Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

话说你知不知道有没有靠谱的promot engineer教程适合小学生和中学学习的?

Answer

以下是一些适合小学生和中学生学习的 prompt engineer 教程:

  1. 李继刚的结构化 prompt 方法论:最早接触 Prompt engineering 时的常见技巧有所提升,可通过原文链接https://www.lijigang.com/posts/chatgpt-prompt-structure/查看。其学到的第一个 Prompt engineering 技巧是结构化 Prompt。
  2. 小七姐的 Prompt 喂饭级系列教程小白学习指南(二):可以结合自己的生活或工作场景想一个能简单自动化的场景,比如自动给班级孩子起昵称等。选一个好上手的提示词框架,如情境(Situation):任务(Task):行动(Action):结果(Result)。
  3. 吴恩达讲 Prompt:谷歌/百度 AI 部门负责人吴恩达和 OpenAI 合作推出了免费的 Prompt Engineering 课程。原版网址:https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/ ,B站版本:【合集·AI Course-哔哩哔哩】https://b23.tv/ATc4lX0https://b23.tv/lKSnMbB 。推荐使用 Jupyter 版本学习,效率更高,相关链接:https://github.com/datawhalechina/prompt-engineering-for-developers/ 。视频下载地址:https://pan.quark.cn/s/77669b9a89d7 ,OpenAI 开源了教程:https://islinxu.github.io/prompt-engineering-note/Introduction/index.html
Content generated by AI large model, please carefully verify (powered by aily)

References

李继刚:结构化的 prompt方法论

最早接触[Prompt engineering](https://en.wikipedia.org/wiki/Prompt_engineering)时,学到的Prompt技巧都是:你是一个XX角色…你是一个有着X年经验的XX角色…你会XX,不要YY..对于你不会的东西,不要瞎说!…对比什么技巧都不用,直接像使用搜索引擎一样提问,上面的技巧对于回复的效果确实有着明显提升.在看了N多的所谓“必看的Prompt 10大技巧” “价值2万元的珍藏Prompt”后,发现大家都在上面这些技巧上打转.直到有一天,在Github上看到了[JushBJJ/Mr.-Ranedeer-AI-Tutor](https://github.com/JushBJJ/Mr.-Ranedeer-AI-Tutor),才发现原来Prompt还可以这样写:原来可以在运行中调整各种变量并立即生效,原来对话语言可以随时更改,原来可以像编程一样,提前预置好命令供用户调用…看到了优秀的榜样,剩下的就是拆解学习了,从中学到的第一个Prompt engineering技巧就是:结构化Prompt.

小七姐:Prompt 喂饭级系列教程 小白学习指南(二)

[title]小七姐:Prompt喂饭级系列教程小白学习指南(二)于是这个提示词解决了你自己,和任何收到你Prompt的人微调几个关键信息就能自动让GPT或者Kimi帮你阅读一篇论文而且生成不错的总结啦!如果你觉得这些例子对你来说还是过于复杂了,请你结合你自己的生活或者工作场景来想一个能帮你简单自动化的场景:自动给班级里的每个孩子起个昵称?自动排版你微信群经常发的一些运营小文案?自动帮你安排周一到周日的减脂餐?帮你列一个清晰的学习计划,day1-day7?帮你的下一次商务会议设计一个调研问卷?……第三步、选一个好上手的提示词框架来帮你开启你第一次有效的编写如果你这时候问什么是提示词框架,那说明你第一课没认真学,回去复习吧。对框架的理解和运用是非常重要的一部分,参考上图,来源:[prompt-engineering/prompt-patterns:Prompt编写模式:如何将思维框架赋予机器,以设计模式的形式来思考prompt(](https://github.com/prompt-engineering/prompt-patterns)[github.com](http://github.com)[)](https://github.com/prompt-engineering/prompt-patterns)提示词框架有很多,有的简单有的复杂,你可以选一个看起来不那么难的先入手,比如可以从非常基础的:情境(Situation):任务(Task):行动(Action):结果(Result):开始。如果你拿到我给你的这个由四个词语组成的提示词框架还是觉得无从下手,你可以试试这样:恭喜你,就在刚才你已经写出你的第一个提示词了,它是:

目录:吴恩达讲Prompt

[title]目录:吴恩达讲Prompt谷歌/百度AI部门负责人吴恩达和OpenAI合作推出了免费的Prompt Engineering(提示工程师)课程。课程主要内容是教你书写AI提示词,并且最后会教你利用GPT开发一个AI聊天机器人。原版网址:https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/B站版本:【合集·AI Course-哔哩哔哩】https://b23.tv/ATc4lX0https://b23.tv/lKSnMbB翻译版本:[来自twitter博主歸藏](https://twitter.com/op7418?s=21&t=F6BXooLyAyfvHbvr7Vw2-g)推荐直接使用Jupyter版本学习,效率更高:https://github.com/datawhalechina/prompt-engineering-for-developers/吴恩达和Open AI合作的提示工程课程一共9集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。视频下载地址:https://pan.quark.cn/s/77669b9a89d7OpenAI开源了教程:https://islinxu.github.io/prompt-engineering-note/Introduction/index.html纯文字版本:

Others are asking
学习Prompt Engineering
提示工程(Prompt Engineering)是人工智能领域中,特别是在自然语言处理(NLP)和大型语言模型(LLMs)的上下文中一个相对较新的概念。 其关键点包括: 1. 精确性:通过精确的提示,提高 AI 模型输出的相关性和准确性。 2. 创造性:需要创造性地思考如何构建问题或请求,以激发 AI 模型的特定能力。 3. 迭代:通常需要多次尝试和调整提示,以获得最佳结果。 4. 上下文理解:提示需要包含足够的上下文信息,以便 AI 模型能够理解并执行所需的任务。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,它们是提示工程的一部分。提示词可以简单,也可以复杂。 提示工程与提示词的区别在于:提示词是实际输入到 AI 系统中的具体文本,用以引导模型的输出。提示工程则是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,而提示词是实现这一目标的手段之一。 在实际应用中,提示工程的提示开发生命周期包括: 1. 开发测试用例:在定义任务和成功标准之后,创建一组多样化的测试用例,涵盖应用程序的预期用例,包括典型示例和边界情况,以确保提示具有鲁棒性。提前定义好的测试用例将使您能够客观地衡量提示与成功标准的表现。 2. 设计初步提示:制定一个初步的提示,概述任务定义、良好响应的特征,以及所需的上下文。理想情况下,添加一些规范输入和输出的示例供参考。这个初步提示将作为改进的起点。 3. 根据测试用例测试提示:使用初步提示将测试用例输入到模型中。仔细评估模型的响应与预期的输出和成功标准是否一致。使用一致的评分标准,无论是人工评估、与答案标准的比较,甚至是基于评分标准的模型判断。关键是要有一种系统性的评估性能的方式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-25
prompt engineering
Prompt engineering(提示工程)包括以下几个方面: 1. 提示开发生命周期: 开发测试用例:在定义任务和成功标准后,创建涵盖应用程序预期用例的多样化测试用例,包括典型示例和边界情况,提前定义好的测试用例有助于客观衡量提示的性能。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要的上下文,理想情况下添加规范输入和输出的示例供 Claude 参考,此初步提示作为改进的起点。 根据测试用例测试提示:使用初步提示将测试用例输入到 Claude 中,仔细评估模型的响应与预期输出和成功标准的一致性,使用一致的评分标准,如人工评估、与答案标准的比较或 Claude 基于评分标准的判断,关键是要有系统性的评估性能方式。 2. Claude 的性能:Claude 开箱即提供高水平基线性能,提示工程可进一步提升其性能并微调响应以适应特定用例,这些技术虽非必需,但对提升输入和输出可能有用。可参阅提示入门(https://docs.anthropic.com/claude/docs/introtoprompting)快速开始使用提示或了解提示概念。 3. 使用例子中的迭代和改进:记住,提示工程是一个迭代过程,如果初始示例未产生完美结果,不要灰心,通过调整和实验,能够释放 Claude 的全部潜力,为应用程序取得出色结果。
2024-12-24
how AI helps in the field of life science engineering and informatics, and which roles it plays in our research and innovation.请用中文和英文回答
中文回答: 人工智能在生命科学工程和信息学领域发挥着重要作用。例如,DeepMind 开发的 AI 技术能够预测几乎所有已知蛋白质的结构,这将加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面帮助科学家取得巨大进展。随着人工智能的发展,它能够扩大熟练劳动力或提升低技能劳动力的水平,例如可以提出答案或创意,让经过训练的人类选择最佳答案,筛选结果并跳过错误答案,自然地整合到现有的工作流程中。在合适的条件下,人工智能将改变生活的各个方面,刺激经济,创造新的就业机会并改善工作场所。 英文回答: Artificial intelligence plays significant roles in the field of life science engineering and informatics. For instance, an AI technology developed by DeepMind can predict the structure of almost every known protein to science, which will accelerate scientific research and the development of lifesaving medicines. It has already helped scientists make huge progress in combating malaria, antibiotic resistance, and plastic waste. As AI develops, it can expand the skilled labor force or enhance the level of lowskilled labor. For example, it can propose answers or ideas, allowing trained humans to select the best ones, filter the results and skip incorrect answers, and integrate naturally into the existing workflow. Under the right conditions, AI will transform all areas of life, stimulate the economy, create new jobs and improve the workplace.
2024-08-26
how AI helps in the field of life science engineering and informatics, and which roles it plays in our research and innovation.请用中文描述一遍,英文描述一遍
中文描述: 用户询问:人工智能如何在生命科学工程和信息学领域发挥作用,以及它在我们的研究和创新中扮演何种角色。 英文描述: Quary: How AI helps in the field of life science engineering and informatics, and which roles it plays in our research and innovation. 以下是为您找到的相关内容: 1. 人工智能(AI)已经在带来广泛的社会效益,从医疗进步到缓解气候变化。例如,DeepMind(一家英国企业)开发的一项 AI 技术现在能够预测几乎每种已知科学的蛋白质结构。这一突破将加速科学研究和救命药物的开发,已经帮助科学家在对抗疟疾、抗生素耐药性和塑料垃圾方面取得巨大进展。 2. 英国科学技术框架将 AI 列为五项关键技术之一,并指出监管在为 AI 创造繁荣环境方面的作用。在适当的条件下,AI 将改变生活的所有领域,并通过释放创新和提高生产力来刺激英国经济,创造新的就业机会并改善工作场所。 3. 相关法案提到支持跨多个机构和组织的跨学科研究和开发,包括物理学、工程学、数学科学、计算机和信息科学、机器人学、生物和认知科学、材料科学、社会和行为科学、网络安全和技术伦理等与人工智能研究和相关学科。
2024-08-26
how AI helps in the field of life science engineering and informatics, and which roles it plays in our research and innovation.
AI 在生命科学工程和信息学领域具有多方面的助力和重要作用,主要体现在以下几个方面: 1. 提升劳动力水平:随着人工智能的发展,它能够扩大熟练劳动力或提升低技能劳动力的水平。例如,可以提出答案或创意,让经过训练的人类选择最佳答案,筛选结果并跳过错误答案,自然地整合到现有的工作流程中。 2. 推动行业转变:生命科学和医疗保健领域正越来越多地受到工程技术的推动而发生转变。在生命科学领域,基因编辑、细胞生物学、干细胞、机器人实验等方面的进展使科学家能够以前所未有的方式操纵生物学,且随着人工智能嵌入生命科学实验中,存在着强大的反馈循环。医疗保健领域也在利用技术经历复兴,朝着价值导向的付费模式转变,为人工智能创造了深层次的效用。 3. 助力新疗法开发:在理解生物学方面,人工智能扮演着关键角色,成为揭示生物学复杂性的推动者。如今已有的关于人类疾病的人工智能模型,指引着更有效的药物的开发路径,能够更快地进入市场,并减少失败的次数,使研究超越当前主要依赖实验室人力劳动偶然发现的模式。 但也要注意潜在的担忧,早期人工智能模型在人类收集的数据上进行训练可能存在嵌入的偏见和其他失败。随着人工智能应用于新的行业,科学家、医疗保健提供者和监管机构需要保持警惕,以防止潜在的有害副作用。
2024-08-26
什么是prompt engineering
提示工程(Prompt Engineering)是人工智能领域中,特别是在自然语言处理(NLP)和大型语言模型(LLMs)的上下文中,一个相对较新的概念。它涉及设计和优化输入提示(prompts),以引导 AI 模型生成特定类型的输出或执行特定的任务。 提示工程是一门经验科学,涉及迭代和测试提示以优化性能。在提示工程周期中花费的大部分精力实际上并不是在编写提示上。相反,大部分提示工程时间都花在开发一组强大的评估上,然后针对这些评估进行测试和迭代。 提示工程的生命周期包括以下几个步骤: 1. 设计初步提示:制定一个初步的提示,概述任务定义、良好响应的特征,以及模型所需的任何上下文。理想情况下,应该添加一些规范输入和输出的示例供模型参考。这个初步提示将作为改进的起点。 2. 测试提示:使用初步提示将测试用例输入到模型中。仔细评估模型的响应与预期的输出和成功标准是否一致。使用一致的评分标准,无论是人工评估、与答案标准的比较,甚至是基于评分标准的模型判断的另一个实例。关键是要有一种系统性的评估性能的方式。 3. 优化提示:根据评估结果,对初步提示进行修改和优化。这可能涉及调整提示的内容、结构或格式,以提高模型的性能和准确性。 4. 验证和部署:经过优化的提示需要进行验证和部署。验证包括对模型在不同数据集和任务上的性能进行评估,以确保提示的有效性和泛化能力。部署则涉及将提示集成到实际应用中,以实现对用户的服务。 总之,提示工程是一种通过设计和优化输入提示来引导 AI 模型生成特定输出或执行特定任务的方法。它是 AI 模型开发和优化过程中的一个重要环节,对于提高模型的性能和准确性具有重要意义。
2024-05-26
promot提示词框架有哪些
提示词工程师已经发展出了多种提示词框架,以下为您介绍一些常见的框架: 1. ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)。 2. BROKE 框架:着重于背景(Background)、角色定义(Role)、目标设定(Objectives)、关键成果展示(Key Result)以及持续的试验与优化(Evolve)。 3. CRISPE 框架:分为上下文(Context)、角色(Role)、说明(Instruction)、主题(Subject)、预设(Preset)和例外(Exception)。 4. 情境框架。 此外,还有一些特定场景下的框架,比如在商务英语培训中使用的 BROke 框架,其示例为: |框架|说明|示例| |||| |Background:背景|说明背景,为 ChatGPT 提供充足信息|公司由于国际化战略,需要员工提升职场英语水平。| |Role:角色|希望 ChatGPT 扮演的角色|ChatGPT 扮演职场英语导师,支持员工的学习。| |Objectives:目标|希望实现的目标|提升团队的英语交流能力,促进国际业务的成功。| |Key Result:关键结果|想要的具体效果试验并调整|提高员工的职场英语水平,通过实际业务表现评估。| |Evolve:试验并改进|“三种改进方法自由组合|a.提供针对性的语法培训,b.针对实际沟通场景改进学习材料,c.鼓励员工定期进行语言交流。”|
2024-10-10
coze的学习教程
以下是关于 Coze 的学习教程: 共学活动前两天的教程和录播: 《》 《》 《》 《》 用 Coze 学习 RAG: 视频演示: Query 改写效果对比 Bot:用于对比 Query 改写和未改写的区别,地址为 https://www.coze.cn/store/bot/7400553639514800182?panel=1&bid=6dkplh1r43g15 ,视频演示: RAG 全流程学习 Bot:结合对 RAG 全流程的了解,使用 Coze 的工作流,主要是结合大模型,模拟了 RAG 的离线存储和在线检索全流程,视频演示: Agent 相关比赛中的 Coze 相关教程: 概览与介绍:https://waytoagi.feishu.cn/wiki/YGgzwDfWLiqsDWk2ENpcSGuqnxg 基础教程: 《大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库》https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb 《大聪明:保姆级教程:Coze 打工你躺平》https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb 《安仔:Coze 全方位入门剖析免费打造自己的 AI Agent》https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb 《基础教程:Coze“图像流”抢先体验》https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf 《YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏》https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档:https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ
2025-04-01
RAG实战教程推荐
以下为您推荐一些 RAG 实战教程: 1. 【AI+知识库】商业化问答场景,让 AI 回复更准确,一篇专为所有“小白”讲透 RAG 的实例教程(上篇): 介绍了常见的错误场景,如回答不准确、报价错误、胡编乱造等,强调了优化 AI 准确回答的重要性,并引出 RAG 概念。 讲解了基础概念,包括优化幻觉问题和提高准确性需要了解从“问题输入”到“得到回复”的过程,并针对每个环节逐个调优。 阐述了检索原理,包括问题解析阶段通过嵌入模型将问题文本转化为向量,知识库检索阶段比较向量选择相关信息片段,信息整合阶段构建融合全面的信息文本,大模型生成回答阶段将整合后的信息转化为向量输入大语言模型生成回答。还通过实例进行了详细说明,如知识库检索部分的向量化、优化问题、向量检索、抽取内容块等,以及大模型对话部分。 2. 开发:LangChain 应用开发指南 不用向量也可以 RAG: 以餐饮生活助手为例展示了基于结构化数据来 RAG 的实战方法,包括给出用户提问和回复的示例,以及餐饮生活助手 RAG 的代码实战。 介绍了实现餐饮生活助手 RAG 的 Langchain 代码实战需要完成的步骤,如定义餐饮数据源,将餐饮数据集转化为 Langchain 可识别和操作的数据源并注册到 Langchain 中;定义 LLM 的代理,通过 Langchain 的代理根据用户问题提取信息、形成查询语句、检索数据源、生成答案并输出给用户。
2025-04-01
liblib ai 教程
以下是关于 Liblibai 的简易上手教程: 一、概念与功能说明 1. 迭代步数:AI 调整图片内容的次数。步骤越多,调整越精密,出图效果理论上更好,但生图耗时越长。并非越多越好,效果提升非线性,过多后效果增长曲线放平并开始震荡。 2. 尺寸:图片生成的尺寸大小。太小 AI 生成内容有限,太大 AI 易放飞自我。如需高清图,可设中等尺寸并用高分辨率修复(以后再学)。 3. 生成批次:用本次设置重复生成的批次数。 4. 每批数量:每批次同时生成的图片数量。 5. 提示词引导系数:指图像与 prompt 的匹配程度。数字增大图像更接近提示,但过高会使图像质量下降。 6. 随机数种子:生成的每张图都有随机数种子,固定种子后可对图片进行“控制变量”操作,如修改提示词、修改 clip 跳过层等。首次生成图时无种子,不用管。 7. ADetailer:面部修复插件,可治愈脸部崩坏,高阶技能,后续学习。 8. ControlNet:控制图片中特定图像,用于控制人物姿态、生成特定文字、艺术化二维码等,高阶技能,稍后学习。 9. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 二、简明操作流程 1. 文生图 定主题:明确生成图片的主题、风格和表达信息。 选择 Checkpoint:根据主题找贴近内容的 checkpoint,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora,控制图片效果及质量。 设置 VAE:无脑选 840000 那一串。 CLIP 跳过层:设成 2。 Prompt 提示词:用英文写需求,单词、短语组合,用英文半角逗号隔开,不管语法和长句。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词、短语组合,用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras,也可参考 checkpoint 详情页模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 后,一般在 30 40 之间,多了意义不大且慢,少了出图效果差。 尺寸:根据喜好和需求选择。 生成批次:默认 1 批。 三、prompt 简易技巧 能简单控制图。 虽然视频教程很多,但看图文说明更方便。Liblibai 网站(https://www.liblib.ai/)可点击进入免费在线生图。若看完不明白,可评论区交流或添加微信:designurlife1st 沟通。
2025-03-31
liblib ai 使用教程
以下是 Liblibai 的使用教程: 简明操作流程: 1. 定主题:明确您想要生成的图片主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. 设置 CLIP 跳过层:设为 2。 6. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语组合,用英文半角逗号隔开。 7. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,单词和短语组合,用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,一般在 30 40 之间。 10. 尺寸:根据喜好和需求选择。 11. 生成批次:默认 1 批。 概念与功能说明: 1. 迭代步数:AI 调整图片内容的次数,并非越多越好,需根据采样器特征选择。 2. 尺寸:图片生成的大小,太小或太大都有影响。 3. 生成批次:用本次设置重复生成的批次数。 4. 提示词引导系数:指图像与 prompt 的匹配程度,过高会影响图像质量。 5. 随机数种子:固定后可对图片进行“控制变量”操作。 6. ADetailer:面部修复插件,高阶技能。 7. ControlNet:控制图片中特定图像,高阶技能。 8. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 其他概念: 1. 首页 模型广场:有其他用户发布的模型,收藏和运行数多的模型在首页前排,可查看模型详情并加入模型库。 2. Checkpoint:生图必需的基础模型,必选。 3. lora:低阶自适应模型,可选可不选,用于控制细节。 4. VAE:类似于滤镜,调整生图饱和度,选择 840000 即可。 5. CLIP 跳过层:一般设为 2,早期不用过多关注。 6. Prompt 提示词:想要 AI 生成的内容。 7. 负向提示词 Negative Prompt:想要 AI 避免产生的内容。 8. 采样方法:让 AI 用的生图算法。
2025-03-31
DEEPseek 教程
以下是为您整理的关于 DeepSeek 的教程相关信息: 有众多关于 DeepSeek 的学习资料,如《DeepSeek R1本地部署完全手册》.pdf、00 Deepseek 官方提示词.txt、普通人学 AI 指南.pdf、清华大学:DeepSeek 从入门到精通【高清版】.pdf 等。 火山方舟 DeepSeek 申请免费额度及 API 使用方法:包含飞书多维表格调用、Coze 智能体调用、浏览器插件调用等方式。可以使用邀请码 D3H5G9QA,邀请链接为 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA,邀请可拿 3000 万 tokens。 第三期「AI 实训营」手把手学 AI 中,有关于阿里云上 DeepSeek 玩法的教学,课程于 2025.02.25/26 日每晚 20:00 进行,讲师为许键,包括用 DeepSeek 搭建智能体、全网最简单的 DeepSeek 的部署和蒸馏手把手教程等内容,飞书会议链接为 https://vc.feishu.cn/j/254331715 ,共学文档链接为 。
2025-03-30
dify教程
以下是关于 Dify 的教程: Differential Diffusion 教程: 技术适用场景:特别适用于需要保持图像整体一致性和自然感的场景。 软填充技术:用于平滑填补图像空白或损坏部分,同时细微调整周围区域,确保新填充内容与原始图像无缝融合。 强度扇:一种可视化不同编辑强度效果的工具,帮助用户通过可视化方式理解不同编辑强度的效果。 无需训练或微调:操作仅在推理阶段进行,不需要对模型进行额外训练或微调。 与现有扩散模型兼容:可集成到任何现有的扩散模型中,增强编辑和生成能力,适用于 Stable Diffusion XL、Kandinsky 和 DeepFloyd IF 等不同的扩散模型。 主要功能特点: 精细的编辑控制:通过引入变化地图,可对图像每个像素或区域指定不同变化程度,支持离散和连续编辑。 文本驱动的图像修改:通过文本提示指导图像修改方向。 软填充技术:在填补图像空白或修复部分时,能细微调整周围区域确保无缝融合。 Dify 接入企业微信教程: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat
2025-03-29