提示工程(Prompt Engineering)是人工智能领域中,特别是在自然语言处理(NLP)和大型语言模型(LLMs)的上下文中一个相对较新的概念。
其关键点包括:
提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,它们是提示工程的一部分。提示词可以简单,也可以复杂。
提示工程与提示词的区别在于:提示词是实际输入到 AI 系统中的具体文本,用以引导模型的输出。提示工程则是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,而提示词是实现这一目标的手段之一。
在实际应用中,提示工程的提示开发生命周期包括:
请注意,以上内容由 AI 大模型生成,请仔细甄别。
提示工程(Prompt Engineering)是人工智能领域中,特别是在自然语言处理(NLP)和大型语言模型(LLMs)的上下文中,一个相对较新的概念。它涉及设计和优化输入提示(prompts),以引导AI模型生成特定类型的输出或执行特定的任务。[heading3]提示工程的关键点包括:[content]1.精确性:通过精确的提示,可以提高AI模型输出的相关性和准确性。2.创造性:提示工程需要创造性地思考如何构建问题或请求,以激发AI模型的特定能力。3.迭代:通常需要多次尝试和调整提示,以获得最佳结果。4.上下文理解:提示需要包含足够的上下文信息,以便AI模型能够理解并执行所需的任务。[heading3]提示词(Prompts):[content]提示词通常指的是直接输入到AI模型中的问题、请求或指示,它们是提示工程的一部分。提示词可以非常简单,如“给我总结这篇文章的主要观点”,或者更复杂,如设计一个包含多个步骤和条件的复杂任务。[heading3]与提示工程的区别:[content]提示词是实际输入到AI系统中的具体文本,用以引导模型的输出。提示工程则是一个更广泛的概念,它不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化AI模型的效用和性能,而提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对AI模型的深入分析、用户研究、以及对特定任务的定制化提示设计。内容由AI大模型生成,请仔细甄别。
Claude offers high-level baseline performance out of the box.However,prompt engineering can help you enhance its performance further and fine-tune its responses to better suit your specific use case.These techniques are not necessary for achieving good results with Claude,but you may find them useful in upleveling your inputs&outputs.Claude在开箱即用时提供了高水平的基线性能。然而,及时的工程可以帮助您进一步提升其性能,并对其响应进行微调,以更好地适应您特定的用例。这些技术对于实现Claude的良好结果并不是必要的,但您可能会发现它们对提升输入和输出非常有用。To quickly get up and running with a prompt or get introduced to prompting as a concept,see[intro to prompting](https://docs.anthropic.com/claude/docs/intro-to-prompting).要快速开始使用提示或了解提示作为一个概念,可以参阅提示入门。
Develop test cases:With your task and success criteria defined,the next step is to create a diverse set of test cases that cover the intended use cases for your application.These should include both typical examples and edge cases to ensure your prompts are robust.Having well-defined test cases upfront will enable you to objectively measure the performance of your prompts against your success criteria.开发测试用例:在定义任务和成功标准之后,下一步是创建一组多样化的测试用例,涵盖应用程序的预期用例。这些应包括典型示例和边界情况,以确保您的提示具有鲁棒性。提前定义好的测试用例将使您能够客观地衡量您的提示与成功标准的表现。Engineer the preliminary prompt:Next,craft an initial prompt that outlines the task definition,characteristics of a good response,and any necessary context for Claude.Ideally you should add some examples of canonical inputs and outputs for Claude to follow.This preliminary prompt will serve as the starting point for refinement.设计初步提示:接下来,制定一个初步的提示,概述任务定义、良好响应的特征,以及Claude所需的任何上下文。理想情况下,您应该添加一些规范输入和输出的示例供Claude参考。这个初步提示将作为改进的起点。Test prompt against test cases:Feed your test cases into Claude using the preliminary prompt.Carefully evaluate the model's responses against your expected outputs and success criteria.Use a consistent grading rubric,whether it's human evaluation,comparison to an answer key,or even another instance of Claude’s judgement based on a rubric.The key is to have a systematic way to assess performance.根据测试用例测试提示:使用初步提示将测试用例输入到Claude中。仔细评估模型的响应与您预期的输出和成功标准是否一致。使用一致的评分标准,无论是人工评估、与答案标准的比较,甚至是基于评分标准的Claude判断的另一个实例。关键是要有一种系统性的评估性能的方式。