直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

具身智能在制造行业的应用场景有哪些

回答

具身智能在制造行业的应用场景主要包括以下方面:

  1. 预测性维护:通过具身智能,能够预测机器故障,避免工厂停机,保障生产的连续性。
  2. 质量控制:检测产品缺陷,提升产品质量,减少次品率。
  3. 供应链管理:优化供应链,提高效率,降低成本。
  4. 机器人自动化:控制工业机器人,提高生产效率。

具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。

在机器人发展历程中,第一代机器人是示教再现型,没有感知和思考能力,按预设程序重复动作,目前仍常见于汽车制造业等工业生产线。之后出现了有感觉的机器人,能获取周围环境和相关对象的信息。例如,日本早稻田大学研发的人形智能机器人 WABOT-1 包含肢体控制系统、视觉系统和对话系统,后续还有不断的更新和发展。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:具身智能是什么?

[title]问:具身智能是什么?具身智能(Embodied Intelligence)是人工智能领域的一个子领域,它强调智能体(如机器人、虚拟代理等)需要通过与物理世界或虚拟环境的直接交互来发展和展现智能。这一概念认为,智能不仅仅是处理信息的能力,还包括能够感知环境、进行自主导航、操作物体、学习和适应环境的能力。具身智能的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。这些身体不仅为智能体提供了与环境互动的手段,也影响了智能体的学习和发展。例如,一个机器人通过其机械臂与物体的互动,学习抓取和操纵技能;一个虚拟代理通过在游戏环境中的探索,学习解决问题的策略。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,具身智能关注的是如何设计能够自主行动和适应环境的机器人;在认知科学和神经科学中,研究者探索大脑如何处理与身体相关的信息,以及这些机制如何应用于人造智能系统;在计算机视觉中,研究者致力于开发算法,使智能体能够理解和解释视觉信息,从而进行有效的空间导航和物体识别。具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

具身智能赛道爆发的前夕,我们应该了解些什么?(上)|Z研究第 5 期

[title]具身智能赛道爆发的前夕,我们应该了解些什么?(上)|Z研究第5期[heading1]#1.具身智能概论第一代机器人:技术探索阶段(以早稻田大学仿人机器人为代表)1970年之前,示教再现型机器人,这类机器人没有感知也不会思考,它们根据事先设定好的程序重复动作。目前在汽车制造业和一些工业生产线上仍然常见。1960年代,美国机床铸造公司(AMF)生产出圆柱坐标的Versatran型机器人,可做点位和轨迹控制。美国Unimation公司研制出球坐标的Unimate型机器人,它可完成近200种示教在线动作1970-1997年,有感觉的机器人,与第一代机器人相比,它们拥有一定的感觉系统,可获取周围环境和相关对象的信息1973年,日本早稻田大学的加藤一郎带领团队,研发出世界上第一台真人大小的人形智能机器人——WABOT-1。该机器人包含肢体控制系统、视觉系统和对话系统,有两只手、两条腿,胸部装有两个摄像头,手部还装有触觉传感器。到了1980年,早稻田大学更新了设计,研制出了WABOT-2,第二代能够与人沟通,阅读乐谱并演奏电子琴。1986-1993年,本田公司接连开发了E0到E6等7种行走机器人,只有腿部结构,主要用于研究行走功能。1993年,公司在研制的P1基础上加上了双臂使其初具人形,而后同年完成的P3则是ASIMO的原型。

问:请问 AI 有哪些应用场景?

[title]问:请问AI有哪些应用场景?人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

其他人在问
具身智能用什么开发
具身智能的开发涉及多个方面,其技术路线包括端到端模型和分层决策模型。感知模块负责收集和处理信息,通过多种传感器感知和理解环境,例如在机器人上常见的传感器有可见光相机、红外相机、深度相机、激光雷达、超声波传感器、压力传感器和麦克风等。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。目前,具身智能正成为人工智能的新浪潮,在机器人领域、虚拟现实、增强现实和游戏设计等方面有着广泛应用,但仍面临诸多挑战,如智能体身体设计、复杂环境中的有效学习以及与人类社会相关的伦理和安全问题等。
2024-11-08
想建一个具身智能方面的知识库,有哪些建议
以下是关于建立具身智能知识库的一些建议: 1. 数据清洗方面: 可以尝试手动清洗数据以提高准确性。对于在线知识库,创建飞书在线文档,每个问题和答案以“”分割,可进行编辑修改和删除,添加 Bot 后在调试区测试效果。 对于本地文档,注意合理拆分内容,不能将大量数据一股脑全部放入训练,例如对于章节内容,先放入大章节名称,再按固定方式细化处理,然后选择创建知识库自定义清洗数据。 2. 智能体的相关方面: 注重智能体的交互能力,包括大模型本身的交互能力、多 Agent 的灵活性、workflow 的妙用以及上下文说明。 考虑智能体的知识体量,利用豆包大模型本身的行业数据和语料库,创建结构化数据的知识库。 关注智能体的记忆能力,如变量、数据库和信息记录。 3. 具身智能的具体内容: 了解具身智能本体的形态实现思路,如 Mobility 和 Manipulation 的实现方式。 明确具身智能的定义,探讨其与大模型要解决问题的差异,以及“人形”的重要性。 解决数据来源和构建大脑的问题,包括大模型和多模态的数据泛化、数据采集和量的问题,以及特定任务和场景的处理,还有结构化与非结构化场景的处理等。 思考具身智能的落地场景和商业化方向,例如 ToB 或 ToC 的选择。 考虑具身智能创业团队的背景组成,如工业机器人、自动驾驶、服务机器人等领域的经验。
2024-11-05
具身智能在制造行业的落地方向有哪些?
具身智能在制造行业的落地方向主要包括以下几个方面: 1. 预测性维护:利用具身智能技术预测机器故障,帮助工厂避免停机,提高生产效率。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 供应链管理:优化供应链,实现效率提升和成本降低。 4. 机器人自动化:控制工业机器人,进一步提高生产效率。 具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,也可以是虚拟形态。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法使智能体理解和解释视觉信息,进行有效的空间导航和物体识别。 作为一个系统性的工程,具身智能涉及算法层、不同技术流派、数据、模拟器、传感器、视觉方案、力学结构等多个维度,并整体向着更鲁棒性、各层级之间过渡更加平滑的方向发展。但也存在一些问题,比如力矩控制、电流控制做到哪一步才算端到端,机器人的 foundation model 或者 GPT 时刻会是什么样,触觉等感知信号以什么样的形式进入模型当中等。
2024-10-26
如何做一个具身智能实体?
要实现具身智能实体,以下是一些关键方面: 1. 空间智能:像人类看到桌上水杯能自动计算其位置和与周围事物的关系并预测后续情况一样,具身智能实体也应具备这种能力,将感知与行动联系起来,例如特斯拉的 FSD 以及英伟达的 GR00T 项目。 2. 通用智能体特征:能在开放世界中探索,拥有海量世界知识,并能执行无数任务。 3. 与环境的互动:无论是在物理世界还是数字世界,具身智能实体都需要感知、交互、主动获取数据、主动犯错、主动迭代、收集和反馈。 4. 对工具的理解和使用:有效使用工具的前提是全面了解工具的应用场景和调用方法,通过学习如从示范中学习和从奖励中学习等方法,利用环境和人类的反馈做出调整。 5. 感知物理世界:在物理世界中感知环境的难度较大,需要重点关注更底层的传感,包括视觉传感和触觉传感,充分感知和理解更多信息以进行决策。 需要注意的是,目前具身智能的实现仍面临诸多挑战,数字世界可能会先于物理世界取得突破。
2024-10-22
具身智能在制造行业的应用场景有哪些?
具身智能在制造行业有以下应用场景: 1. 预测性维护:利用具身智能预测机器故障,避免工厂停机,提高生产效率。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 供应链管理:优化供应链,增强效率并降低成本。 4. 机器人自动化:控制工业机器人,提高生产效率。 具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它认为智能不仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境的能力。其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态如机器人的机械结构,也可以是虚拟形态如在模拟环境中的虚拟角色。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。 在机器人发展历程中,第一代机器人是技术探索阶段的示教再现型机器人,没有感知和思考能力,按预设程序重复动作,目前仍常见于汽车制造业等工业生产线。1970 年至 1997 年出现了有感觉的机器人,能获取周围环境和相关对象的信息。例如日本早稻田大学研发的 WABOT1 包含肢体控制系统、视觉系统和对话系统,后续还有更新版本。本田公司也开发了多种行走机器人。
2024-10-15
具身智能机器人
具身智能是人工智能领域的一个子领域。它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体不仅是与环境互动的手段,也影响智能体的学习和发展。例如,机器人通过机械臂与物体互动学习抓取和操纵技能,虚拟代理在游戏环境中探索学习解决问题策略。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法,以进行有效空间导航和物体识别。 具身智能在机器人领域有重要应用,如服务机器人、工业自动化和辅助技术等,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。此外,在虚拟现实、增强现实和游戏设计等领域也有广泛应用,创造更具沉浸感和交互性的体验。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习、处理智能体与人类社会的伦理和安全问题等。 以下为具身智能相关的 GenAI 玩具机器人社媒热度榜: |序号|Name|分类|公司|官网|Twitter|Twitter 粉丝数 k|销量(万)|销量更新时间|价格|一句话介绍|融资情况|售价原始数据|创始人|介绍文章|4 月流量(万)|产品销售链接|公司分类| |||||||||||||||||| |13|LOOI|玩具机器人|TangibleFuture|https://looirobot.com/|https://x.com/looi_web3|1.8|||129|当你把智能手机放上一个类似于手机支架的可移动设备之后,你就将唤醒一个名为 Looi 的 AI 机器人,它会在你的手机屏幕上睁开双眼,正式变身你的智能伙伴。||||https://mp.weixin.qq.com/s/bECZMJUHz9cxJlfb6z2k5Q|||初创公司| |14|WeHead|玩具机器人|Wehead|https://wehead.com/|||||4950|台式数字人显示设备||||https://mp.weixin.qq.com/s/5H5HT4UBRa3vg14kTKBsw||https://wehead.com/|初创公司| 作为一个系统性的工程,具身智能机器人被认为是未来计算机科学和工业界皇冠上的明珠。它涉及算法层、不同技术流派、数据、模拟器、传感器、视觉方案、力学结构等多个维度,并整体向着更鲁棒性、各层级之间过渡更加平滑的方向前进。但也存在一些矛盾,比如力矩控制、电流控制做到哪一步才算端到端,机器人的 foundation model 或者 GPT 时刻会是什么样,触觉等感知信号以何种形式进入模型等问题,有待更多学者和从业者讨论交流。同时,一直关注具身创业项目,并坚信未来大语言模型会有更多发展。
2024-10-11
根据Python实验内容(包括实验场景和实验内容)和参考资料链接,如何优化prompt,以完成程序?
以下是一些优化 prompt 以完成程序的建议: 1. 对于算术推理相关的程序,若思维链(及生成的方程式)存在正确但模型执行算术运算错误的情况,可添加一个 Python 程序作为外部计算器(使用 Python 的 eval 函数)处理生成的思维链中的所有方程式。当思维链中包含多个方程式时,通过字符串匹配将外部计算器的结果从一个方程式传递到下一个方程式,以提高思维链提示在大多数任务上的性能。 2. 在涉及迷宫生成的程序中,若生成的迷宫存在边未封好等问题,可调整提示词。若对复杂度不满意,也可提出并进行调整。 3. 在涉及图像生成的程序中,对于提示词编写,应遵循不改变梗图、虚构角色起源、未出现人物等的原则,保持原始提示的意图并优先保证质量。不创建任何具有冒犯性的图像。对于可能存在偏见的场景,确保如性别和种族等关键特征以无偏见的方式指定。对于包含特定人物或名人的提示词,需进行适当修改,以通用描述替代,除非其作为图像中的文本出现。提示词应详细、客观地描述图像的每个部分,思考描述的最终目标并进行推断以生成满意的图像。
2024-11-22
AI在企业落地的场景或案例
以下是一些 AI 在企业落地的场景或案例: 企业运营方面:包括日常办公文档材料的撰写整理、营销对话机器人的应用、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源的简历筛选、预招聘、员工培训等。 教育领域:协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 游戏/媒体行业:定制化游戏,动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 零售/电商领域:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 金融/保险行业:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。 在企业中建构人工智能的案例研究包括: 智能扬声器:需要探测触发词或唤醒词、进行语音识别、意图识别,并执行相关程序。但智能音箱公司因需对每个用户需求单独编写程序而花费大量资金教育客户,这是其面临的困境。 自动驾驶汽车:包括汽车检测(使用监督学习,需多个方位的摄像头或传感器)、行人检测(使用相似技术)、运动规划(输出驾驶路径和速度)。 人工智能团队的角色示例有: 软件工程师:负责软件编程工作,在团队中占比 50%以上。 机器学习工程师:创建映射或算法,搜集和处理数据以训练神经网络或深度学习算法。 机器学习研究员:开发机器学习前沿技术,可能发表论文或专注研究。 应用机器学习科学家:从学术文献或研究文献中寻找前沿技术来解决问题。 数据科学家:检测和分析数据背后的意义,并向团队展示结论。 数据工程师:整理数据,确保数据安全、易保存和读取。 AI 产品经理:决定用 AI 做什么,判断其可行性和价值。
2024-11-20
打印场景下格式转换的需求点
在打印场景下,格式转换的需求点主要包括以下方面: 1. 不同文本类型的转换,例如将俚语翻译成商务书信。 2. 不同格式之间的转换,如 ChatGPT 擅长的从 JSON 到 HTML、XML、Markdown 等格式的转换。在提示中需描述输入和输出格式,例如将 Python 字典从 JSON 转换为带有列标题和标题的 HTML 表格,并使用相关函数显示 HTML 响应。 3. 对于卡牌生成器的搭建,在为卡牌添加说明性文字时,涉及到文字图层的处理。叠图功能只允许两个图层叠放,所以对文字图层要进行格式转换。具体包括: 先对“card_description”的输出按索引序号奇偶性进行分列。 由于叠图只支持传入图像的 url(字符串格式),需将分列后的两个 Array<Object>结构“打破”,提取图像链接并重组为字符串列表 Array<String>。 若分列时原 Array<Object>中元素个数为奇数个,会导致分列后两个列表元素数量不同。在格式转换过程中,需比较两个列表长度,若不同则用事先准备好的图像 url 扩展较短的列表,以保证叠图顺利进行。
2024-11-20
AI 在股票交易行业的落地场景有哪些
AI 在股票交易行业的落地场景主要包括以下方面: 1. 市场分析与预测:利用大数据和机器学习算法,对市场趋势、宏观经济数据、公司财务数据等进行分析和预测,为投资决策提供参考。 2. 风险评估与管理:通过模型评估投资组合的风险水平,及时发现潜在风险并采取相应的风险管理措施。 3. 交易策略优化:基于历史交易数据和市场情况,优化交易策略,提高交易效率和盈利能力。 4. 智能投顾:为投资者提供个性化的投资建议和资产配置方案。 5. 欺诈检测:识别和防范股票交易中的欺诈行为,保障交易的安全性和公正性。
2024-11-18
ai的落地场景应用
以下是 AI 的一些落地场景应用: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果和提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输:暂未提及具体应用场景。 此外,还有以下一些具体的应用: 1. 辅助创作与学习:如 AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:包括 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:如 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:涉及办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 在“AI + 汽车”领域: AI 营销赛道: AI 辅助“市场营销”和“新媒体运营”,包括汽车热点营销、用户画像预测、营销内容创作、内容审核、用户评论回复,以及“一键生图”。 AI 提升“销售体验”,引导“留资或下单”,如智能“试驾”、“金牌销售”智能导购、“互动游戏”智能导购。 AI 提升“销售能力”,基于汽车销售场景自动出题,可采用多种形式,如选择题、对话或情景模拟。
2024-11-18
AI在会计岗位落地的场景
AI 在会计岗位落地的场景包括以下方面: 1. 预测:生成式 AI 能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,还能发现模式,从更广泛、更复杂的数据集中为预测建议输入,并提供适应模型的建议,为公司决策提供依据。 2. 报告:生成式 AI 可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务:会计和税务团队在咨询规则和应用方面,生成式 AI 可以帮助综合、总结,并就税法和潜在扣除项提出可能的答案。 4. 采购和应付账款:生成式 AI 能够帮助自动生成和调整合同、采购订单和发票以及提醒。 5. RPA 方面:RPA 是流程自动化机器人,可替代电脑办公中的重复有逻辑工作,为企业降本增效。在财务领域,可用于开票、网银流水下载等。 6. 税务工作:在金税四期背景下,利用引刀 AP 创建网页实现智能解答税务问题,结合飞书避免信息泄露和实现自动回复等。
2024-11-15
智能客服系统实现回复图片,不只是回复文字
以下为您介绍一个基于 COW 框架的 ChatBot 实现步骤,其最新版本支持的功能包括: 1. 多端部署:可接入个人微信、微信公众号、企业微信应用。 2. 基础对话:私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT3、GPT3.5、GPT4、文心一言模型。 3. 语音识别:可识别语音消息,通过文字或语音回复,支持 azure、baidu、google、openai 等多种语音模型。 4. 图片生成:支持图片生成和图生图(如照片修复),可选择 DellE、stable diffusion、replicate、Midjourney 模型。 5. 丰富插件:支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结等插件。 6. Tool 工具:与操作系统和互联网交互,支持最新信息搜索、数学计算、天气和资讯查询、网页总结,基于实现。 7. 知识库:通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用,基于 LinkAI 实现。 项目地址 项目地址 该项目的图片生成功能或许能满足您智能客服系统实现回复图片的需求。
2024-11-22
推荐一款能够修正英语语法,并智能扩写的AI,并简要介绍其功能
以下为您推荐能够修正英语语法并智能扩写的 AI 工具及简要介绍其功能: Grammarly:可以进行英语写作和语法纠错,帮助改进英语表达和写作能力。 ChatGPT:能用于英语会话练习和对话模拟,提高交流能力和语感。 此外,关于内容仿写的 AI 工具,为您推荐以下几款中文工具: 秘塔写作猫:网址为 https://xiezuocat.com/ 。它是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,还能智能分析文章各类属性并打分。 笔灵 AI 写作:网址为 https://ibiling.cn/ 。是智能写作助手,能处理多种文体,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:网址为 https://effidit.qq.com/ 。由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-22
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 此外,智能体还应用于情绪主题角色扮演小游戏,来源于 Cathy 教练和 Leah 老师的情绪力手册,是帮助家长和孩子从源头了解、分辨、分析、处理和控制情绪的手册,内涵多个相关的智能体。该游戏包括需求分析、分步实现需求、提示词编写测试、GPTs 使用链接和总结等内容。
2024-11-22
人工智能和机器学习的区别
人工智能和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域。 2. 学习方式:机器学习通过输入数据训练模型,使计算机在没有明确编程的情况下学习。模型可以是监督的(使用标记的数据从过去的例子中学习并预测未来的值),也可以是无监督的(专注于发现原始数据中的模式)。 3. 复杂程度:深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 4. 应用目的:人工智能是一个更广泛的目标,旨在让机器展现智慧;机器学习则是实现这一目标的一种手段,让机器自动从资料中找到公式。 5. 技术手段:生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容;而机器学习主要通过训练模型来实现学习和预测。
2024-11-21
什么是人工智能?
人工智能(Artificial Intelligence)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如完成人类擅长的任务。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,有些任务如根据照片判断人的年龄,无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只能做一件事,如智能音箱、网站搜索、自动驾驶等;AGI 则能做任何人类能做的事。 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的从 A 到 B 的映射。 数据科学是分析数据集以获取结论和提示,输出通常是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2024-11-21
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 国产哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前国产的 AI 产品中,很难说哪一家 100%能够保证回答正确且不会瞎说。不同的产品在不同的领域和场景中可能表现各异。您可以考虑一些在教育领域有一定口碑和应用案例的产品,并进行充分的测试和评估。 3. 以下是一些创建智能体的建议: 明确智能体的职责和功能,例如是主要进行课程规划、生成测验还是提供学习指导等。 为智能体提供详细准确的提示词,清晰地描述其任务和目标。 像导演一样,将复杂的任务拆分成科学合理的步骤,并确保每个步骤的结果能为后续步骤提供基础。 对于生成的内容,要进行检查和优化,不断调整和改进智能体的表现。 此外,您还可以参考一些相关的提示词库,例如沃顿商学院给教师和学生的提示词库,其中包含了结构化题型设计师和测验生成器等方面的内容。同时,很多 AI 网站都支持创建智能体,您可以为其配置提示词、知识库和能力等。
2024-11-21
excel的ai应用软件
以下是一些与 Excel 相关的 AI 应用软件: 1. Excel Labs:是 Excel 插件,新增基于 OpenAI 技术的生成式 AI 功能,用于数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合办公软件的 AI 工具,能通过聊天形式完成数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,可生成公式、文本内容、执行情感分析、语言翻译等任务。 此外,还有以下相关的 AI 应用: 1. WPS 文档翻译功能:可快速翻译办公文档,如 Word、Excel、PPT 等,提高工作效率。 2. 在表格类的 AI 产品中,6 月访问量排名靠前的有 Highcharts、Fillout.com、Coefficient 等。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和智能化水平。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-23
如何搭建利用产品原图和模特模板生成商业图的工作流 或者有没有这类ai 应用
以下是关于利用产品原图和模特模板生成商业图的工作流及相关 AI 应用的信息: 美国独立站搭建工作流中,有给模特戴上珠宝饰品的应用。 大淘宝设计部在主题活动页面、超级品类日传播拍摄创意、产品营销视觉、定制模特生成、产品场景生成等方面应用了 AI。例如,七夕主题活动页面通过 AI 生成不受外部拍摄条件限制的素材;在 UI 设计场景中,利用 SD 中 controlnet 生成指定范围内的 ICON、界面皮肤等;通过对 AI 大模型的训练和应用,提升合成模特的真实性和美感,提供定制化线上真人模特体验,如 AI 试衣间、AI 写真等;还能根据商品图和用户自定义输入生成多张场景效果,无需 3D 模型、显卡渲染和线下拍摄。
2024-11-22
结构仿真分析中AI应用
在结构仿真分析中,AI 有着多方面的应用。 在绘制逻辑视图、功能视图、部署视图方面,以下是一些可用的 AI 工具和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建相关视图。 6. draw.io(现称 diagrams.net):免费在线图表软件,允许创建各种类型图表,包括逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 在 2024 年,AI 在生物医学、气象预测等领域也有重要突破与应用: 1. 诺贝尔物理学奖和化学奖先后颁给 AI,推动了机器学习的理论创新,揭示了蛋白质折叠问题,标志着人工智能真正成为一门科学学科和加速科学的工具。 2. 基于深度学习和 Transformer 架构的蛋白质结构预测模型——AlphaFold 3,能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,为细胞功能解析、药物设计和生物科学的发展提供有力支持。 3. DeepMind 展示新的实验生物学能力——AlphaProteo,能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 4. 生物学前沿模型的扩展:进化规模 ESM3,是一种前沿多模态生成模型,在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 5. 学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-11-22
推荐一款常用的AI画图应用
以下为您推荐一些常用的 AI 画图应用: 1. Creately 简介:是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 2. Whimsical 简介:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 3. Miro 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 4. Lucidchart 简介:强大的在线图表制作工具,集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 5. Microsoft Visio 简介:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 6. Diagrams.net 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 以下是一些可以绘制逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2024-11-22
推荐一款AI制图应用
以下为您推荐几款 AI 制图应用: 1. Lucidchart:这是一个强大的在线图表制作工具,集成了 AI 功能,可自动化绘制流程图、思维导图、网络拓扑图等多种示意图。其具有拖放界面,易于使用,支持团队协作和实时编辑,还有丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ 2. Microsoft Visio:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可帮助自动化布局和优化图表设计,集成 Office 365,方便与其他 Office 应用程序协同工作,有丰富的图表类型和模板,支持自动化和数据驱动的图表更新。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。支持本地和云存储(如 Google Drive、Dropbox),有多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:https://www.diagrams.net/ 此外,在 AI 绘图领域,国外的 Midjourney 也较为知名。它的模型强大,能生成高质量图像,且支持充分的个性化设置,但使用过程不太便捷,需要通过 Discord 应用加入 Midjourney 的频道或创建自己的频道并邀请 Midjourney 机器人才能生成图片。
2024-11-22
AI在办公领域的常见应用有哪些
以下是 AI 在办公领域的一些常见应用: 1. 腾讯文档分类功能:利用数据分析和机器学习,自动分类办公文件,方便管理,市场规模达数亿美元。 2. WPS Office 中的智能排版、语法检查等功能:借助自然语言处理和机器学习,提高办公效率,实现自动化办公流程,市场规模达数十亿美元。 3. 联想设备管理平台:通过数据分析和物联网技术,对企业办公设备进行管理,包括设备状态监测、故障预警、软件更新等,提高设备利用率,市场规模达数亿美元。
2024-11-22