模型数学计算的规则。通过定义数学计算的规则和步骤,让语言模型学习如何正确执行数学运算。3.标准化自然数加法计算prompt模板:创建一个标准的自然数加法计算prompt模板,使语言模型能够按照预定义的规则和步骤来执行加法计算。这种方法可以帮助模型更好地理解和解决数学问题。4.结合图像模型:对于涉及空间概念的数学问题,可以结合图像模型来辅助处理。图像模型可以帮助模型更好地理解几何问题,并提供更准确的答案。5.提供充足的语料和样本:为语言模型提供充足的数学计算样本和语料,让模型能够从中学习并改进数学计算能力。通过更多的训练和数据,模型可以提高对数学问题的理解和处理能力。通过以上方法,大型语言模型可以更好地处理数学计算,并提供更准确的答案。这些方法可以帮助克服语言模型在数学问题上的一些局限性,提高其数学计算能力。内容由AI大模型生成,请仔细甄别

大语言模型设置

[title]大语言模型设置使用提示词时,您会通过API或直接与大语言模型进行交互。你可以通过配置一些参数以获得不同的提示结果。调整这些设置对于提高响应的可靠性非常重要,你可能需要进行一些实验才能找出适合您的用例的正确设置。以下是使用不同LLM提供程序时会遇到的常见设置:Temperature:简单来说,temperature的参数值越小,模型就会返回越确定的一个结果。如果调高该参数值,大语言模型可能会返回更随机的结果,也就是说这可能会带来更多样化或更具创造性的产出。我们目前也在增加其他可能token的权重。在实际应用方面,对于质量保障(QA)等任务,我们可以设置更低的temperature值,以促使模型基于事实返回更真实和简洁的结果。对于诗歌生成或其他创造性任务,你可以适当调高temperature参数值。Top_p:同样,使用top_p(与temperature一起称为核采样的技术),可以用来控制模型返回结果的真实性。如果你需要准确和事实的答案,就把参数值调低。如果你想要更多样化的答案,就把参数值调高一些。一般建议是改变Temperature和Top P其中一个参数就行,不用两个都调整。Max Length:您可以通过调整max length来控制大模型生成的token数。指定Max Length有助于防止大模型生成冗长或不相关的响应并控制成本。Stop Sequences:stop sequence是一个字符串,可以阻止模型生成token,指定stop sequences是控制大模型响应长度和结构的另一种方法。例如,您可以通过添加“11”作为stop sequence来告诉模型生成不超过10个项的列表。Frequency Penalty:frequency penalty是对下一个生成的token进行惩罚,这个惩罚和token在响应和提示中出现的次数成比例,frequency penalty越高,某个词再次出现的可能性就越小,这个设置通过给重复数量多的Token设置更高的惩罚来减少响应中单词的重复。

RAG 系统开发中的 12 大痛点及解决方案

Neutrino路由器是一个能够处理你提出的各种查询的大语言模型集群。它利用一个先进的预测模型,智能地选择最适合你问题的大语言模型,既提升了处理效果,也节约了成本并减少了等待时间。目前,Neutrino支持[多达十几种不同的模型](https://docs.neutrinoapp.com/gateway/models),如果你有需要新增的模型,可以随时联系他们的客服团队。你可以在Neutrino的用户面板中自由选择你喜欢的模型来创建一个专属路由器,或者直接使用包含所有支持模型的“默认”路由器。LlamaIndex已经通过其llms模块中的Neutrino类,加入了对Neutrino的支持。详细信息请参见以下代码示例,更多细节可查阅[Neutrino AI页面](https://docs.llamaindex.ai/en/stable/examples/llm/neutrino.html)。

Others are asking
慢病管理中大语言模型的应用
在慢病管理中,大语言模型具有以下应用: 核心概念: LLM(Large language model):即大语言模型,是当前讨论的主要对象。 Prompt(提示词):输入给大模型的文本内容,其质量会显著影响回答质量。 Token:大模型语言体系中的最小单元,不同厂商对中文的切分方法不同,通常 1Token 约等于 1 2 个汉字,大模型的收费和输入输出长度限制常以 Token 为单位计量。 上下文(context):指对话聊天内容前、后的内容信息,其长度和窗口会影响回答质量。 大模型的优势与局限: 优势:大模型像多功能的基础平台,能处理多种任务,应用广泛且有更多通识知识,能在更广泛场景中提供支持和解决问题。 局限:不拥有无限知识,知识来源于有限的训练数据,只能回答训练中见过或类似问题,训练后知识库不会自动更新,在特定或专业领域知识可能不够全面。 运作机制:通过大量数据训练学习语言结构和模式,根据输入生成相应文本,估计序列出现的概率,类似于词语接龙游戏。
2024-10-25
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
最好的代码模型是?
目前对于“最好的代码模型”没有一个绝对的定论。以下为您介绍一些常见且受到关注的代码模型: 许多人认为 3.5 Sonnet 是较好的代码模型,但它没有相关论文。 开放代码模型方面,您可以从 DeepSeekCoder(https://ar5iv.labs.arxiv.org/html/2401.14196?_immersive_translate_auto_translate=1)、Qwen2.5Coder(https://arxiv.org/html/2409.12186?_immersive_translate_auto_translate=1)或 CodeLlama 中选择。 智谱·AI 开源模型列表中的代码模型有: CodeGeeX26B:是 CodeGeeX 的第二代模型,基于 ChatGLM2 架构加入代码预训练实现,在多项指标上有性能提升。 CodeGeeX26Bint4:CodeGeeX2 的量化版本。 CodeGeeX13B:第一代 CodeGeeX,具有 130 亿参数的多编程语言代码生成预训练模型。 需要注意的是,最好的模型将来自优秀的人类数据和合成数据的结合,同时对于模型的评估还涉及到如“氛围感”等较主观和难以量化的方面。
2025-04-08
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
学习大模型请给我一张知识图谱
以下是为您提供的大模型知识图谱: 1. 非技术背景,一文读懂大模型 整体架构 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等。 数据层:企业根据自身特性维护的垂域数据,分为静态的知识库和动态的三方数据集。 模型层:LLm 或多模态模型,LLm 即大语言模型,如 GPT,一般使用 transformer 算法实现;多模态模型包括文生图、图生图等,训练所用数据与 llm 不同,用的是图文或声音等多模态的数据集。 平台层:模型与应用间的平台部分,如大模型的评测体系,或者 langchain 平台等。 表现层:也就是应用层,用户实际看到的地方。 2. AI Agent 系列:Brain 模块探究 知识 内置知识 常识知识:包括日常生活中广泛认可的事实和逻辑规则,帮助智能体具备泛化能力。 专业知识:涉及深入特定领域的详细信息,如医学、法律、科技、艺术等领域的专有概念和操作方法。 语言知识:包括语法规则、句型结构、语境含义以及文化背景等,还涉及非文字部分如语调、停顿和强调等。 3. 大模型入门指南 通俗定义:输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。 类比学习过程 找学校:训练 LLM 需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练大模型。 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 找老师:用算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 就业指导:为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 Token:被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时,会对其进行数字化,形成词汇表。
2025-04-07
目前的大模型ai工具中 你觉得文本处理 写作这方面那个工具最强 最像人
目前在大模型 AI 工具中,对于文本处理和写作方面,以下是一些相关信息: 生成式人工智能的工作原理:在整体的人工智能领域,监督学习用于标记事物,一直占据很大比例。现在生成式 AI 快速崛起,强化学习与无监督学习也是重要工具。生成式 AI 由监督学习技术搭建,大语言模型使用监督学习不断预测下一个词语来生成文本,这需要大量数据。 大语言模型的应用:运用大语言模型写故事、修改文本很有用,但它可能编造故事产生错误信息,需要鉴别信息准确。网络搜索与大语言模型的区别在于网络搜索可追寻信息来源,大语言模型能提供建议与策略。 写作方面:使用大模型工具如 LLM 来写作,集思广益、头脑风暴非常有用。网页版聊天时提供更多信息,翻译也可使用 LLM,但其效果受网络文本量影响。 推荐的大模型工具:chatGPT 4.0、kimichat、智谱清言 4 等。一些国产模型如智谱和文心可以文生图。 相关工具:除了 Snapbox 外,还有 OpenCAT 等类似工具可供选择。有多种文本处理与总结工具,如 kimi 网页总结助手、ChatHub 等,以及翻译插件与 AI 对话插件、沉浸式翻译插件等。Memo Al 可以对音频视频进行转文字、字幕翻译、语音合成等,并由多种 AI 模型提炼内容精华总结、生成思维导图。 综合来看,不同的大模型工具在文本处理和写作方面各有特点,难以简单地确定哪一个最强、最像人,具体取决于您的需求和使用场景。
2025-04-01
写代码的最佳模型
写代码的最佳模型取决于具体的需求和任务。以下是一些相关要点: 1. 对于不同人使用同一个模型,结果差异大的原因在于是否懂 AI 和懂内容,专业写作通常会混合使用多个模型并取其精华,例如 Grok、Gemini、GPT 各有优势,关键在于如何运用。 2. 在需要精确计算时,可以使用代码或调用 API。GPT 自身进行算术或长计算可能不准确,此时应让模型编写并运行代码,运行代码输出结果后,再将其作为输入提供给模型进行下一步处理。同时调用外部 API 也是代码执行的一个好的用例,但执行代码时要注意安全性,需采取预防措施,特别是需要一个沙盒化的代码执行环境来限制不可信代码可能造成的危害。 3. 文本补全端点可用于各种任务,它提供了简单且强大的接口连接到任何模型。输入一些文本作为提示,模型会生成文本补全,试图匹配给定的上下文或模式。探索文本补全的最佳方式是通过 Playground,它是一个文本框,可提交提示生成完成内容。由于 API 默认是非确定性的,每次调用可能得到稍有不同的完成,将温度设置为 0 可使输出大部分确定,但仍可能有小部分变化。通过提供指令或示例可以“编程”模型,提示的成功通常取决于任务复杂性和提示质量,好的提示应提供足够信息让模型明确需求和回应方式。 需要注意的是,默认模型的训练数据截止到 2021 年,可能不了解当前事件情况。
2025-04-01
大语言模型能力排行榜
以下是一些大语言模型能力排行榜的相关信息: Open LLM Leaderboard: 地址: 简介:由HuggingFace组织的一个LLM评测榜单,目前已评估了较多主流的开源LLM模型。评估主要包括AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA四个数据集上的表现,主要以英文为主。 chinesellmbenchmark: 地址: 简介:中文大模型能力评测榜单,覆盖百度文心一言、chatgpt、阿里通义千问、讯飞星火、belle/chatglm6b等开源大模型,多维度能力评测。不仅提供能力评分排行榜,也提供所有模型的原始输出结果。 聊天机器人竞技场:由伯克利的一个团队管理,根据ELO评级对不同的语言模型进行排名,计算ELO的方式与国际象棋中的计算方式非常相似。 智源评测:豆包模型在其中表现出色,荣获大语言模型第一,视觉理解第二、文生图第二、文生视频第二,在匿名投票竞技场中排名第二,仅次于OpenAI。 地址:
2025-03-31
自然语言转换为sql
以下是关于自然语言转换为 SQL 的相关信息: DuckDBNSQL7B 模型能够将自然语言转换成 SQL 代码,使非专业用户能轻松与数据库交互,它基于大量真实和合成的 DuckDB SQL 查询训练。相关链接:https://github.com/NumbersStationAI/DuckDBNSQL 、https://x.com/xiaohuggg/status/1751081213459415164?s=20 Claude 官方提示词中有将日常语言变成 SQL 查询语句的相关内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)
2025-03-31
flowith根据自然语言构建一个直接使用的工作流吗,如何向flowith提出要求
Flowith 可以根据自然语言构建工作流。即使没有专业编程技能,只要能用清晰的自然语言描述出想要的各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。 使用工作流的步骤如下: 1. 配置工作流: 在 Code 节点内使用 IDE 工具,通过 AI 自动生成代码或编写自定义代码逻辑,来处理输入参数并返回响应结果。 该节点支持 JavaScript、Python 运行时,需注意不同运行时的特定事项。 可在 IDE 底部单击尝试 AI,并输入自然语言设定代码逻辑,也可选中代码片段通过快捷键唤起 AI 并输入自然语言让其修改代码。 2. 通过工作流数据库节点操作数据表: 在工作流中添加数据库节点对数据表进行操作,可通过 NL2SQL 方式和代码方式进行调用,支持完整读写模式。 参考以下操作添加并配置工作流节点: 单击页面顶部的工作流页签,然后单击创建工作流。 输入工作流名称和使用描述,然后单击确认。 在基础节点页签下,将数据库节点拖入到工作流配置画布区域。 根据相关信息配置数据库节点,包括输入添加 SQL 执行中需要的参数,输入要执行的 SQL 语句,可单击自动生成使用大模型生成 SQL。 需注意不支持 Select语法、多表 Join 操作,最多返回 100 行数据。在配置数据库节点前,要确保已经搭建了一个 Bot,并在这个 Bot 中创建好了数据表。
2025-03-26
好用的大语言模型
目前好用的大语言模型有以下几种: 1. OpenAI 的 GPT4:是最先进和广泛使用的大型语言模型之一,在多种任务上表现卓越,包括文本生成、理解、翻译以及各种专业和创意写作任务。 2. Anthropic 公司的 Claude 3:在特定领域和任务上表现出色。 3. 谷歌的 Gemini。 4. 百度的文心一言。 5. 阿里巴巴的通义大模型:通义千问 2.0 在代码、上下文对话基础能力上排名国内第一,各项能力较为均衡,位于国内大模型第一梯队。适用于金融、医疗、汽车等垂直专业场景,以及代码生成与纠错、实时搜索信息、通用工具调用、办公等场景。 6. OPPO 的 AndesGPT:具有对话增强、个性专属和端云协同三大技术特征,已接入 OPPO 智能助理新小布,可用于用机助手、内容创作、超级问答、专属 AI、日程管理等全新能力,聚焦在移动设备端的应用。 7. 百川智能的 Baichuan213BChat:在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名 200 亿参数量级国内模型第一,可应用场景广泛且可以私有化部署。 如果想了解国内的大模型效果,可以参考第三方基准评测报告: 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-26
国内主流的大语言模型公司有哪几家
国内主流的大语言模型公司主要有以下几家: 1. 百度:其文心一言大语言模型可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成等。 2. 阿里巴巴:拥有通义大模型。 3. 北京智源人工智能研究院:推出了“悟道・天鹰”,是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。
2025-03-20
国内的大语言模型清单
以下是一些国内的大语言模型: 1. 文心一言:可用于文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成等。 2. 讯飞星火:通用模型,处理自然语言。 3. “悟道・天鹰”(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 此外,如果想了解国内大模型的效果,可以参考第三方基准评测报告:
2025-03-20
帮我写一个基于python的新能源充电桩管理平台
很抱歉,目前知识库中没有关于基于 Python 的新能源充电桩管理平台的相关内容。但我可以为您提供一个大致的框架和思路,您可以根据实际需求进一步完善和开发。 首先,您需要确定管理平台的功能需求,例如用户注册与登录、充电桩信息管理(包括位置、状态、充电功率等)、充电订单管理、计费系统、数据分析与报表等。 在技术实现方面,您可以使用 Python 的 Web 框架,如 Django 或 Flask 来构建 Web 应用。数据库可以选择 MySQL 或 PostgreSQL 来存储相关数据。 对于充电桩的状态监测和控制,可以考虑使用物联网技术,通过传感器获取充电桩的实时状态,并通过网络将数据传输到管理平台。 在计费系统方面,需要设计合理的计费规则和算法,并确保数据的准确性和安全性。 希望以上内容能为您提供一些帮助,祝您开发顺利!
2025-03-31
供应链管理
在制造业中,AI 在供应链管理方面有以下应用: 1. 根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 2. 模拟不同的市场条件和供应链动态,优化库存管理和物流配送。 在 B 端,供应链管理可能是大模型服务的辐射范围之一,但在面对复杂的巨头/独角兽公司业务时,不太可能仅用 GPT 解决。目前可能还未达到解决相关能力问题的时候,可通过将私有领域知识训练在私有模型或训练小模型、构建请求链等方式来解决。 总的来说,AI 技术正在为供应链管理带来诸多优化和改进。
2025-03-27
ai每次使用都要打开一个新对话吗,日常怎么管理ai的对话,让内容不凌乱
在使用 AI 时,开启新对话在大部分情况下几乎是必然的。为了让新对话中的内容尽量准确还原之前的风格,您可以采取以下方式来管理对话,避免内容凌乱: 1. 让 AI 总结当前的美学风格,并记录下来。这可以是一段文字,也可以同时生成一个 CSS 样式并保存。例如记录颜色、布局、字体等方面的信息。 2. 在多次会话中完成一个项目时,保持代码风格和架构的一致性是一个挑战。这可能需要定期回顾和总结已完成的部分,为 AI 提供清晰的编码指南,并在每次新会话开始时重申项目的整体结构。 3. 与 AI 沟通时,要像管理员工一样,前期投入精力清晰简洁地描述具体要求。例如在生成 PPT 样式时,尽量在 5 次对话内得到理想模板,若超过 5 次效果仍差很远,可考虑清除上下文或重新开启新对话。 4. 对于生成的 PPT 模板风格,您可以选择让 AI 记住直接进入下一阶段,或者让其抽象成一种它能理解的风格。前者速度快,适用于临时出几页 PPT;后者能在一定程度上保证风格的精确性,但在单次对话下多次生成对 token 的消耗较大。
2025-03-26
生成一个建筑项目管理系统
很抱歉,目前没有关于生成建筑项目管理系统的具体内容。但一般来说,生成一个建筑项目管理系统需要以下步骤: 1. 需求分析:明确系统的功能需求,例如项目规划、进度跟踪、资源管理、成本控制、质量管理等。 2. 技术选型:根据需求选择合适的技术框架和开发工具。 3. 数据库设计:构建能够存储项目相关数据的数据库结构。 4. 功能模块开发:逐步实现各个功能模块,如项目创建、任务分配、进度更新等。 5. 界面设计:设计简洁、易用的用户界面,方便用户操作。 6. 测试与优化:对系统进行全面测试,修复漏洞和优化性能。 7. 部署与维护:将系统部署到生产环境,并持续进行维护和改进。 由于缺乏具体的细节和要求,以上只是一个大致的框架,实际的生成过程会更加复杂和具体。
2025-03-23
作为企业管理者,面对AI的到来,应该主动学习哪些板块功能。能带来哪些增效
作为企业管理者,面对 AI 的到来,应主动学习以下板块功能,以带来增效: 1. 法律法规方面:了解如《促进创新的人工智能监管方法》等相关法规,明确在 AI 应用中的责任和风险,增强公众信任,促进合规创新。 2. 创意与设计方面:掌握 AI 加持的创意与设计,如利用视觉 AI 技术提升创意设计工作效率,将 AI 融入设计流程,实现自动化、提升个性化和降低成本。通过 AI 自动化设计过程中的部分环节,使设计师专注于核心创意,提高生产力和速度;基于用户数据生成个性化内容,满足不同受众需求;降低人工成本,为中小企业提供更优质的设计服务。 3. 创新应用方面:关注 AI 在不同领域的创新应用,例如利用 AI 解决重要问题,平衡风险与机会,推动经济增长和繁荣,减少监管不确定性,鼓励投资和采用 AI,创造更多就业机会并提高工作效率。
2025-03-21
如何创设一个作业时间计划管理智能体
以下是创设一个作业时间计划管理智能体的步骤: 1. 创建智能体:使用单 Agent 对话流模式。 编排对话流:点击创建新的对话流并与智能体关联。在获取笔记详情节点和笔记评论节点分别配置 cookie,note_link 使用开始节点的 USER_INPUT。 数据处理:使用代码节点对两个插件获取的结果进行处理,注意代码节点输出的配置格式。 2. 测试:找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。回到智能体的编排页面进行同样的测试,确保对话流执行成功。 3. 发布: 选择多维表格,点击配置。 输出类型选文本,输入类型选择字段选择器。 完善上架信息,填写表格,选发布范围时可选择仅自己可用以加快审核。 提交上架信息,返回配置界面显示已完成,即可完成最终提交。 另外,在创建智能体时还需注意: 1. 像在“DeepSeek+扣子”的案例中,输入人设等信息,放上创建的工作流,但工作流中如【所有视频片段拼接】节点使用的插件 api_token 填的是个人 token 时,不能直接发布。可以将 api_token 作为工作流最开始的输入,用户自己购买后输入 api_token 再发布。 2. 如创建“画小二智能小助手”Coze 智能体,需打开扣子官网(https://www.coze.cn/),在 Coze 商店体验地址(https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cqnnu5qo7g00)点击创建 Bot,在对话框中工作空间选择“个人空间”并命名。同时设置提示词。
2025-03-17