Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

有没有Stable diffusion的中英文提示词对照的文件?

Answer

有的,请看知识库的研究报告版块-AI 绘画与视频资料:

https://waytoagi.feishu.cn/record/1sfvvsfORzKgC91i8Stdv1Esa

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
stable difusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理可以这样理解:好比学习画画,比如学梵高的风格,要先看梵高的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照这个模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),有真实系的、二次元的、游戏 CG 风的等等,但需要科学上网。
2024-12-24
stable difudion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion 的 Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录。 运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。 等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。 尝试生成图像,观察不同参数对结果的影响。 学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。 学习如何导入自定义模型、VAE、embedding 等文件。 掌握图像管理、任务管理等技巧,提高工作效率。 安装 Stable Diffusion 的电脑配置要求: 1. 查看电脑配置: 对于 Windows 系统,可以查看专用 GPU 内存。 4GB:说明电脑勉强可以跑动 SD,出图的时间会比较长。 6GB:出一张图的时间是 20 50 秒,SD 的大部分功能都可以使用。 8GB:5 20 秒可以出一张图,基本上 SD 的所有功能都对你开放。 2. Mac 系统:可以参考下面的视频进行一键安装:https://www.bilibili.com/video/BV1Kh4y1W7Vg/?spm_id_from=333.788&vd_source=6f836e2ab17b1bdb4fc5ea98f38df761
2024-12-24
Stable Diffusion基础学习
以下是关于系统学习 Stable Diffusion 的基础内容: 学习提示词: 学习基本概念,包括了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 研究官方文档和教程,学习常见术语和范例。 掌握关键技巧,如组合多个词条精确描述效果、使用特定符号控制生成权重、处理抽象概念等。 通过实践和反馈,不断总结经验,创建自己的提示词库,并持续跟进前沿。 核心基础知识: 了解 Stable Diffusion 系列资源。 零基础深入浅出理解核心基础原理,包括通俗讲解模型工作流程、读懂核心基础原理、读懂训练全过程、介绍其他主流生成式模型。 解析核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型、官方训练细节。 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同流程。 了解经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 学习从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括训练资源分享、模型训练初识、配置训练环境与训练文件。 Nenly 的零基础入门课学习资料汇总: 提供了配套的学习文档,包括随堂素材、生成信息、内容修订等。 有安装攻略和素材下载的相关内容。
2024-12-22
stable diffusion
稳定扩散(Stable Diffusion)的运作原理如下: 消除图像中的噪点: 若在太暗情况下拍照产生的颗粒状即图像中的噪点。Stable Diffusion用于生成艺术作品,其在幕后所做的是“清理”图像,且比手机图像编辑器中的噪点消除滑块复杂得多。它了解世界的样子和书面语言,并利用这些来指导噪点消除过程。例如,给它一幅以H.R. Giger风格描绘的外星人弹吉他的图像,它能像熟练的平面艺术家一样利用对Giger艺术作品和世界的了解来清理图像。 大多数艺术生成工具中有“推理步骤”滑块,稳定扩散是逐步去除噪点的。 开始生成的方式:为了生成艺术,给稳定扩散提供一个纯噪点的初始图像,并谎称这是一幅特定风格的画。稳定扩散能做到是因为它是基于统计数据的计算机程序,会估计所有选项的概率,即使概率都极低,也会选择概率最高的路径,例如寻找噪点中最可能像吉他边缘的部分来填充物体。每次给它不同的纯噪点图像,都会创作出不同的艺术作品。 ComfyUI的生图原理: ComfyUI是一个开源的图形用户界面,用于生成AI图像,主要基于Stable Diffusion等扩散模型。 Pixel Space(像素空间):图的左边表示输入图像的像素空间,在ComfyUI中,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 Latent Space(潜在空间):ComfyUI中的许多操作都在潜在空间中进行,如KSampler节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在ComfyUI中,可通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程。在ComfyUI中,通常通过调度器(Schedulers)控制,典型的调度器有Normal、Karras等,会根据不同的采样策略逐步将噪声还原为图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步。在ComfyUI中,可通过控制步数来影响图像生成的精细度和质量。
2024-12-18
stable diffusion
稳定扩散(Stable Diffusion)的运作原理如下: 消除图像中的噪点:如果拍照太暗会产生噪点,而 Stable Diffusion 用于生成艺术作品时,在幕后所做的是“清理”图像。它比手机图像编辑器中的噪点消除滑块复杂得多,它了解世界的样子和书面语言,并利用这些来指导噪点消除过程。例如,给它一幅以特定风格描绘的图像,它能像艺术家一样利用对相关艺术作品和世界的了解来清理图像。 “推理步骤”:稳定扩散是逐步去除噪点的,通过“推理步骤”滑块可以控制。 开始方式:为了生成艺术,给稳定扩散提供一个纯噪点的初始图像,并谎称这是一幅特定的画。在最简单层面上,它作为计算机程序会做事并生成东西。更深层次上,它基于统计数据,估计所有选项的概率,即使概率极低也会选择最高概率的路径,比如寻找噪点中最可能像吉他边缘的部分来填充物体。每次给不同的纯噪点图像,都会创作出不同的艺术作品。 ComfyUI 的生图原理: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行,可通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process):表示从噪声生成图像的过程,在 ComfyUI 中通常通过调度器控制,如 Normal、Karras 等,可通过“采样器”节点选择不同调度器来控制如何在潜在空间中处理噪声以及逐步去噪回归到最终图像。生成图像时会进行多个去噪步,通过控制步数可影响图像生成的精细度和质量。
2024-12-18
stable diffusion通俗讲解
Stable Diffusion 是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将一段文本输入模型,经过一定迭代次数生成符合描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示重绘输入图片使其更符合描述,如在沙滩图片上添加“海盗船”。 输入的文本信息需通过 CLIP Text Encoder 模型这一“桥梁”转换为机器数学信息,该模型将文本信息编码生成 Text Embeddings 特征矩阵用于控制图像生成。 初始 Latent Feature 经过图像解码器重建是纯噪声图片,而经过 SD 的“图像优化模块”处理后再重建是包含丰富内容的有效图片。UNet 网络+Schedule 算法的迭代去噪过程的每一步结果用图像解码器重建,可直观感受从纯噪声到有效图片的全过程。 以下是 Stable Diffusion 模型工作的完整流程总结及前向推理流程图。 此外,关于 Stable Diffusion 还有系列资源,包括从 0 到 1 读懂其核心基础原理、训练全过程,核心网络结构解析,搭建使用模型进行 AI 绘画的多种方式,经典应用场景,以及上手训练自己的 AI 绘画模型等内容。
2024-12-17
stabel diffusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理就好比学习画画。比如学梵高的风格,要先看他的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),但需要科学上网。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本并勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 通过这些步骤,相信您可以快速上手 Stable Diffusion Web UI,开始探索 AI 绘画的乐趣。后续还可以深入学习 Stable Diffusion 的原理,以及在不同场景中的应用。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-23
Stable Diffusion 启动器
以下是关于 Stable Diffusion 启动器的相关内容: 整合包: 觉得麻烦的同学可以使用整合包,解压即用。比如也非常好用,将启动器复制到下载仓库的目录下即可,更新管理会更方便。 电脑配置能支持 SD 运行的朋友,可以使用 B 站秋叶分享的整合包。具体安装方法: 打开整合包链接(https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru),下载《1.整合包安装》,存放到电脑本地。 打开保存到电脑里的文件夹。 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”,选择解压到 D 盘或者 E 盘。 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,创建桌面快捷方式。 启动器设置: 打开启动器后,可一键启动。如果有其他需求,可以在高级选项中调整配置。 显存优化根据显卡实际显存选择,不要超过当前显卡显存。不过并不是指定了显存优化量就一定不会超显存,在出图时如果启动了过多的优化项(如高清修复、人脸修复、过大模型)时,依然有超出显存导致出图失败的几率。 xFormers 能极大地改善内存消耗和速度,建议开启。准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功。 如果报错提示缺少 Pytorch,则需要在启动器中点击配置。 Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新,同样地,也请注意插件的更新。 插件: Stable Diffusion 可配置大量插件扩展,在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。 低配置电脑: 电脑配置较低的朋友,可通过云平台畅玩 SD,比如“青椒云”。使用方法: 点击链接(http://account.qingjiaocloud.com/signup?inviteCode=R0JJ9CHY)注册账号。 下载并安装后,登录账号。 点击右上角的个人中心进行实名认证。 在进行实名认证后回到主界面,点击新增云桌面。想玩 Stable Diffusion 可以选“AIGC 尝鲜”,一般新注册的会有优惠券,可以免费试用。 在新弹出的框框中点击“开机”按钮,稍等一下之后,点击“进入桌面”。进入桌面之后弹出的全部框框可以直接关掉。 点击新打开桌面的“此电脑”,在 C 盘里面找到 SD 的根目录,点击“A 启动器.exe”。 点击右下角的“一键启动”就可以进入 SD。用完云平台之后,记得关机,不然会持续计费。
2024-12-13
我想要现在最强大的读文献的ai模型,可以阅读中英文献,用中英回答文献相关问题
目前,市场上有许多强大的 AI 模型可以用于阅读文献,其中一些还可以回答文献相关的问题。以下是一些当前市场上比较强大的 AI 模型: 1. ChatGPT:ChatGPT 是由 OpenAI 开发的大型语言模型,它可以进行自然语言处理和对话生成等任务。ChatGPT 可以用于阅读文献,并回答文献相关的问题,它支持中英文文献的阅读和回答。 2. 文心一言:文心一言是百度公司推出的知识增强大语言模型,它可以与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。文心一言也可以用于阅读文献,并回答文献相关的问题,它支持中英文文献的阅读和回答。 3. 通义千问:通义千问是阿里云推出的一个超大规模的语言模型,功能包括多轮对话、文案创作、逻辑推理、多模态理解、多语言支持。通义千问也可以用于阅读文献,并回答文献相关的问题,它支持中英文文献的阅读和回答。 以上是一些当前市场上比较强大的 AI 模型,它们都可以用于阅读文献,并回答文献相关的问题。你可以根据自己的需求和喜好选择适合自己的 AI 模型。
2024-05-06
中英文翻译Prompt
``` 角色:你是一位精通简体中文的专业翻译 曾参与《纽约时报》和《经济学人》中文版的翻译工作,因此对于新闻和时事文章的翻译有深入的理解。我希望你能帮我将以下英文新闻段落翻译成中文,风格与上述杂志的中文版相似。 规则: 翻译时要准确传达新闻事实和背景。 保留特定的英文术语或名字,并在其前后加上空格,例如:"中 UN 文"。 分成两次翻译,并且打印每一次结果: 1. 根据新闻内容直译,不要遗漏任何信息 2. 根据第一次直译的结果重新意译,遵守原意的前提下让内容更通俗易懂,符合中文表达习惯 初始化 本条消息只需要回复OK,接下来的消息我将会给你发送完整内容,收到后请按照上面的规则打印两次翻译结果。 ```
2024-04-22