Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

openai发展史

Answer

OpenAI 的发展历程如下:

  • 2015 年成立,一直将 AGI 作为战略目标之一。
  • 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。
  • 在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级,分别为:
    • 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。
    • 推理者(Reasoners):具备人类推理水平,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。
    • 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。
    • 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。
    • 组织(Organizations):最高级别,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

AI 的起源最早可追溯到上世纪:

  • 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。
  • 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。
  • 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开著名的达特茅斯会议,人工智能(Artificial Intelligence)一词被正式提出,并作为一门学科确立下来。此后接近 70 年,AI 的发展起起落落。

Sam Altman 于 2025 年 1 月 6 日发表反思,回首创业历程,包括经历解雇等事件,也提到 2025 年首批 AI Agent 将融入劳动力市场,ChatGPT 两周岁时已迈入能进行复杂推理的全新模型时代,强调随着 AGI 临近,要回顾公司发展历程,继续探索。

Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

2022年11月30日,OpenAI发布基于GPT 3.5的ChatGPT,自此开始,一股AI浪潮席卷全球,但AI(人工智能,Artificial Intelligence)并不是近几年才有的新鲜事,他的起源,最早可以追溯到上世纪的1943年。1943年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。1956年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能Artificial Intelligence一词被正式提出,并做为一门学科被确立下来。此后接近70年的漫长时间里,AI的发展起起落落,两次掀起人类对AI毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。图1 AI发展史

问:AGI 的 5 个等级是什么?

OpenAI在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级。OpenAI自2015年成立以来,一直将AGI作为其战略目标之一,随着ChatGPT、多模态大模型和AI Agent等技术的发展,我们似乎越来越接近实现这一目标。AGI的五个等级分别为:1.聊天机器人(Chatbots):具备基本对话能力的AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。2.推理者(Reasoners):具备人类推理水平的AI,能够解决复杂问题,如ChatGPT,能够根据上下文和文件提供详细分析和意见。3.智能体(Agents):不仅具备推理能力,还能执行全自动化业务的AI。目前许多AI Agent产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。4.创新者(Innovators):能够协助人类完成新发明的AI,如谷歌DeepMind的AlphaFold模型,可以预测蛋白质结构,加速科学研究和新药发现。5.组织(Organizations):最高级别的AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

反思|Sam Altman

原文地址:https://blog.samaltman.com/reflections发表时间:2025年1月6日回首过去几年的创业历程,这段时光无疑是我人生中最富价值、充满挑战、也最为难忘的阶段。尤其是近两年,虽然也经历了一些不愉快,但其中的收获和成长是巨大的。想起一年多前那次突如其来的解雇,至今仍记忆犹新。当时在酒店房间里,一通视频电话就宣告了我的“出局”,那种感觉近乎虚幻,如同美梦瞬间破碎。现在看来,那次事件也暴露出我们团队(包括我自己)在管理上的一些不足。即便如此,这两年我们如同经历了一家普通公司十年的历程,从无到有地构建了OpenAI。展望2025年,我坚信首批AI Agent将开始融入劳动力市场,为各行各业带来变革。更长远来看,我们的目标已经瞄准了真正意义上的超级智能。这些想法一经分享,便引发了广泛的关注。ChatGPT的两周岁生日至今不过一个多月,而我们就已经迈入了能够进行复杂推理的全新模型时代。新的一年总是让人充满反思。我想借此机会分享一些个人感悟,回顾我们取得的进展,以及一路走来的经验教训。随着通用人工智能(AGI)的脚步日益临近,现在正是回顾公司发展历程的重要时刻。我们深知,前方还有许多未知,我们仍需不断探索。但可以肯定的是,我们比初创时期更加成熟。大约九年前,我们怀揣着对AGI潜力的坚定信念创立了OpenAI,相信它将成为人类历史上最具变革意义的技术。我们渴望探索如何构建它,并使其惠及全人类;我们希望能在历史的进程中留下自己的印记。我们的目标远大,也坚信这项事业能够以非凡的方式造福社会。那时,鲜有人关注我们,即使有,也大多认为我们成功的可能性微乎其微。

Others are asking
openai
OpenAI 相关信息如下: 模型: OpenAI API 由多种具有不同功能和价位的模型提供支持,还可通过微调针对特定用例对原始基本模型进行有限定制。 具体模型包括:GPT4 Beta(一组改进 GPT3.5 的模型,可理解和生成自然语言或代码)、GPT3.5(一组改进 GPT3 的模型,可理解并生成自然语言或代码)、DALL·E Beta(可在给定自然语言提示的情况下生成和编辑图像的模型)、Whisper Beta(可将音频转换为文本的模型)、Embeddings(可将文本转换为数字形式的模型)、Codex Limited Beta(一组可理解和生成代码的模型,包括将自然语言转换为代码)、Moderation(可检测文本是否敏感或不安全的微调模型)、GPT3(一组可理解和生成自然语言的模型)。 通用人工智能(AGI)计划: 有网络上传播的关于 OpenAI 计划在 2027 年前实现通用人工智能(AGI)的计划的相关文档,内容为各种报道和推文的拼凑猜测。 文档提到 OpenAI 于 2022 年 8 月开始训练一个拥有 125 万亿参数的多模态模型,第一阶段被称为 Arrakis 或 Q,该模型于 2023 年 12 月完成训练,但因高昂推理成本发布被取消,原计划 2025 年发布的 GPT5 取消,Gobi(GPT4.5)被重新命名为 GPT5。 技术栈: 从 GPT、DALL·E 到 Sora,OpenAI 成功跑通了 AGI 的所有技术栈。加州大学伯克利分校计算机科学 PHD、知乎作者 SIY.Z 从技术实现、商业和技术趋势上分析了原因,并尝试预测了 OpenAI 下一步的进展。
2025-02-24
openAI关于道德规范的调整是什么
OpenAI 在道德规范方面的调整包括以下内容: 1. OpenAI 认为通过分析 ChatGPT 和 GPT4 用户对数百万条提示的反应,能获得知识以使未来的产品符合道德规范。 2. 随着公司承担更多任务并投入更多商业活动,有人质疑其在多大程度上能集中精力完成降低灭绝风险等任务。 3. OpenAI 与数以百计的内容审核员签订合同,对模型进行教育,使其了解对用户提示做出的不恰当或有害回答。 4. 山姆·奥特曼曾强调 AI 可能带来的潜在灾难,如大规模虚假信息传播、网络攻击以及威权政府滥用等,并对 OpenAI 最初的开放性承诺进行重新考虑。 5. 公司领导层认为董事会作为非营利性控制实体的一部分,将确保营收和利润的驱动力不会压倒最初的想法。但目前 OpenAI 还不清楚 AGI 到底是什么,其定义将由董事会决定。
2025-02-18
openai最近有什么新闻
以下是 OpenAI 最近的一些新闻: 1. 12 天连续直播相关结果,昨天 OpenAI 把 o1 模型在 API 中正式发布,之前发布的是 o1 Preview 历史版本,正式版思考花费的 token 少了 60%。 2. 北京时间 9 月 13 号凌晨 1 点多,OpenAI 宣布推出模型 o1preview 与 o1mini,拥有 Plus 版本的用户会陆续收到新模型权限,可在 Web 客户端中尝鲜体验。 3. OpenAI 更新风控与账号共享识别力度,可能会偷偷降低 ChatGPT 模型的调用规格,如 o1pro 降级为 o1。 4. 奥特曼谈 AI 推理能力进展,o1(2024 年 9 月)排名全球第 9800 名,o3(2024 年 12 月)提升至第 175 名,现内部模型已达全球第 50 名,预计今年内登顶第一。
2025-02-17
openAI过去几年的发展历程
OpenAI 在过去几年的发展历程如下: 在整个团队的努力下,迎来了技术高速发展的“黄金三年”,在自然语言处理领域取得突破性进展,推出了 GPT1、GPT2 和 GPT3 系列模型,每次模型迭代都使模型复杂度成指数级别上升,模型效果也越来越好。 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 大约九年前创立,怀揣着对 AGI 潜力的坚定信念,渴望探索如何构建并使其惠及全人类。 创始人山姆·奥特曼回首创业历程,认为虽然有挑战和不愉快,但收获和成长巨大,也暴露出团队在管理上的不足。 展望 2025 年,坚信首批 AI Agent 将融入劳动力市场,目标已瞄准真正意义上的超级智能。新的一年充满反思,随着 AGI 脚步临近,是回顾公司发展历程的重要时刻。
2025-02-11
OpenAI总融资额是多少
OpenAI 的总融资额有所不同。根据相关报道,OpenAI 完成了 66 亿美元的融资,总筹资已达 130 亿美元,公司估值达 1570 亿美元。本轮融资由 Thrive Capital 领投,Tiger Global 和软银等参与。
2025-02-03
openai 的产品分析
OpenAI 的产品具有以下特点和发展情况: 去年 11 月发布了基于 GPT3.5 最新版本的消费级产品 ChatGPT,其具有强大的功能,能提供各种回答和完成多种任务,但也存在捏造事实的问题。ChatGPT 被视为 GPT4 的台标。 OpenAI 内部对于是否发布功能强大的工具存在争论,发布被视为让公众适应 AI 改变日常生活现实的战略一部分。 OpenAI 目前严重受限于 GPU,这影响了其多项计划,包括 API 的可靠性和速度、更长上下文窗口的推广、微调 API 以及专用容量的提供。 Sam Altman 分享了 OpenAI 近期路线,如 2023 年的首要任务是更便宜、更快的 GPT4,以及实现更长的上下文窗口、扩展微调 API 和推出有状态的 API。 2024 年 10 月有相关的视频和文章对 OpenAI 进行分析和介绍新产品,如剖析其从理想主义走向商业化的历程,以及介绍了四款创新 AI 产品。
2025-01-11
说说AI发展史
AI(人工智能)的发展有着悠久的历史。其起源最早可追溯到 1943 年,当时心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,计算机先驱图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落,曾两次掀起人类对其毁灭人类世界的恐慌,热度拉满后又以“不过如此”冷却收场。过去的其他 AI 更多应用于完成诸如人脸识别这样的分类判断任务,而生成式 AI 的诞生让人们看到其可以像人一样创作交流,在写文章、画画、写歌等方面展现出惊人能力。 就在过去几个月里,尽管科技公司面临资本紧缩,但一系列生成式 AI 产品的出现引发了风投界的关注。从关键人物推动的学术进展、算法和理念的涌现、公司和产品的进步、脑科学对神经网络的迭代影响这四个维度,可以更深刻地理解“机器之心的进化”。相关文章较长,涵盖了 AI 进化史的多个方面,包括前神经网络时代、软件 2.0 的崛起、面向智能的架构、一统江湖的模型、现实世界的 AI 以及 AI 进化的未来等内容。
2024-12-18
Open AI的发展史
OpenAI 的发展历程如下: 2015 年成立。 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 其发展可追溯到更早时期: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,人工智能一词被正式提出,并确立为一门学科。 此后近 70 年,AI 发展起起落落。 OpenAI 成立一年多后,其首席技术官对细节描述吝啬,当时员工工资占支出大头,研究方向多样但成果有限。 OpenAI 的崛起始于聘请研究员 Alec Radford。 此外,OpenAI 在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2024-12-04
AI发展史
AI(人工智能)的发展有着悠久的历史,其起源最早可追溯到上世纪: 1. 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定了基础。 2. 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落。其发展历程大致可分为以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,包括元学习、一次学习、提示学习等。 5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2024-12-02
AI发展史
AI(人工智能)的发展有着悠久的历史,其起源最早可追溯到上世纪: 1. 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落: 1. 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):包括专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 过去的其他 AI 更多应用于完成人脸识别等分类判断任务,而生成式 AI 的诞生让人们看到其在写文章、画画、写歌等方面展现出类似人类的创作交流能力。
2024-11-11
AI的整个发展史,有没有AI相关综述,让我阅读一下
以下是为您提供的关于 AI 发展史及相关综述的内容: 1. 《机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命》:涵盖了 AI 进化史的多个方面,包括前神经网络时代、Machine Learning 的跃迁、开启潘多拉的魔盒等,文章较长,约 22800 字,阅读前可先观看一段 Elon Musk 和 Jack Ma 在 WAIC 2019 关于人工智能的对谈视频。 2. 对于初学者: 微软的 AI 初学者课程《Introduction and History of AI》: AI for every one(吴恩达教程): 大语言模型原理介绍视频(李宏毅): 谷歌生成式 AI 课程: ChatGPT 入门: 如果您是新手学习 AI,可参考以下学习路径指南: 1. 了解 AI 基本概念:阅读「」熟悉术语和基础概念,浏览入门文章了解 AI 历史、应用和发展趋势。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。
2024-09-16
AI发展史
AI 的发展历程大致如下: 1. 早期阶段(1950s 1960s):出现了专家系统、博弈论以及机器学习的初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示和自动推理得到发展。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 早在 1945 年,Alan Turing 就考虑用计算机模拟人脑,设计了 ACE(Automatic Computing Engine 自动计算引擎),这被视为机器智能的起源。随着对大脑工作机制认知的增加,神经网络的算法和模型也不断进步。例如,CNN 的结构基于两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等许多应用中表现出色。每次对大脑工作机制的更多了解,都推动着神经网络的发展。
2024-09-07