Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

知名的视频大模型都有哪些

Answer

以下是一些知名的视频大模型:

  • InstructBLIP:基于预训练的 BLIP-2 模型进行训练,在 MM IT 期间仅更新 Q-Former。通过引入指令感知的视觉特征提取和相应的指令,能够提取灵活多样的特征。
  • PandaGPT:是一种开创性的通用模型,能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。
  • PaLI-X:使用混合 VL 目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成,对于下游任务结果和在微调设置中实现帕累托前沿有效。
  • Video-LLaMA:引入了多分支跨模式 PT 框架,使 LLM 能够在与人类对话的同时处理给定视频的视觉和音频内容,使视觉与语言以及音频与语言保持一致。
  • 视频聊天 GPT:专门为视频对话设计的模型,能够通过集成时空视觉表示来生成有关视频的讨论。
  • Shikra:Chen 等人介绍的一种简单且统一的预训练 MM-LLM,专为参考对话(涉及图像中区域和对象的讨论的任务)而定制,展示了值得称赞的泛化能力,可以有效处理看不见的设置。
  • DLP:提出 P-Former 来预测理想提示,并在单模态句子数据集上进行训练,展示了单模态训练增强 MM 学习的可行性。
  • 可灵:快手于 2024 年 6 月 6 日发布的视频大模型,能生成超过 120 秒 1080P 视频,模拟真实物理特性,准确建模复杂运动场景,画面连贯,动作流畅,细节真实,支持用户输入控制信息,丰富内容控制能力,采用类 Sora 的 DiT 结构,用 Transformer 代替卷积网络,自研 3D VAE 网络提升视频重建质量。
  • Flamingo:代表了一系列视觉语言(VL)模型,旨在处理交错的视觉数据和文本,生成自由格式的文本作为输出。
  • BLIP-2:引入了资源效率更高的框架,包括用于弥补模态差距的轻量级 Q-Former,实现对冻结 LLM 的充分利用,利用 LLM 可以使用自然语言提示进行零样本图像到文本的生成。
  • LLaVA:率先将 IT 技术应用到 MM 领域,为解决数据稀缺问题,引入了使用 ChatGPT/GPT-4 创建的新型开源 MM 指令跟踪数据集以及 MM 指令跟踪基准 LLaVA-Bench。
  • MiniGPT-4:提出了一种简化的方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐,能够复制 GPT-4 所展示的功能。
  • mPLUG-Owl:提出了一种新颖的 MM-LLMs 模块化训练框架,结合了视觉上下文,包含一个名为 OwlEval 的教学评估数据集。
  • X-LLM:陈等人扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用 Q-Former 的语言可迁移性,成功应用于汉藏语境。
  • VideoChat:开创了一种高效的以聊天为中心的 MM-LLM 用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。
Content generated by AI large model, please carefully verify (powered by aily)

References

多模态大模型入门指南-长文慎入【持续更新】

[title]多模态大模型入门指南-长文慎入【持续更新】[heading2]4.多模态大模型总结:[heading3]4.1 26个多模态大模型全面比较:(8)InstructBLIP基于预训练的BLIP-2模型进行训练,在MM IT期间仅更新Q-Former。通过引入指令感知的视觉特征提取和相应的指令,该模型使得能够提取灵活多样的特征。(9)PandaGPT是一种开创性的通用模型,能够理解6不同模式的指令并根据指令采取行动:文本、图像/视频、音频、热、深度和惯性测量单位。(10)PaLI-X使用混合VL目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成。事实证明,这种方法对于下游任务结果和在微调设置中实现帕累托前沿都是有效的。(11)Video-LLaMA张引入了多分支跨模式PT框架,使LLMs能够在与人类对话的同时同时处理给定视频的视觉和音频内容。该框架使视觉与语言以及音频与语言保持一致。(12)视频聊天GPT Maaz等人。(2023)是专门为视频对话设计的模型,能够通过集成时空视觉表示来生成有关视频的讨论。(13)Shikra Chen等人。(2023d)介绍了一种简单且统一的预训练MM-LLM,专为参考对话(涉及图像中区域和对象的讨论的任务)而定制。该模型展示了值得称赞的泛化能力,可以有效处理看不见的设置。(14)DLP提出P-Former来预测理想提示,并在单模态句子数据集上进行训练。这展示了单模态训练增强MM学习的可行性。

视频模型:可灵

[快手【可灵】大模型介绍PPT](https://waytoagi.feishu.cn/wiki/S1Mswi9PUiV2lskKmutcpzuynfd)生成超过120秒1080P视频模拟真实物理特性(重力、光影反射、液体流动等)准确建模复杂运动场景(高速奔跑的动物、月球行走的宇航员等)画面连贯,动作流畅,细节真实支持用户输入控制信息,丰富内容控制能力类Sora的DiT结构,用Transformer代替卷积网络自研3D VAE网络,提升视频重建质量官网链接https://kling.kuaishou.com/mobile小互报导:🔗 https://xiaohu.ai/p/9119🔗 https://x.om/imxiaohu/status/18040大聪明的技术详解中学生能看懂:快手「可灵」和「Sora」背后DiT技4术https://mp.weixin.qq.com/s/2PrMgNAL0Er_vNjhqSbTHQ

多模态大模型入门指南-长文慎入【持续更新】

[title]多模态大模型入门指南-长文慎入【持续更新】[heading2]4.多模态大模型总结:[heading3]4.1 26个多模态大模型全面比较:如表1所示,对26 SOTA MM-LLMs的架构和训练数据集规模进行了全面比较。随后,简要介绍这些模型的核心贡献并总结了它们的发展趋势。(1)Flamingo。代表了一系列视觉语言(VL)模型,旨在处理交错的视觉数据和文本,生成自由格式的文本作为输出。(2)BLIP-2引入了一个资源效率更高的框架,包括用于弥补模态差距的轻量级Q-Former,实现对冻结LLMs的充分利用。利用LLMs,BLIP-2可以使用自然语言提示进行零样本图像到文本的生成。(3)LLaVA率先将IT技术应用到MM领域。为了解决数据稀缺问题,LLaVA引入了使用ChatGPT/GPT-4创建的新型开源MM指令跟踪数据集以及MM指令跟踪基准LLaVA-Bench。(4)MiniGPT-4提出了一种简化的方法,仅训练一个线性层即可将预训练的视觉编码器与LLM对齐。这种有效的方法能够复制GPT-4所展示的功能。(5)mPLUG-Owl提出了一种新颖的MM-LLMs模块化训练框架,结合了视觉上下文。为了评估不同模型在MM任务中的表现,该框架包含一个名为OwlEval的教学评估数据集。(6)X-LLM陈等人扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用Q-Former的语言可迁移性,X-LLM成功应用于汉藏语境。(7)VideoChat开创了一种高效的以聊天为中心的MM-LLM用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。

Others are asking
视频链接转文字的Ai
以下为您介绍一些关于视频链接转文字的 AI 相关信息: 在“超级 AI 助力打造计划微信超级 AI 知识助手教学(下)2024 年 12 月 11 日”中,张梦飞解答了诸多与操作、功能、风险及平台相关的问题,包括今日头条读不出、公众号视频提取内容、界面在哪、文章文件总结跳过条件等,同时提到了视频号转文字等相关内容。 ElevenLabs 推出了全自动化的 AI 配音或视频翻译工具,您只需上传视频或粘贴视频链接,该工具能在几十秒到几分钟内将视频翻译成 29 种语言,还能克隆原视频里面的声音进行配音。 有群友测试了相关工具,另外还有群友尝试了豆包的音色模仿,读了大概 20 个字的句子,5 秒就可以生成非常像的音色,之后可用自己的声音读生成的文字内容。
2024-12-25
给我几个免费的图片转视频工具,主要针对于有人物的图片
以下为您推荐几个免费的图片转视频工具,主要针对有人物的图片: 1. Viggle: 网址:http://viggle.ai 有免费额度。 功能: /mix:将角色图像混合到动态视频中。 /animate:使用文本运动提示为静态角色设置动画。 /ideate:纯粹从文本创建角色视频。 /character:通过文本提示创建角色并将其动画化。 /stylize:使用文本提示符重新设计角色的样式并将其动画化。 操作步骤: 上传一张字符清晰的图片。 描述您希望角色执行的动作(或从https://viggle.ai/prompt中复制动作提示词)。 2. Dreamina: 网址:https://dreamina.jianying.com/aitool/home?subTab 优点:不需要🪜,每天有免费额度。 注册:抖音号或手机号。 时间:5min 3. Sora: 网址:https://openai.com/sora 优点:发布的成果好,集成在 openai 一套里可用。 限制:需要🪜,需要 gmail 注册,需要订阅后才能使用。 时间:30 60min 价格:GPT 4 20$一个月
2024-12-25
给我几个可以ai生成动画视频的免费网站
以下是一些可以免费生成动画视频的网站: 1. DomoAI:主打风格转绘,效果稳定,支持多种风格如动画风、粘土风、折纸风、像素风等,还能根据参考图切换视频风格。目前每个账号仅有 15 个免费 credits,仅能生成 3s 视频。网页版访问:https://domoai.app/ 官方推特:https://x.com/DomoAI_ 2. Runway:有网页版和 APP 版,使用方便。网址:https://runwayml.com/ 3. 即梦:剪映旗下,生成 3 秒,动作幅度有很大升级,最新 S 模型,P 模型。网址:https://dreamina.jianying.com/ 4. Kling:支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。网址:kling.kuaishou.com 5. Vidu:网址:https://www.vidu.studio/ 6. haiper:网址:https://app.haiper.ai/ 7. Pika:可控性强,可以对嘴型,可配音。网址:https://pika.art/ 8. 智谱清影:开源了,可以自己部署 cogvideo。网址:https://chatglm.cn/video 9. PixVerse:人少不怎么排队,还有换脸功能。网址:https://pixverse.ai/ 10. luma:网址:https://lumalabs.ai/ 11. Minimax 海螺 AI:非常听话,语义理解能力非常强。网址:https://hailuoai.video/ 12. SVD:对于景观更好用。网址:https://stablevideo.com/
2024-12-25
提取视频中的音乐
以下是关于提取视频中音乐的相关信息: 音乐类型与视频类型的匹配: 1. 严肃适用场景:政府宣传片、企业宣传片,推荐乐器:交响乐、管弦乐。 2. 时尚动感适用场景:品牌宣传片、网络广告,推荐乐器:电子音乐、打击乐。 3. 怀旧适用场景:纪录片、情感驱动的视频,推荐乐器:口琴、手风琴。 4. 感性适用场景:任何可能触动情感的场景,推荐乐器:吉他、钢琴。 5. 儿童适用场景:儿童节目、教育内容,推荐乐器:轻快乐器、偏向诙谐。 音乐来源与版权: 版权音乐的获取方式包括购买版权音乐和使用免费版权库。版权音乐网站推荐: 1. Audio Network,网址:https://www.audionetwork.com/track/searchkeyword?facets=ProductionGenres_children 2. Premium Beat 相关案例: 1. Suno 专属音乐生成功能上线,视频会根据画面匹配生成音乐,音乐和视频还能卡点,视频里的文字也可以识别并转化为歌词。 2. 谷歌的 Generating audio for video 研究,利用视频像素和文字提示生成丰富的背景音乐,其 V2A 技术可与视频生成模型搭配使用,为各种传统素材生成配乐。
2024-12-25
视频去重AI软件哪个好用
以下是一些好用的视频去重 AI 软件: Sora:相关教程可参考 https://waytoagi.feishu.cn/wiki/S5zGwt5JHiezbgk5YGic0408nBc Hedra:工具教程见 https://waytoagi.feishu.cn/wiki/PvBwwvN36iFob7kqZktcCzZFnxd 视频转绘:应用教程 https://waytoagi.feishu.cn/wiki/ZjKpwSd5hiy6ZhkiBVHcOBb6n9r 视频拆解:应用教程 https://waytoagi.feishu.cn/wiki/WeKMwHRTmiVpYjkVdYpcFjqun6b 图片精修:应用教程 https://waytoagi.feishu.cn/wiki/CfJLwknV1i8nyRkPaArcslWrnle 此外,还有以下几个视频 AIGC 工具: Opusclip:可将长视频剪成短视频 Raskai:能将短视频素材直接翻译至多语种 invideoAI:输入想法后自动生成脚本和分镜描述,进而生成视频,再人工二编合成长视频 descript:屏幕/播客录制后以 PPT 方式做视频 veed.io:自动翻译自动字幕 clipchamp:微软的 AI 版剪映 typeframes:类似 invideoAI,内容呈现中文本主体比重更多 google vids 对于 Video Battle 视频挑战赛Farewell 送别,参与方式中的视频工具建议及云端 Comfyui 出图+AI 视频软件相关内容,您可参考: https://waytoagi.feishu.cn/wi 工作流: 步骤: 打开链接的工作流:https://www.esheep.com/app/5977,点击查看工作流,会出现登录或注册界面正常注册即可。如果已经登录会自动出现下面的界面。 步骤 1:红色框选择生成图片的大模型,绿色框添加提示词,蓝色框填写反向提示词 步骤 2:红色框设置大小确保是 16:9 的比例,绿色框修改参数,参数不理解的话保持默认即可。 步骤 3:红色框上传深度图 步骤 4:点击立即生成,最下面就会出现图片,在生成历史中下载图片即可。
2024-12-24
如何能让ai协助我创作更好的短视频文案
以下是一些利用 AI 协助创作更好短视频文案的方法: 1. 以电商带货本地生活为例: 用 ChatGPT 生成短视频选题文案:表明身份、描述需求和回答要求,可参考美妆行业的例子。 用 ChatGPT 生产短视频文案:将需求与框架结合,让其为您生成文案。 生成虚拟数字人短视频: 第一步:打开网站(需科学上网)https://studio.did.com/editor 。 第二步:在右侧文字框输入从 ChatGPT 生成的内容,选择想要的头像、不同的国家和声音,点击右上角的 Create Video 等待生成。生成后结合产品讲解即可发布带货。 2. 陈财猫的经验: 在图文内容生产方面,为企业提供包括选题生成、文案创作、智能配图和智能发布等定制化服务,有效解决企业获客难题。 参与喜马拉雅公司短故事和短剧写作课程开发,设计提示词工具,与研发老师、教研老师打造创作标准操作流程(SOP),跟着流程走能写出成功的故事。 捣鼓出小财鼠程序版 agent,其特点是“Garbage in Diamond out”,输入随机内容也能产出好东西。 3. 白马的经验: 制作类似《舌尖上的中国》旁白朗诵风格的片子时,直接让 GPT 写文案结果较平淡,需更具体地提出需求。 利用 360 浏览器字幕提取功能捕捉《爱我中华》的视频文案,让 kimi 和 ChatGPT 进行分析和学习,同时对比两者结果,在中文理解和写作能力上,kimi 更突出。 整合两段文案并调整,让语句更顺口,还可让 AI 输出简单的画面分镜。
2024-12-24
目前AI大模型有多少个比较知名的
目前比较知名的 AI 大模型有: 北京企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 大模型的特点和架构: 架构方面: encoderonly 模型通常适用于自然语言理解任务,例如分类和情感分析,最知名的代表模型是 BERT。 encoderdecoder 模型同时结合了 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 decoderonly 模型更擅长自然语言生成任务,目前耳熟能详的 AI 助手基本都来自此类架构。 大模型的优势在于: 预训练数据非常大,往往来自于互联网上,包括论文、代码、公开网页等,最先进的大模型一般用 TB 级别的数据进行预训练。 参数非常多,Open 在 2020 年发布的 GPT3 就已经达到 170B 的参数。 大模型比较火的应用场景: 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 编程和代码辅助:代码自动补全、bug 修复和代码解释。 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,未来可能扩展到视频内容的生成。 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 医疗和健康咨询:提供初步的健康建议和医疗信息查询服务。 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 需要注意的是,随着大模型的普及,也需要关注其在隐私、安全和伦理方面的挑战。
2024-12-24
AI知识库是是什么?有哪些知名的AI知识库
AI 知识库是一系列 AI 相关的信息和知识的集合。以下为您介绍一些知名的 AI 知识库: 通往 AGI 之路:这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。在这里,用户既是知识的消费者,也是知识的创作者。它不仅提供各种 AI 资源,还具有一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程,并且会追踪 AI 领域最新进展并时刻更新。其网址为:https://waytoagi.com/ ,您可即刻体验:https://waytoagi.com/ 。 Coze 知识库:例如在飞书软件搭建的。
2024-11-23
Midjourney生成知名动漫或卡通形象受限制了么?
Midjourney 在生成知名动漫或卡通形象时存在一定的限制。例如,在生成角色方面,最好不要生成过多角色,过多甚至可能指 2 个。做人、做动物的情况还好,但对于有拟人角色需求的情况,可能难以生成满意的结果。比如小龙喷火到小兔子举着的礼物盒这种看似简单的需求,可能无法达到满意效果,可能出现动物不拟人或龙的体型超大等情况。对于像中国龙这种数据样本较少的形象,生成符合要求的图很有挑战性。 在视频生成方面,如果想让角色做出一些较大的动作,比如转头、掉眼泪、抬手或更生动的表情变化,现有的技术还不够成熟,还需要更先进的技术、更丰富的数据和更强大的计算能力。此时的策略是尽量规避制作需要大动作表现的视频,如果实在避免不了,可以尝试制作一些只涉及小动作的场景,然后通过加入台词和场景描述来补充细节和深度,帮助观众更好地理解场景背景和角色心理,以弥补视觉上的不足。
2024-10-29
请帮我列举一下国内外知名的ai产品
以下是国内外知名的 AI 产品分类列举: 生成 Logo 的 AI 产品: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 制作 PPT 的 AI 产品: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体。 2. 美图 AI PPT:由美图秀秀团队推出,通过输入文本描述生成专业 PPT 设计,有丰富模板库。 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。 健身的 AI 产品: 1. Keep:中国最大的健身平台,提供全面健身解决方案。 2. Fiture:集硬件、课程内容、明星教练和社区于一体。 3. Fitness AI:利用人工智能进行锻炼,增强力量和速度。 4. Planfit:提供家庭训练与 AI 健身计划,AI 教练使用大量文本数据和 ChatGPT 实时指导。
2024-08-14
ChatGPT如何训练需要的模型
ChatGPT 的训练模型主要包括以下几个方面: 1. 预训练(Pretrain)阶段:建立模型的能力上限,如确定模型各方面能力的天花板。此阶段跟 GPT3 的方法近似,例如采用 decoderonly 的网络架构,有特定的模型大小、输入窗口大小、单词本大小,见过大量的 tokens,使用大量的原始训练文本。 2. 监督微调(Supervised Finetune,SFT)阶段:让模型学会对话的形式展开,即知道如何按照对话的格式进行交流。 3. 强化学习从人类反馈(Reinforcement Learning from Human Feedback,RLHF)阶段:细分为奖励模型(RM)阶段和强化学习(RL)阶段,能激发模型具备多种能力,包括安全性、推理能力和稳定性等。 训练方式主要是通过材料学习,不断形成模型。其本质功能是“单字接龙”,通过自回归生成的方式,将生成的下一个词与之前的上文组合,不断重复生成任意长的下文。训练的目的不是记忆,而是学习提问和回答的通用规律,实现举一反三,即泛化。学习材料用于调整模型,得到通用模型,以处理未被数据库记忆的情况。ChatGPT 不是搜索引擎的升级版,搜索引擎无法给出未被数据库记忆的信息,而 ChatGPT 作为生成模型可以创造不存在的文本,但可能存在混淆记忆、无法直接查看和更新所学、高度依赖学习材料以及缺乏及时性和准确性等缺点。
2024-12-24
如何训练模型
训练模型的方法有多种,以下为您介绍几种常见的训练模型方式: 1. 用 SD 训练一套贴纸 LoRA 模型: 原始形象:MJ 初步产出符合设计想法的贴纸原始形象。 二次加工:完成贴纸的白色边线等细节加工。 处理素材:给训练集图片打 tag,修改 tag。 训练模型:将上述处理好的数据集做成训练集,进行训练。 2. 基于百川大模型训练虚拟专家: 选择 Baichuan27BChat 模型作为底模,配置模型本地路径,配置提示模板。 在 Train 页面里,选择 sft 训练方式,加载定义好的数据集 wechat 和 self_cognition。 学习率和训练轮次非常重要,根据自己的数据集大小和收敛情况来设置。 使用 FlashAttention2 可减少显存需求,加速训练速度。 显存小的朋友可以减少 batch size 和开启量化训练,内置的 QLora 训练方式非常好用。 需要用到 xformers 的依赖。 显存占用 20G 左右,耐心等待一段时间。 3. 使用编码器解码器架构构建诗歌生成器: 在训练模型之前,需要一个损失函数,由于本质上是一个多类分类问题,损失将是稀疏的分类交叉熵损失,配置从 logits 计算的损失。 有了损失后编译模型,将损失和优化器联系在一起。 选择训练的时期,一个时期是对数据集的完整传递,进行多次训练,并提供回调以确保在训练期间保存权重。 从实际的字符串中提取字符序列,使用 TensorFlow 的 TF 字符串 Unicode 拆分功能。 将字符序列转化为数字,使用 TF Keras 层中的 StringLookup 函数将每个字符映射到给定的 ID,也可使用同一层的 StringLookup 函数获得反向映射。 将处理后的数据作为神经网络的训练数据集,使用 TF Data Dataset API。
2024-12-24
我想找一个关于建筑三维模型渲染的ai网站
以下为一些关于建筑三维模型渲染的 AI 网站: 1. 3dfy.ai:这是一家专注于将稀疏数据转化为逼真三维世界的公司。其领导团队由计算成像领域资深专家组成,拥有近四十年综合专业知识。适用于数字内容创作者、艺术家、游戏开发者、动画制作人、教育和培训行业专业人士、医疗行业以及建筑和工程领域等。 2. HDAidMaster:云端工具,在建筑设计、室内设计和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 3. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有探索。 4. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入相关标准和规范。 5. Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据汇总与管理。 但需注意,每个工具都有其特定应用场景和功能,建议您根据自身具体需求选择合适的工具。
2024-12-24
在使用sys prompt时为什么要为模型定义角色
在使用系统提示词(sys prompt)为模型定义角色具有以下重要性: 1. 符合特定应用场景:通过定义角色,使模型的行为和输出更符合具体的应用需求,例如让模型作为历史顾问回答历史问题,或作为技术专家解决技术难题。 2. 明确任务和风格:不仅可以指定具体的人物角色,还能设定一种交流风格,如正式、幽默、友好等。 3. 引导模型行为和输出:为模型提供固定的模板,确保其输出与期望和工作流的需求保持一致。 4. 优化用户体验:ChatGPT 有默认的“一个乐于助人的助手”角色,可通过修改系统提示词来满足更个性化的需求。 然而,也有观点认为不需要过度依赖角色扮演类的提示词。关键是要非常具体地描述出模型所在的使用环境,提供足够详细的信息,以避免模型未按预期完成任务。提示词最重要的是表达清晰准确。
2024-12-24
你好,你的大模型是什么
大模型是指输入大量语料,使计算机获得类似人类的“思考”能力,能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与大模型可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary)。 为了让计算机理解 Token 之间的联系,还需要把 Token 表示成稠密矩阵向量,这个过程称之为 embedding,常见的算法有: 基于统计:Word2Vec,通过上下文统计信息学习词向量;GloVe,基于词共现统计信息学习词向量。 基于深度网络:CNN,使用卷积网络获得图像或文本向量;RNN/LSTM,利用序列模型获得文本向量。 基于神经网络:BERT,基于 Transformer 和掩码语言建模(Masked LM)进行词向量预训练;Doc2Vec,使用神经网络获得文本序列的向量。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”,指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。 此外,如果您想获取更多模型,大多数模型可以在 Civitai(C 站)https://civitai.com/ 下载。下载模型时的注意事项包括: 科学上网,需自行想办法。 点击右上角筛选按钮,找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 等。 看照片,感兴趣的点进去,点击右边“Download”下载保存到电脑本地。还可以点击左上角“Images”,查看别人做好的图片,找到喜欢的点进去,复制图片信息。 模型下载保存地址: 大模型:SD 根目录即存放 SD 的文件夹。 Lora、VAE 等也有相应的保存位置。 如果不知道下载的模型类型及应存放的文件夹,可以使用秋叶的模型解析工具 https://spell.novelai.dev/,将模型拖动到空白处,自动弹出模型信息,查看模型种类。
2024-12-23