直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何通过ollama 搭建本地知识库

回答

以下是通过 Ollama 搭建本地知识库的步骤:

  1. 了解背景:本文思路来源于视频号博主黄益贺,旨在分享如何部署本地大模型及搭建个人知识库,让您了解相关核心技术及流程。
  2. Ollama 简介:Ollama 是一个开源框架,用于简化本地运行大型语言模型的过程,是轻量级、可扩展的,提供简单 API 和预构建模型库,适合初学者和非技术人员,能推动大型语言模型的发展和应用。
  3. 安装 Ollama:官方下载地址为 https://ollama.com/download ,安装完成后可通过访问特定链接判断是否安装成功。
  4. 运行本地大模型:安装完成后,在命令行中运行相应命令,模型名称可通过model library查看,如选择 llama2 大模型,可根据机器配置选择合适参数的模型,运行时 Ollama 会自动下载大模型到本地。

此外,还有关于本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG 的相关内容,包括加载所需库和模块、从订阅源获取内容、为文档内容生成向量等步骤。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

手把手教你本地部署大模型以及搭建个人知识库

大家好,我是大圣,一个致力使用AI工具将自己打造为超级个体的程序员。目前沉浸于AI Agent研究中无法自拔今天给大家分享的是手把手教你如何部署本地大模型以及搭建个人知识库读完本文,你会学习到如何使用Ollama一键部署本地大模型通过搭建本地的聊天工具,了解ChatGPT的信息是如何流转的RAG的概念以及所用到的一些核心技术如何通过AnythingLLM这款软件搭建完全本地化的数据库虽然我们大多数人不需要在自己部署大模型,但是我期望在本文的帮助下,能够带你手把手折腾一遍。这样在使用任何软件的时候,可以做到知其然,知其所以然。

手把手教你本地部署大模型以及搭建个人知识库

Ollama是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。Ollama作为一个轻量级、可扩展的框架,提供了一个简单的API来创建、运行和管理模型,以及一个预构建模型库,进一步降低了使用门槛。它不仅适用于自然语言处理研究和产品开发,还被设计为适合初学者或非技术人员使用,特别是那些希望在本地与大型语言模型交互的用户总的来说,Ollama是一个高效、功能齐全的大模型服务工具,通过简单的安装指令和一条命令即可在本地运行大模型,极大地推动了大型语言模型的发展和应用[heading2]安装Ollama[content]官方下载地址:https://ollama.com/download当安ollama之后,我们可以通过访问如下链接来判断ollama是否安装成功[heading2]使用Ollama运行本地大模型[content]当安装完成ollama之后,我们就可以在命令行中运行如下命令既可以其中[model name]就是你想运行的本地大模型的名称,如果你不知道应该选择哪个模型,可以通过[model library](https://ollama.com/library)进行查看。这里我们选择llama2大模型:[llama2](https://ollama.com/library/llama2)考虑到我机器的配置以及不同版本的内存要求,我这里选择7b参数的模型当我们运行大模型的时候,ollama会自动帮我们下载大模型到我们本地。

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

[title]本地部署资讯问答机器人:Langchain+Ollama+RSSHub实现RAG加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

其他人在问
ollama windows 安装
以下是 Ollama 在 Windows 上的安装步骤: 1. 前往 下载并安装 Ollama。 2. 安装完成后,打开 Powershell 运行相关命令。 3. 编辑 Win 版的 run_win.ps1 文件,将目录中的图片路径和触发词填写,运行即可。 4. 还可以参考以下教程: 张梦飞的【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程: 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 。 下载完成后,双击打开,点击“Install” 。 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 4SeasonYou 工作流副本: 首先,下载 ollama,网站: 。 其次,在网站中,复制代码。 然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd ,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。
2024-11-17
ollama嵌入向量在模型后有什么用
嵌入向量在模型后的作用主要体现在以下方面: 1. 用于文档内容的表示和检索:将文档分成块,计算嵌入向量并存储在向量存储中,在测试时通过查询向量存储获取可能与任务相关的块,填充到提示中进行生成。 2. 提升模型的检索能力:在大语言模型应用程序中,向量存储成为检索相关上下文的主要方式,嵌入向量有助于更高效地获取相关信息。 3. 支持多语言和不同粒度的检索任务:例如像 bgem3 这样的向量模型,支持超过 100 种语言的语义表示及检索任务,能实现句子、段落、篇章、文档等不同粒度的检索。 在实际应用中,如在 LangChain 中,本地向量存储使用量较大,而在计算文本片段的嵌入时,OpenAI 占据主导地位,开源提供商如 Hugging Face 等也被较多使用。
2024-11-12
ollama下载链接
Ollama 的下载链接为:https://ollama.com/download 。 Ollama 具有以下特点: 1. 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可通过 https://ollama.com/library 查找并下载不同的模型,这些模型有不同参数和大小以满足不同需求和硬件条件。 4. 支持用户自定义模型,可通过简单步骤修改模型的温度参数等。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装完之后,确保 ollama 后台服务已启动(在 macOS 上启动 ollama 应用程序即可,在 Linux 上可以通过 ollama serve 启动)。可以通过 ollama list 进行确认。还可通过 ollama 命令下载模型。
2024-11-07
Ollama是什么?
Ollama 是一个开源框架,具有以下特点和功能: 1. 专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计,简化了部署过程,方便非专业用户管理和运行复杂模型。 2. 是一个轻量级、可扩展的框架,提供简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合自然语言处理研究、产品开发以及初学者或非技术人员使用。 3. 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 4. 提供模型库,用户可从中下载不同的模型,这些模型有不同的参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 5. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 6. 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 7. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 官方下载地址:https://ollama.com/download 。安装完成后,可通过 ollama list 确认,未下载模型时通常显示为空。可通过 ollama 命令下载模型。
2024-10-09
dify的部署和ollama联动
以下是关于 Dify 与 Ollama 联动部署的相关信息: Ollama 的特点和功能: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持自定义模型,可修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 Ollama 的安装和使用: 1. 访问 https://ollama.com/download/ 下载安装。 2. 安装完后,确保 Ollama 后台服务已启动。在 Mac 上启动 Ollama 应用程序,在 Linux 上通过 ollama serve 启动。可通过 ollama list 确认。 3. 通过 ollama 命令下载模型。 Google Gemma 的本地部署: 1. 进入 ollama.com 下载程序并安装(支持 Windows、Linux 和 macOS)。 2. 在命令提示符中输入 ollama v 检查版本,安装完成后版本应为 0.1.26。 3. 输入 cls 清空屏幕,然后输入 ollama run gemma 运行模型(默认是 2b),首次需要下载。若想用 7b,运行 ollama run gemma:7b 。 4. 完成后可直接对话。2b 反应速度快但互动话题有限,7b 输出内容质量相对高但可能卡顿,对非英文语种反馈不稳定。 5. 常用内部指令:/set 显示设置界面可调整的设置项;/show 显示模型信息;/load <model> 加载已有模型;/bye 退出。 整体框架设计思路: 可先采取 Langchain + Ollama 的技术栈作为 demo 实现,后续也可考虑使用 dify、fastgpt 等更直观易用的 AI 开发平台。本次开发的运行环境是 Intel Mac,其他操作系统也可行。下载模型等可能需要梯子。 Langchain 简介: Langchain 是当前大模型应用开发的主流框架之一,提供一系列工具和接口,使与 LLM 交互变简单。其核心在于“链”概念,是模块化组件系统,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,可灵活组合支持复杂应用逻辑。其生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具,帮助开发者高效管理从原型到生产的各个阶段以优化 LLM 应用。
2024-10-08
如在腾讯云上部署ollama
以下是在腾讯云上部署 Ollama 的详细步骤: 一、下载并安装 Ollama 1. 根据您的电脑系统,点击进入 https://ollama.com/download 下载 Ollama。 2. 下载完成后,双击打开,点击“Install”。 3. 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 二、下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型) 1. 如果您是 Windows 电脑,点击 win+R,输入 cmd,点击回车。如果您是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 2. 复制以下命令行,粘贴进入,点击回车。 3. 回车后,会开始自动下载,等待完成。(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了) 4. 下载完成后您会发现,大模型已经在本地运行了。输入文本即可进行对话。 三、下载 Open WebUI 1. 回到桌面,再打开一个新的终端窗口(可以放心多个窗口,不会互相影响)。如果您是 Windows 电脑,点击 win+R,输入 cmd,点击回车。如果您是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 2. 将以下命令输入,等待下载。 3. 出现相关图示,即是下载完成。 4. 点击或复制下方地址进入浏览器:http://localhost:3000/auth/ 5. 点击进行注册即可,注册输入昵称、邮箱、密码。注册完即可登录进入。 6. 登入后,看到如下页面,点击顶部的 Model,选择“llama3:8b”。 7. 完成。您已经拥有了一个属于自己的本地大语言模型。可以开始与他对话啦! 四、部署 Google Gemma 1. 首先进入 ollama.com,下载程序并安装(支持 windows,linux 和 macos)。 2. 查找 cmd 进入命令提示符,输入 ollama v 检查版本,安装完成后版本应该显示 0.1.26。 3. 输入 cls 清空屏幕,接下来直接输入 ollama run gemma 运行模型(默认是 2b),首次需要下载,需要等待一段时间,如果想用 7b,运行 ollama run gemma:7b 。 4. 完成以后就可以直接对话了,2 个模型都安装以后,可以重复上面的指令切换。
2024-09-27
如何创建个人专属知识库
以下是创建个人专属知识库的相关内容: 私人知识库中的内容通常包括从互联网收集的优质信息以及个人日常的思考和分享。 基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 训练专有大模型:可以使用个人知识库训练专有大模型,但此方案并非当下主流,存在高成本、更新难度大等缺陷。 利用 RAG(检索增强生成)技术:先将文本拆分成若干小文本块并转换为 embeddings 向量,保存在向量储存库中。当用户提出问题时,将问题转换为向量与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 搭建基于 GPT API 的定制化知识库时,由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。
2024-11-16
如何创建coze知识库
以下是创建 Coze 知识库的步骤: 1. 来到个人空间,找到知识库导航栏,点击创建知识库。 知识库是共享资源,多个 Bot 可以引用同一个知识库。 选择知识库的格式并填写相关信息。目前(2024.06.08)Coze 支持三种格式:文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。格式不重要,重要的是要了解影响 RAG 输出质量的因素。 例如选择本地文档(问答对可选择表格),还可选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 2. 在线知识库: 点击创建知识库,创建一个如画小二课程的 FAQ 知识库。 选择飞书在线文档,每个问题和答案以分割。 选择飞书文档、自定义,输入,可点击编辑修改和删除,然后添加 Bot,并在调试区测试效果。 3. 本地文档: 本地 word 文件要注意拆分内容以提高训练数据准确度,例如对于画小二课程,要先将大章节名称内容放入,再按固定方式细化章节内详细内容。 然后选择创建知识库自定义清洗数据。 4. 发布应用:点击发布,确保在 Bot 商店中能够搜到。 关于使用知识库,您可以查看教程: 。
2024-11-15
你的知识库来源于哪里
我的知识库来源较为广泛,包括以下方面: 符号人工智能的早期成就之一——专家系统,其基于从人类专家提取的知识库,并包含推理引擎进行推理。专家系统包含问题记忆、知识库、推理引擎等部分。 “通往 AGI 之路「WaytoAGI」,这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。 扣子的知识库,功能强大,可上传和存储外部知识内容,并提供多种查找知识的方法,能解决大模型的某些问题,使其回复更准确。
2024-11-13
什么是知识库,以及他的运作原理是什么,请用小白也能理解的语言进行说明
知识库可以用比较通俗的方式来理解: 想象一个大语言模型就像一个非常聪明、读过无数书的人,但对于一些特定的工作场景中的细节,比如见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折,它可能并不清楚。这时候,知识库就像是给这个聪明的人发的一本工作手册。 从更专业的角度来说,知识库的运作原理通常包括以下几个步骤: 1. 文档加载:从各种不同的来源,比如 PDF、SQL 数据、代码等加载相关的文档。 2. 文本分割:把加载的文档分割成指定大小的块,称为“文档块”或“文档片”。 3. 存储:这包括两个环节,一是将分割好的文档块进行嵌入,转换成向量的形式;二是将这些向量数据存储到向量数据库中。 4. 检索:当需要使用数据时,通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给大语言模型,大语言模型会根据问题和检索出来的提示一起生成更合理的答案。 以车型数据为例,每个知识库的分段中保存了一种车型的基础数据。当用户问宝马 X3 的售价是多少时,就能匹配到对应车型的分段,然后从其中获取到售价信息。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2024-11-13
我没有知识库,如何让AI就某一问题穷尽搜索
要让 AI 就某一问题进行穷尽搜索,一般会涉及以下步骤: 1. 文档向量化:知识库中的文档需要被转换成向量形式,以便在数值级别上与问题向量进行比较。使用知识库工具上传文档时,会完成文档的向量化,这依靠 Embedding Model 实现。 2. 知识库检索: 相似性计算:使用相似性度量方法(如余弦相似性)计算问题向量和各个文档向量之间的相似度,以找出与问题内容最接近的文档。 排序与选择:根据相似性得分对所有文档进行排序,通常会选择得分最高的几个文档,认为这些文档与问题最相关。 信息抽取:从选定的高相关性文档中抽取具体的信息片段或答案,可能涉及进一步的文本处理技术,如命名实体识别、关键短语提取等。 3. 信息整合阶段:将检索到的全部信息连同用户问题和系统预设整合成一个全新的上下文环境,为生成回答提供基础。 此外,像生物进化中通过自然选择的方式,从特定规则开始逐步改变(可能随机),在每一步保留最有效的规则并丢弃其他,这种方法不是我们通常定义的“人工智能”(更像是“遗传算法”),但在高维规则空间中往往比低维规则空间效果更好,因为维度越多,陷入局部最小值的可能性越小。 同时,给 AI 配备随时更新的“活字典”即知识库是一个好方法。知识库就像 AI 随时可查阅的百科全书,当 AI 遇到不确定问题时,可从知识库中检索相关信息给出更准确回答。比如建立包含最新新闻、科技发展、法律法规等内容的知识库,或者利用整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。
2024-11-13
你的知识库是怎么部署的
部署个人知识库需要考虑硬件配置和相关技术原理。 硬件方面: 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 技术原理方面: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 RAG 应用包括文档加载、文本分割、存储、检索和输出这 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 此外,搭建基于 GPT API 的定制化知识库,涉及给 GPT 输入(投喂)定制化的知识。GPT3.5 一次交互(输入和输出)只支持最高 4096 个 Token。为了处理大量领域知识,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度。
2024-11-11
如何用coze搭建一个总结聊天记录的功能
以下是用 Coze 搭建一个总结聊天记录功能的步骤: 1. 设计 Bot 目的:明确 Bot 的用途,例如作为一个 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效的站内信息检索服务。 2. 了解 Coze 平台常用概念和功能:包括提示词(设定 Bot 的身份和目标)、插件(通过 API 连接集成各种平台和服务)、工作流(设计复杂的多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。 3. 进行 Bot 基础设置:根据机器人的作用,设计人设和回复逻辑,限制机器人的功能使其更专注于 AI 相关的知识回答和服务,还可以加入长期记忆功能来总结聊天对话内容以更好地响应用户消息,以及设计更加美观的 Bot 开场白。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可以查官方指南。
2024-11-15
使用coze搭建一个心理咨询机器人,将机器人接入自己开发的应用后,如何再进一步实现让ai把每个用户每天的聊天内容,总结成日记,并传回给应用展示日记
目前知识库中没有关于使用 Coze 搭建心理咨询机器人,并将用户每天聊天内容总结成日记传回应用展示的相关内容。但一般来说,要实现这个功能,您可能需要以下步骤: 1. 数据采集与存储:在机器人与用户交互过程中,采集并妥善存储聊天数据。 2. 自然语言处理与分析:运用相关的自然语言处理技术,对聊天内容进行理解和分析,提取关键信息。 3. 内容总结:基于分析结果,使用合适的算法和模型将聊天内容总结成日记形式。 4. 数据传输:建立与应用的稳定接口,将总结好的日记数据传输回应用。 这只是一个大致的思路,具体的实现会涉及到很多技术细节和开发工作。
2024-11-15
搭建一个总结聊天记录的ai
以下是搭建一个总结聊天记录的 AI 的步骤: 1. 整理聊天记录为数据集: 如果导出了多个人的聊天记录,需手动将文件下的内容汇总到一起。 汇总完成后,保存汇总文件为“train.json”。 在当前文件夹下新建一个文本文档,重命名为“1.py”,用记事本打开并粘贴相应代码。注意标红的地方需要修改。 打开命令行窗口,输入“python 1.py”完成聊天记录整理,此步骤在后续第 31 步会用到。 2. 图文原文处理: 微信无法批量复制聊天内容,多选想要复制的聊天内容,转发到群里或文件传输助手。 收藏批量转发的聊天记录,打开收藏,点进笔记,点右上角三个点,转存为笔记,返回即可全选复制所有内容。 可使用能让电脑设备和手机设备剪切板共享的工具,避免在微信文件传输助手间折腾。 3. GPTs: 若重复做同一件事三次以上,应考虑优化步骤,可创建内容排版大师的 GPTs。 GPTs 链接:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。 该 GPTs 已加入 webpilot 的 actions,可直接将文章发给它总结内容。 4. 小卡片软件: 使用的卡片软件是小作卡片 app,官网链接:https://kosaku.imxie.club/ 。 操作步骤:打开软件,点击「自制卡片」,在「记录些什么...」中粘贴 AI 生成文本内容,点击右下角保存图标即可导出。
2024-11-15
搭建个人知识库,请推荐的免费人工智能软件
以下为您推荐一些可用于搭建个人知识库的免费人工智能软件: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址:https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在 AnythingLLM 中可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合给出答案,Query 模式仅依靠文档数据给出答案),配置完成后可进行测试对话。 2. Coze 或 FastGPT 等工具可搭建知识库,但当下其 RAG 能力仅对问答场景友好,复杂企业级知识库场景可能需要专业团队,收费几万到几十万不等。若想使用专门搭建个人知识库的软件,可参考文章 ,忽略本地部署大模型环节,直接看其中推荐的软件。 此外,还有一些相关工具和方法: 用通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 定义提示语提取有用信息:https://memo.ac/zh/ 开源免费屏幕录制工具 OBS,下载地址:https://obsproject.com/ Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 用 losslessCut 快速切块:https://github.com/mifi/losslesscut 希望这些信息对您有所帮助。
2024-11-11
飞书和notion,在搭建个人知识库方面,各自的优点和缺点是什么
飞书在搭建个人知识库方面的优点: 可以方便地分类和整理知识,例如个人搭建某一领域知识库或企业搭建产品资料知识库。 有相关的分享和直播,能帮助用户轻松打造知识管理体系。 缺点: 随着知识库中信息增多,如果分类不合理,很难找到所需文章。 问题答案可能在文章某一段落,每次都需重新阅读文章才能找到答案。 Notion 在搭建个人知识库方面的优点: 是功能强大的知识管理和项目管理工具,可将各种信息 all in one place。 数据库可定制性高,接近关系型数据库,适合有相关需求的用户。 数据库的每一条记录都是一个页面,页面包含可自定义的属性和丰富内容。 支持的块类型非常丰富。 缺点:暂未提及。 此外,Notion 在创建知识库并上传文本内容方面,有特定的操作步骤,如在文本格式页签下选择 Notion 并进行授权,还可选择自动分段与清洗或自定义分段等方式。
2024-11-11
合适搭建个人知识库的人工智能软件有哪一些
以下是一些适合搭建个人知识库的人工智能软件: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址为 https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在使用时,可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合训练数据和上传文档给出答案,Query 模式仅依靠文档数据给出答案),配置完成后可进行测试对话。 2. Coze:如果您想使用专门搭建个人知识库的软件,可参考文章 ,忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API 。
2024-11-11