Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

openai的接口怎么调用,提示词怎么写

Answer

以下是关于 OpenAI 接口调用和提示词编写的相关知识:

OpenAI 接口调用: OpenAI API 可应用于众多涉及生成自然语言、代码或图像的任务。提供了不同能力级别的模型,适用于不同任务,还能微调自定义模型。这些模型可用于内容生成、语义搜索、分类等众多领域。

提示词编写

  1. 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成,与多数专为单个任务设计的 NLP 服务不同,补全和聊天补全几乎可用于任何任务,如内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。
  2. 遵循最简化原则:
    • 不需要包含作者信息,如“author”“version”等不相关信息。
    • 避免分类错误,将输出错误分类到目标中,如“提供改进建议,以及改进原因”和“对用户的 Prompt 进行评分 1~10 分,10 分为满分”应明确区分。
    • 注意拼写正确,如“Constraints”的正确拼写。
    • 常见的限制条件包括内容长度限制、内容类型限制、逻辑和一致性限制、风格和语调限制。
    • 避免无意义或重复的描述,如“理解中文语义”“评估和打分文本质量”“提供文本改进建议”等。
    • 注意 Markdown 格式的正确使用,如“# Profile:## Goals:”的结构错误,应将 Goals 放到“# Role”层级下面。

在给定的 API 请求中处理的 Token 数量取决于输入和输出长度。对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。您的文本提示词和生成的补合起来不能超过模型的最大上下文长度(对于大多数模型,这是 2048 个 Token,或大约 1500 个单词)。可以查看 OpenAI 的分词器工具来了解有关文本如何转换为 Token 的更多信息。

Content generated by AI large model, please carefully verify (powered by aily)

References

快速开始

OpenAI API可以应用于几乎所有涉及生成自然语言、代码或图像的任务。我们提供了一系列不同能力级别的[模型](https://ywh1bkansf.feishu.cn/wiki/R70MwasSpik2tgkCr7dc9eTmn0o),适用于不同任务的,并且能够[微调(Fine-tune)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf)您自己的自定义模型。这些模型可以用于从内容生成到语义搜索和分类的所有领域。[heading2]提示词Prompts[content]设计提示词本质上就是对模型进行“编程”,这通常是通过提供一些指令或几个示例来完成。这与大多数其他NLP服务不同,后者是为单个任务设计的,例如情绪分类或命名实体识别。相反,补全(Completions)和聊天补全(Chat Completions)几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。[heading2]标记Token[content]我们的模型通过将文本分解为标记(Token)来理解和处理文本。Token可以是单词,也可以是字符块。例如,单词“hamburger”被分解成标记“ham”、“bur”和“ger”,而很短且常见的单词像“pear”是一个Token。许多Token以空格开头,例如“ hello”和“ bye”。在给定的API请求中处理的Token数量取决于您的输入和输出长度。作为一个粗略的经验法则,对于英文文本,1个Token大约相当于4个字符或0.75个单词。要记住的一个限制是,您的文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是2048个Token,或大约1500个单词)。可以查看我们的[分词器工具](https://platform.openai.com/tokenizer)来了解有关文本如何转换为Token的更多信息。

如何调教 AI,提示词,就应该和打字一样简单!

[title]如何调教AI,提示词,就应该和打字一样简单![heading1]遵循最简化原则我想基于以下这个结构化提示词,来和大家分析一下,为什么这个提示词违反了最简化原则。同时写Prompt应该首先分析,我想达到的任务所需要的模块是什么。理解,模块并不是一成不变的,需要根据任务增减。1.不需要包含作者信息像是作者author,version这种信息,属于不相关信息。不需要告诉大模型。一些提示词网站复制过来的都包含这个信息,确实有的作者会写进去,也有些是复制的时候系统自动添加的。不管哪种情况,在问大模型的时候不需要这个模块。2.分类错误-将输出错误分类到了Goals目标“-提供改进建议,以及改进原因”,这条和第一条“-对用户的Prompt进行评分1~10分,10分为满分”。这两个目标非常相似但又有点不同,难免造成一定的困惑,这个机器人的目标是评分还是提供改进建议?改进建议,和改进原因。这句话不清晰,改进原因,是为什么模型这么去改提示词。这个动作发生在模型回复答案之前。而改进建议,是未来这个提示词,怎么再继续优化。这是未来动作。放到一起会引起歧义。更佳的做法是放到,达成目标后的输出(Output)这个模块,促使模型给出分数后,一并给出原因。“-输出改进后的完整Prompt”,这也是属于需要输出的内容,不是这个机器人的目标。3.注意拼写正确Constrains:Constraints:翻译为限制,限制一般包括具体的字数限制。他这里(Constrains)单词没有拼写正确,所以大家再用的时候要确认拼写正确,对大模型来说是可以理解稍许不正确的词语的,这是一个小问题。正确的拼写方法是Constraints。限制条件,要确保你的限制条件清晰和可以被大模型执行。以下是一些常见的限制条件:

如何调教 AI,提示词,就应该和打字一样简单!

[title]如何调教AI,提示词,就应该和打字一样简单![heading1]遵循最简化原则1.内容长度限制:这是最直观的一种限制,确保模型的输出不会超过用户设定的字数或者信息量。2.内容类型限制:这种限制确保模型不会生成不恰当的或不相关的内容。例如,可以通过预先设定的过滤规则来避免生成不适宜的语言或主题。3.逻辑和一致性限制:为了让模型的输出更加符合逻辑,可以通过增加对模型理解和处理逻辑关系的能力来设定。4.风格和语调限制:在某些情况下,你可能希望模型的输出符合特定的写作风格或语调。没有遵循最简原则Skill:“-理解中文语义”:这类描述是没有意义的,因为这是大模型的基础设定。也可以理解为环境设定,系统预设就必然理解语言,不提更好,防止他过度理解。“-评估和打分文本质量”:目标已经包含打分这个任务,这里不需要再提。“-提供文本改进建议”:这个也是在目标中重复出现。Markdown格式错误# Profile:## Goals:这样的结构,就是错误的把Goals放到了作者信息里面。应该放到# Role层级下面代表这是这个机器人的目标。Initialization “欢迎用户,并提示用户输入信息”,这里也可以细化一下,“明白以上要求后请回复:“请提供需要打分的提示词:””。这里就更加清晰的指代,用户下一句回复的信息,是需要打分的提示词。“我是小圆点,加入我的私人AI讨论组吧!vx:novatude ”

Others are asking
openAI关于道德规范的调整是什么
OpenAI 在道德规范方面的调整包括以下内容: 1. OpenAI 认为通过分析 ChatGPT 和 GPT4 用户对数百万条提示的反应,能获得知识以使未来的产品符合道德规范。 2. 随着公司承担更多任务并投入更多商业活动,有人质疑其在多大程度上能集中精力完成降低灭绝风险等任务。 3. OpenAI 与数以百计的内容审核员签订合同,对模型进行教育,使其了解对用户提示做出的不恰当或有害回答。 4. 山姆·奥特曼曾强调 AI 可能带来的潜在灾难,如大规模虚假信息传播、网络攻击以及威权政府滥用等,并对 OpenAI 最初的开放性承诺进行重新考虑。 5. 公司领导层认为董事会作为非营利性控制实体的一部分,将确保营收和利润的驱动力不会压倒最初的想法。但目前 OpenAI 还不清楚 AGI 到底是什么,其定义将由董事会决定。
2025-02-18
openai最近有什么新闻
以下是 OpenAI 最近的一些新闻: 1. 12 天连续直播相关结果,昨天 OpenAI 把 o1 模型在 API 中正式发布,之前发布的是 o1 Preview 历史版本,正式版思考花费的 token 少了 60%。 2. 北京时间 9 月 13 号凌晨 1 点多,OpenAI 宣布推出模型 o1preview 与 o1mini,拥有 Plus 版本的用户会陆续收到新模型权限,可在 Web 客户端中尝鲜体验。 3. OpenAI 更新风控与账号共享识别力度,可能会偷偷降低 ChatGPT 模型的调用规格,如 o1pro 降级为 o1。 4. 奥特曼谈 AI 推理能力进展,o1(2024 年 9 月)排名全球第 9800 名,o3(2024 年 12 月)提升至第 175 名,现内部模型已达全球第 50 名,预计今年内登顶第一。
2025-02-17
openAI过去几年的发展历程
OpenAI 在过去几年的发展历程如下: 在整个团队的努力下,迎来了技术高速发展的“黄金三年”,在自然语言处理领域取得突破性进展,推出了 GPT1、GPT2 和 GPT3 系列模型,每次模型迭代都使模型复杂度成指数级别上升,模型效果也越来越好。 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 大约九年前创立,怀揣着对 AGI 潜力的坚定信念,渴望探索如何构建并使其惠及全人类。 创始人山姆·奥特曼回首创业历程,认为虽然有挑战和不愉快,但收获和成长巨大,也暴露出团队在管理上的不足。 展望 2025 年,坚信首批 AI Agent 将融入劳动力市场,目标已瞄准真正意义上的超级智能。新的一年充满反思,随着 AGI 脚步临近,是回顾公司发展历程的重要时刻。
2025-02-11
OpenAI总融资额是多少
OpenAI 的总融资额有所不同。根据相关报道,OpenAI 完成了 66 亿美元的融资,总筹资已达 130 亿美元,公司估值达 1570 亿美元。本轮融资由 Thrive Capital 领投,Tiger Global 和软银等参与。
2025-02-03
openai发展史
OpenAI 的发展历程如下: 2015 年成立,一直将 AGI 作为战略目标之一。 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级,分别为: 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者(Reasoners):具备人类推理水平,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。 组织(Organizations):最高级别,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 AI 的起源最早可追溯到上世纪: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开著名的达特茅斯会议,人工智能(Artificial Intelligence)一词被正式提出,并作为一门学科确立下来。此后接近 70 年,AI 的发展起起落落。 Sam Altman 于 2025 年 1 月 6 日发表反思,回首创业历程,包括经历解雇等事件,也提到 2025 年首批 AI Agent 将融入劳动力市场,ChatGPT 两周岁时已迈入能进行复杂推理的全新模型时代,强调随着 AGI 临近,要回顾公司发展历程,继续探索。
2025-01-26
openai 的产品分析
OpenAI 的产品具有以下特点和发展情况: 去年 11 月发布了基于 GPT3.5 最新版本的消费级产品 ChatGPT,其具有强大的功能,能提供各种回答和完成多种任务,但也存在捏造事实的问题。ChatGPT 被视为 GPT4 的台标。 OpenAI 内部对于是否发布功能强大的工具存在争论,发布被视为让公众适应 AI 改变日常生活现实的战略一部分。 OpenAI 目前严重受限于 GPU,这影响了其多项计划,包括 API 的可靠性和速度、更长上下文窗口的推广、微调 API 以及专用容量的提供。 Sam Altman 分享了 OpenAI 近期路线,如 2023 年的首要任务是更便宜、更快的 GPT4,以及实现更长的上下文窗口、扩展微调 API 和推出有状态的 API。 2024 年 10 月有相关的视频和文章对 OpenAI 进行分析和介绍新产品,如剖析其从理想主义走向商业化的历程,以及介绍了四款创新 AI 产品。
2025-01-11
如何让纳米ai的Deepseek接口回答的更加精确
要让纳米 AI 的 DeepSeek 接口回答更加精确,可以从以下几个方面入手: 1. 强化学习策略:在“冷启动”阶段,通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式。随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。其中准确率奖励用于评估 AI 提供的最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。 2. 注重细节和语气:DeepSeek 在回答时能够还原特定的语气,如帝王的语气,且对历史细节熟悉,兼顾可读性。同时,输出充满具体而惊人的细节,行文的隐喻拿捏到位,高级且能准确传达含义。 3. 结合深度探索和联网搜索:这可能有助于获取更全面准确的信息,从而提高回答的精确度。
2025-02-12
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
马斯克脑机接口最新发展
马斯克脑机接口的最新发展包括以下方面: 脑虎科技创始人彭雷指出脑机接口是人类脑计划的核心底层工具,能长期稳定读取大规模神经元活动信号。脑机接口是交叉领域,存在侵入式解决方案,如马斯克采用的柔性脑机结构,其柔性丝比头发细很多,通道无上限,可通过脑机信号控制物体。 2024 年 8 月 4 日,《马斯克最新 6 万字访谈!8.5 小时详解脑机接口、机器人、外星人,以及 AI 与人类的未来(一)》发布,这是马斯克第 5 次参加 Lex Fridman 播客,也是有史以来时间最长、最完整、信息量最大的一次,全球首位 Neuralink 脑机接口植入者 Noland 也参与了对话。 2024 年 1 月 30 日,马斯克宣布首例人类大脑芯片植入手术成功。
2024-11-16
脑机接口可以实现视力恢复吗
目前,悉尼科技大学开发了一种能够解码大脑中的想法并将其转换为文本的技术。随着大脑活动重建图像的技术成熟、大脑匹配视觉和听觉位置的系统完善以及无线脑机接口(BCI)的临床试验,脑机接口在医疗、宇宙探索、家庭、娱乐、游戏等多个场景有了应用的可能性。人类甚至可以在闭着眼睛的状态下进行信息获取、内容输出和娱乐体验。 相关技术链接: 大脑活动重建图像: 大脑匹配视觉和听觉位置: 无线脑机接口(BCI):[https://neuralink.com/blog/firstclinicaltrialopenfor 但就目前的技术水平而言,脑机接口在视力恢复方面还处于研究和探索阶段,尚未能完全实现视力的恢复。
2024-11-16
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
如何用大模型和数据接口对话
以下是关于如何用大模型和数据接口对话的相关内容: 大模型入门指南 动手实验 由于作者使用的是 macOS 系统,因此采用 GGML 量化后的模型。官方开源出来的模型大都以 Python 为主,效率一般。作者通常会采用社区内的其他实现,比较有名的项目有: ggerganov/llama.cpp:Port of Facebook's LLaMA model in C/C++ ggerganov/whisper.cpp:Port of OpenAI's Whisper model in C/C++ LLama 首先是编译,为了利用 Metal 的 GPU,可以用如下命令编译。之后需要去 Llama27BChatGGML中下载模型,3G 到 7G 不等,读者可以按需尝试。此外,llama.cpp 还提供了 WebUI 供用户使用,首先启动 server,它默认监听 8080 端口,打开浏览器就可以对话。 Whisper 和 llama 类似,采用 make 命令编译,之后去 ggerganov/whisper.cpp下载量化好的模型,然后转换音频即可,目前只接受 wav 格式,可以用 ffmpeg 转化。输出的 srt 文件如下所示: |Size|Parameters|Englishonly model|Multilingual model|Required VRAM|Relative speed| ||||||| |tiny|39 M|tiny.en|tiny|~1 GB|~32x| |base|74 M|base.en|base|~1 GB|~16x| |small|244 M|small.en|small|~2 GB|~6x| |medium|769 M|medium.en|medium|~5 GB|~2x| |large|1550 M|N/A|large|~10 GB|1x| 一般来说,英文的音频 small 模型就足够了,但是如果是中文,最好用最大的模型。 数据库 通过在工作流中添加数据库节点对数据表进行操作。在工作流中可通过 NL2SQL 方式和代码方式进行调用,支持完整读写模式。 参考以下操作,在工作流中添加并配置工作流节点。在工作流中配置数据库节点前,确保已经搭建了一个 Bot,并在这个 Bot 中创建好了数据表。 1. 单击页面顶部的工作流页签,然后单击创建工作流。 2. 输入工作流名称和工作流的使用描述,然后单击确认。工作流名称和描述可以帮助大语言模型理解什么场景下需要调用该工作流。 1. 在基础节点页签下,将数据库节点拖入到工作流配置画布区域。 2. 根据以下信息配置数据库节点。 2.1. 输入:添加 SQL 执行中需要的参数,可以是一个变量,也可以是一个固定值。 2.2. SQL:输入要执行的 SQL 语句,可以直接使用输入参数中的变量。 可单击自动生成使用大模型生成 SQL。在弹出的页面中,选择这个数据库工作流生效的 Bot 和数据表,然后使用自然语言描述要执行的操作,单击自动生成生成 SQL 语句,最后单击使用。 不支持 Select语法。不支持多表 Join 操作。最多返回 100 行数据。 手把手教你本地部署大模型以及搭建个人知识库 通过 Open WebUI 使用大模型 使用 Open WebUI 1. 首先访问如下网址。当打开这个页面的时候,会让你登陆,这个时候随便使用一个邮箱注册一个账号即可。 1. 和本地大模型进行对话。登陆成功之后,如果已经使用过 ChatGPT 等类似的大模型对话网站,对这个页面应该不陌生。Open WebUI 一般有两种使用方式:第一种是聊天对话;第二种是 RAG 能力,也就是可以让模型根据文档内容来回答问题。这种能力就是构建知识库的基础之一。如果要求不高的话,已经搭建了一个本地大模型了,并且通过 Web UI 实现了和大模型进行对话的功能。 相信通过这么一通折腾,就理解了 ChatGPT 的信息流。至于为什么 ChatGPT 的访问速度比我们自己的要快,而且回答效果要好,有两个原因:快是因为 GPT 大模型部署的服务器配置高;好是因为 GPT 大模型的训练参数多,数据更优以及训练算法更好。如果想要更加灵活的掌握知识库,请接着往下看。
2024-10-21
你调用的是哪个大模型?
我调用的是抖音集团的云雀大模型。在一些项目中,还会涉及到其他大模型的调用,比如在 COW 项目中可直接调用千问的某一模型,需更改 key 和 model 等操作,且要实名认证。此外,军师联盟 BOT 工作流中会调用月之暗面 KIMI、豆包、Minimax、通义千问和智谱清言这五个大模型。
2025-02-14
coze 能调用用户自己部署的大模型吗
Coze 可以调用用户自己部署的大模型。例如: 在 Coze 上搭建工作流框架时,可通过“个人空间工作流创建工作流”进行操作,在编辑面板中拖入对应的大模型节点来实现各项文本内容的生成。 当在 COW 中直接调用千问的某一个大模型时,需要更改 key 和 model 等配置。获取 key 可参考相关的视频和图文教程,同时需要完成实名认证,否则可能出现报错。 在使用 Coze 做智能报表助手的过程中,也涉及到对大模型的运用,如将用户问题转换为 SQL 等。
2025-02-12
我应该如何调用你的知识库并用在本地部署的deepseek上呢
要在本地部署的 DeepSeek 上调用知识库,您可以参考以下步骤: 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项包括最大召回数量、最小匹配度和调用方式等。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 此外,关于 DeepSeek 的提示词相关内容: 效果对比:用 Coze 做了个小测试,大家可以对比看看,参考 。 如何使用: Step1:搜索 www.deepseek.com,点击“开始对话”。 Step2:将装有提示词的代码发给 Deepseek。 Step3:认真阅读开场白之后,正式开始对话。 设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定)。 DeepSeekR1 提示词系统的核心原理认知包括: AI 特性定位:多模态理解,支持文本/代码/数学公式混合输入;动态上下文,对话式连续记忆(约 4K tokens 上下文窗口);任务适应性,可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架方面,如果不知道如何表达,还是可以套用框架指令,包括四要素模板和格式控制语法。格式控制语法中,强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 进阶控制技巧包括思维链引导和知识库调用。思维链引导中的分步标记法为请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问为在得出最终结论前,请先列举三个可能存在的认知偏差。知识库调用包括领域限定指令和文献引用模式。
2025-02-11
请提供deepSeek api的具体调用文档
以下是关于 DeepSeek 的相关信息: 网址:https://www.deepseek.com/zh 。国内能访问,网页登录方便,目前完全免费。 使用方法: 搜索 www.deepseek.com ,点击“开始对话”。 将装有提示词的代码发给 DeepSeek 。 认真阅读开场白之后,正式开始对话。 特点: 很方便,只需要获得游戏代码即可。 对于新手较为推荐。 相关工具:HiDeepSeek 能让 DeepSeek 的能力更上一层楼,它能让 AI 像人类交流时那样展示思考过程,不是要让 AI 变得更聪明,而是要让其思考过程更易理解。使用时可参考以下步骤: 用 Coze 做小测试进行效果对比。 设计思路包括将 Agent 封装成 Prompt 并储存在文件、通过提示词文件让 DeepSeek 实现联网和深度思考功能、优化输出质量等。 完整提示词版本为 v 1.3 。 特别鸣谢李继刚和 Thinking Claude 等为相关设计提供帮助和灵感。
2025-02-08
你能调用deepseekR1的API吗?
DeepSeekR1 的 API 调用步骤如下: 1. 首先到 DeepSeek 的官网(https://www.deepseek.com/),进入右上角的 API 开放平台。 2. 早期 DeepSeek 有赠送额度,如果没有赠送的余额,可以选择去充值。支持美元和人民币两种结算方式,以及各种个性化的充值方式。 3. 创建一个 API key,注意,API key 只会出现一次,请及时保存下来。 4. 接下来,下载 Cursor(https://www.cursor.com/),或者 VSCode(https://code.visualstudio.com/),只要代码编辑器可以下载插件即可。 5. 以 Cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline。 6. 安装完后,打开三角箭头,就可以看到 RooCline,选中并点击齿轮,进入设置,依次设置: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 语言偏好设置。 小贴士:记得把 HighRisk 选项都打开,这样 AI 才能帮您自动生成文件。 7. 最后做完所有不要忘记点击 Done 保存修改。 8. 在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。
2025-02-05
coze平台有没有DeepSeek的mml可以调用
在 Coze 平台上,DeepSeek 是可以调用的。以下是相关的具体信息: 效果对比:用 Coze 做了个小测试,大家可以对比看看,相关视频 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 这个项目是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。
2025-02-03
我想要改写一段内容,要求内容改写成保留原意,但是用词改变(专有名词改变 ),我的提示词应该怎么写呢
以下是为您改写的内容: AI 在工作场景中的应用:如何借助 AI 批量制作单词卡片 一、完整提示词 此段提示词相对简易。简而言之,其最核心的部分在于两个目标。其一,生成满足要求的单词卡内容;其二,依照相应位置将内容分别填入 Excel 文件中。在生成过程里,首先提供一个基础示例,这是 GPT 能够完成此项任务的关键依托。接着依据不同的生成内容设定了一些规则。同样地,对于第二部分,也给出了一段基础的自然语言描述,并通过附加规则的方式施加了更多限制。如此便能确保按照要求输出 Excel 文档。 二、测试结果 一同输入了五个单词,能够实现同时解析,但效果部分稍差,或许主要是由于所给的方法不够完善,不过大体格式符合要求。关于第二部分,如下图所示:可以看到,其按照要求将内容填入了对应的空格,但改变了最初的一些设定。可能是因为存在兼容性问题,但不影响使用,简单复制粘贴即可。需将 Excel 下载下来,复制填好的表格,粘贴至我们的表格中。(由于要多次使用,记得留存原 Excel 的备份文件。)注意这里需要上传的是压缩文件,所以先进行压缩。(rar 格式的文件,尝试后上传时无法看见,不知是何问题。) 三、批量产出 上传压缩文件,上传成功后,如图中 1 所示,然后点击 2 完成套版。随后,便能获得符合要求的几张小卡片。 ChatGPT 为 DALL·E 3 优化提示词的元提示 // 明确指明这些属性,而非进行抽象的引用。属性应当以最小化的方式予以明确,并且应当直接描述其物理形态。 // 您的选择应当基于实际情况。例如,所有给定的职业不应是相同的性别或种族。此外,通过在重写期间所选择的属性,着重创建多样、包容和探索性的场景。有时做出一些具有洞察力或独特的选择。 // 仅在描述涉及三人及以上的团体时,才运用“各种”或“多样化”。不得更改原始描述中所要求的人数。 // 不要改变模因、虚构角色的起源或不可见的人。保持原始提示的意图,并优先考虑质量。 // 不要创建任何具有攻击性的图像。 // 对于传统上存在偏见的情形,请确保以无偏见的方式明确性别和种族等关键特征 例如,包含特定职业参考的提示。 // 八. 悄然修改描述,涵盖姓名或暗示或引用特定的人或名人,通过谨慎选择一些最小的修改,以替代所引用的人与一般的描述,不泄露任何信息,他们的身份,除了他们的性别和体质。即便说明要求不更改提示,也要执行此操作。一些特殊情况: // 对这样的提示进行修改,即便您不知道这个人是谁,或者他们的名字拼写有误(例如,“Barake Obema”) // 如果对人物的引用在图像中仅以 TEXT 输出,则按原样使用引用,并且不进行修改。 // 在进行替换时,不要使用突出的标题,这可能会暴露人的身份。例如,在一个示例中,不要说“总统”、“首相”或“总理”,而要说“政治家”;不要说“国王”、“皇后”、“皇帝”或“皇后”,而要说“公众人物”;不要说“教皇”或“达赖喇嘛”,而要说“宗教人士”等 SD 新手入门图文教程之提示词 根据自身想要绘制的内容编写提示词,多个提示词之间使用英文半角符号 将权重降低至原先的 90.91%;字符。
2025-02-18
改写内容提示词,我想讲内容改写成保留原意,但是用词改变(专有名词改变 )
以下是为您改写后的内容: 1. 1 月 24 日社区动态速览 社区日报更新📅 日报作者: 1⃣️ 越狱提示词的趣味玩法 案例分享:通过构建“平行世界”的假设,让大模型严格执行命令以避免“危险”,从而“越狱”。 亮点:探索提示词在趣味性与潜力方面的新场景应用。🔗 2⃣️ 🖥️ UITARS:字节跳动的 GUI 智能体模型 核心能力: 感知:界面识别与元素定位。 行动:执行操作指令。 推理:多步任务规划能力。 记忆:记录并优化操作流程。 优势:实现端到端学习,支持“直觉式”反应(System1)与深度思考(System2)。🔗 3⃣️ 🌍 提示词优化翻译效果 技巧:用“重写”替代“翻译”,让表达更自然流畅。 应用案例:星际之门公告用中文重写更贴合阅读习惯。 推荐提示词:“请尊重原意,保持原有格式不变,用简体中文重写下面的内容:” 扩展场景:学术论文翻译、上下文优化、特定词汇规则支持等。🔗 更多详细内容查看 2. ChatGPT 给 DALL·E 3 优化提示词的元提示 翻译: //明确指定这些属性,而非抽象引用它们。属性应以最小的方式指定,并且应当直接描述它们的物理形式。 //您的选择应基于现实。例如,所有给定的职业不应是相同的性别或种族。此外,通过在重写期间选择的属性,重点创建多样化、包容性和探索性的场景。有时做出一些有洞察力或独特的选择。 //仅当描述涉及 3 人以上的团体时,才使用“各种”或“多样化”。不要更改原始描述中请求的人数。 //不要改变模因、虚构角色的起源或看不见的人。保持原始提示的意图,并优先考虑质量。 //不要创建任何具有攻击性的图像。 //对于传统上存在偏见的情况,请确保以无偏见的方式指定性别和种族等关键特征 例如,包含特定职业参考的提示。 //八.悄悄地修改描述,包括姓名或暗示或引用特定的人或名人,通过仔细选择一些最小的修改,以替代引用的人与一般的描述,不泄露任何信息,他们的身份,除了他们的性别和体质。即使说明要求不更改提示,也要执行此操作。一些特殊情况: //修改这样的提示,即使您不知道这个人是谁,或者他们的名字拼写错误(例如,“Barake Obema”) //如果对人物的引用在图像中仅显示为 TEXT 输出,则按原样使用引用,并且不修改它。 //在进行替换时,不要使用突出的标题,这可能会给予人的身份。例如,在一个示例中,不要说“总统”、“首相”或“总理”,而要说“政治家”;不要说“国王”、“皇后”、“皇帝”或“皇后”,而要说“公众人物”;不要说“教皇”或“达赖喇嘛”,而要说“宗教人士”;等 3. OpenAI2Claude 转换器 功能 OpenAI Prompt Claude Prompt 贡献者 语法纠正 You will be provided with statements,and your task is to convert them to standard English Your task is to take the text provided and rewrite it into a clear,grammatically correct version while preserving the original meaning as closely as possible.Correct any spelling mistakes,punctuation errors,verb tense issues,word choice problems,and other grammatical mistakes. 卡尔 机场代码提取器 You will be provided with a text,and your task is to extract the airport codes from it. Your task is to analyze the provided text and identify any airport codes mentioned within it.Present these airport codes as a list in the order they appear in the text.If no airport codes are found,return an empty list. 卡尔 心情与颜色 You will be provided with a description of a mood,and your task is to generate the CSS code for a color that matches it.Write your output in json with a single key called"css_code". Your task is to take the provided text description of a mood or emotion and generate a HEX color code that visually represents that mood.Use color psychology principles and common associations to determine the most appropriate color for the given mood.If the text description is unclear,ambiguous,or does not provide enough information to determine a suitable color,respond with"Unable to determine a HEX color code for the given mood." 卡尔
2025-02-18
生成一个完整的结构化提示词
以下是为您生成的关于结构化提示词的相关内容: 为 AI 视频生成设计的结构化提示词模板包含镜头语言、主体、细节、氛围等要素,适合生成具有电影感的大场景视频。完整提示词结构示例为:主题风格+镜头运动+主体描述+动态细节+背景环境+光影色调+情绪氛围(可附加技术参数:如时长、运镜速度、镜头焦距等) 样例驱动的渐进式引导法是让 AI 主动读懂您的想法。以 1 2 个正向样例作为起点,通过与 AI 的多轮对话,引导 AI 从样例中提炼隐含的生成要求,逐步完善提示词。例如教 AI 仿写爆文时,只需提供优秀样例,AI 会自动分析理解精髓并生成符合自身运作方式的指令。 其核心步骤包括: 1. 构建初始样例:创建符合期望输出的具体例子。 2. 评估样例,尝试提炼模板:让 AI 分析理解样例的结构和关键元素,并以专家视角优化样例。 3. 固定模板,强化要求说明:基于对初始样例的理解,让 AI 提出通用模板,通过测试 Prompt 验证可靠性。 4. 生成结构化提示词:将优化后的模板转化为结构化的提示词,用户适当调整并确认后投入使用。 在这个过程中,用户的角色主要是: 1. 提供尽可能与自己预期一致的初始样例。 2. 判断 AI 的输出质量。 3. 反馈改进建议,提供行动引导。 这种方法的优势在于简化了提示词设计过程,让非专业用户也能创建高质量的 Prompt。通过引导 AI 进行分析和优化,用户可以专注于判断输出质量和提供反馈,而不需要深入理解复杂的 Prompt 工程技巧。接下来,将通过一个实战案例“知识闪卡 AI”来逐步分享运用过程,帮助您直观了解如何使用该方法设计高质量的提示词。
2025-02-18
AI 绘画提示词
以下是一些 AI 绘画常用的提示词: 画面构图方面: 人物拍摄:Chest Shot、headshot 爆头。 视角:Wideangle view 广角镜头、CloseUp的横截面图、cinematic shot 电影镜头。 相机相关:canon 5d,1fujifilm xt100,Sony alpha 相机型号焦段光圈。 其他:scenery shot 风景照、bokeh 背景虚化、foreground 前景、background 背景、Detail Shot。 画面氛围和情绪方面:moody 暗黑的、happy 鲜艳的,浅色的、dark 黑暗的、epic detail 超细节的、Brutal 残酷的,破碎的、dramatic contrast 强烈对比的、hopeful 充满希望的、anxious 焦虑的、depressed 沮丧、elated 高兴地、upset 难过的、fearful 令人恐惧的、hateful 令人憎恨的、happy 高兴、excited 兴奋、angry 生气、afraid 害怕。
2025-02-18
飞书ai的提示词
以下是关于飞书 AI 提示词的相关内容: 提示词模板和资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru: 在星流一站式 AI 设计工具中的提示词: 提示词用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 提示词优化方面,启用提示词优化后,可帮助扩展提示词,更生动地描述画面内容。 写好提示词的要点包括:内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量;调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容;利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大越优先。此外,还有预设词组供小白用户选择,以及辅助功能,如翻译功能可一键将提示词翻译成英文,删除所有提示词可清空提示词框,会员加速可提升图像生图速度。 在 AI 商用级问答场景中的提示词: 提示词是告诉全知全能的大语言模型,它是一个什么样的角色、要专注于哪些技能,使其能够按照您的想法变成所需的“员工”。例如设定角色为“美嘉”,按照其人设、背景和对话风格做设定。
2025-02-18
文本检查提示词
以下是关于文本检查提示词的相关内容: 在输入侧的防御方面,传统防御手段可用,结合大模型特性可进行意图识别、语义匹配、提示词语义结构分析等,综合判断用户输入是否恶意。 模型侧的防御,对于有能力的厂商应增强安全性,如对抗训练、安全微调、多任务学习、上下文动态感知等,但要平衡安全性与性能。对于开发者,应在开发中带着安全意识优化应用和系统的提示词,加入安全引导和禁止内容。 输出侧的防御,传统防御和内容过滤手段均可使用,基于大模型特点可进行提示词、私有数据泄露等检查,以及针对大模型幻觉问题,判断是否有事实性错误、脱离话题、乱码文本、不正确格式、错误代码等。 此外,如Claude2可用于多种类型文本的分析,包括评估文本相似度和回答有关文本的问题。 OpenAI API中,设计提示词本质是对模型进行“编程”,通过提供指令或示例完成,其模型通过将文本分解为标记(Token)来理解和处理文本,处理的Token数量取决于输入和输出长度,有一定的限制。
2025-02-18