Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

哪些AI模型可以帮助个人在股票投资

Answer

以下是一些可能有助于个人在股票投资的 AI 模型和相关信息:

  • 目前,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 等是市场上备受瞩目的 AI 模型公司。
  • 在投资领域,AI 将引领新的服务模式,如“智能即服务”,重塑工作和生活,为芯片、云计算等行业带来新的投资机会。企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业的投资额也在增长。
  • 科技巨头通过资本控制 AI 模型公司的趋势明显,如 OpenAI 与微软、Anthropic 与 Google 等的合作。
  • 个人投资者可以关注在温哥华启动的专注于 AI 领域的基金 Brilliant Phoenix,其投资了 OpenAI、Cohere 和 Anthropic 等公司。同时,也有跨境基金如在上海发起的进益安成的 QDLP 跨境基金,专注于为投资者提供合规的人民币出境通道以投资美股二级市场。
Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

[title]为了在医疗保健中产生真正的改变,AI需要像我们一样学习原文地址:https://time.com/6274752/ai-health-care/作者:Vijay Pande博士,是a16z的合作者,专注于生物和健康领域投资发表时间:2023-5-3翻译:通往AGI之路数百万人,其中很多人以前从未深入思考过计算机科学,现在正在尝试像ChatGPT这样能进行流畅对话的生成式AI模型和像DALL-E这样的创意图像生成器。虽然这些产品反映的技术突破并不如AI进入公众意识那样显著,但它们获得的关注正在引导大量[投资](https://www.wired.com/story/microsoft-taps-chatgpt-to-boost-bing-and-beat-google/)流动——这种投资正在塑造这项技术在未来几年中的应用方式。对于我们这些一直对AI在改变社会上持有[乐观态度](https://www.nytimes.com/2018/01/25/opinion/artificial-intelligence-black-box.html)的人来说,特别是在关键领域如健康和医学中,近几个月感觉非常像科幻小说变为现实。然而,尽管探索这些能力很令人愉悦——例如,GPT-4在美国医学执照考试中[超过](https://www.microsoft.com/en-us/research/publication/capabilities-of-gpt-4-on-medical-challenge-problems/)及格分数20分——但这样做的结果主要是强调了它们的不足。拥有读取、保留并根据需要重复所有这些数据的能力使得今天的AI在所有方面都很优秀,但没有在任何方面做得非常出色。

2024年3月 / 科技变革与美股投资 2024

[title]2024年3月/科技变革与美股投资2024[heading1]III.智变时代AI将引领新的服务模式,即“智能即服务”,通过增强能力、自动化和改变交互方式,重塑我们的工作和生活。此外,AI的发展将重新赋能芯片和云计算行业,为它们带来第二春,并创造新的投资机会。在这个过程中,GPU的需求预计将持续增长,进一步推动AI技术的革新和应用。企业软件、AI驱动的金融服务以及AI健康技术成为了吸引投资的主要领域。但值得注意的是,机器人行业的投资额已经超过了企业软件,预示着它可能成为下一轮AI革命的重要爆发点。这一点在2024年末或2025年初有望得到进一步验证。科技巨头们通过资本来控制AI模型公司的趋势也越来越明显。例如,OpenAI与微软的合作,Anthropic与Google的合作,以及其他公司与NVIDIA和AWS的合作,都表明了这一点。这种背后的资本支持不仅为AI公司提供了必要的算力,还加速了整个行业的发展。在这个AI时代,企业的竞争策略主要集中在两个方向:一是迅速成长为大型模型公司并寻找强大的背书,以获得竞争优势;二是保持规模较小,专注于盈利并灵活应对市场变化。这种分化的竞争模式预示着AI行业的未来将更加多元化和复杂。展望2024年,我们有理由相信这将是大模型争霸的一年。OpenAI、Gemini、Anthropic、LLama以及来自法国的Mistral将是市场上最受瞩目的几家公司。他们不仅在技术上相互竞争,还在为未来AI的方向和应用设定标准。这种竞争不仅对技术的进步至关重要,也为投资者和市场观察者提供了了解AI发展趋势的重要视角。

2024年3月 / 科技变革与美股投资 2024

对于投资者和创业者来说,了解并投身于科技创新是走向成功的关键一步。2022年和2023年,我特别关注了科技领域的一级市场投资机会。通过一个SPV基金参与了SpaceX的投资,并且我们在温哥华还启动了一只专注于AI领域的基金[Brilliant Phoenix](https://www.phoenixmortgage.ca/?ref=indigox.me),投资了OpenAI、Cohere和Anthropic等公司。除了投资之外,我还致力于个人孵化早期科技项目,和朋友建立了一个类似于Venture Studio的公司[Hallidai](https://hallid.ai/?ref=indigox.me),专注于AI领域的创新。我们的第一个项目是[Maimo](https://maimo.ai/?ref=indigox.me),一个旨在作为研究助理或外脑的产品,帮助用户加速知识处理,包括会议脚本的听写、研究论文的结构分析、生成式搜索等功能。这个产品体现了我们对于AI技术实际应用的探索和实现,也是我们对科技未来发展方向的一种投资。就在今年,联合好朋友合鲸资本还有专业的美股交易团队,在上海发起一只名为进益安成的QDLP跨境基金,专注于为投资者提供合规的人民币出境通道,以便直接投资美股二级市场。通过与专业的交易团队和法务团队合作,我们确保投资者的资金安全和合规性,使他们能够顺利地在美股市场上进行投资。未来已来,只是分布不均!正如William Gibson所说,我们的目标是成为那些先看到并抓住未来机会的人。通过上述项目,我们希望能够为更多人打开知识之门,让他们有机会参与到这个激动人心的科技变革中来。

Others are asking
怎么用AI写小学数学小课题
以下是利用 AI 写小学数学小课题的一些步骤和建议: 1. 确定课题主题:明确您对小学数学的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的小学数学研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、研究方法、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建研究方法:根据研究需求,利用 AI 建议的方法和技术来设计适合小学数学的研究方法。 7. 数据分析(若涉及):如果课题涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-01-31
学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-31
网络上有关于AI知识的授课,请问标价一般在多少范围内合适
网络上关于 AI 知识的授课,比如“野菩萨”的课程,其内容丰富多样,包括: 预习周课程:涵盖 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:包含 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 该课程标价情况如下: 冠军奖励:4980 课程一份。 亚军奖励:3980 课程一份。 季军奖励:1980 课程一份。 入围奖励:598 野神殿门票一张。 同时,如果想要免费获得这门课程,可以参与 video battle,每期的评委野菩萨老师都非常严格,需要寓意深度审美并存。您可以扫码添加菩萨老师助理,了解更多课程信息。
2025-01-31
AI阅读书籍的最佳实践是什么?
以下是关于 AI 阅读书籍的一些最佳实践: 1. 方法论萃取: 针对不同类型书籍的阅读和记忆方法进行分类,探讨共性方法论。 研究阅读和记忆的思维模型及小技巧。 思考如何优先选择自己“一定看得下去”的书籍,通过目录大纲确定核心内容。 确定一本书的阅读次数和顺序。 考虑读书过程中做笔记还是读完后回忆做大纲。 探索如何教刚毕业的孩子学会有效读书。 根据上述问题的答案设计“书籍阅读助手”“催我读书”等 Prompt,并不断优化和迭代。 2. 成为博物学家: 了解各个领域的知识,在恰当的时候调用。 参考权威、准确、有框架、成体系且好读的推荐书单,如涵盖心理学、人工智能、经济学等 13 个学科的书单。 3. 批判性思考: 思考在哪些情况下使用和不使用 AI 辅助阅读。 避免将 AI 作为默认选项,例如在使用地图导航时,不应完全依赖,而应注重自身对环境的观察和记忆。
2025-01-31
有没有完全免费的AI工具?
以下是一些完全免费的 AI 工具: 绘图方面: draw.io(现在称为 diagrams.net):免费的在线图表软件,支持创建逻辑视图和部署视图等。 PlantUML:文本到 UML 的转换工具,可通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 会议内容转文字方面: 飞书妙记:飞书的办公套件之一。 通义听悟:阿里推出的 AI 会议转录工具。 讯飞听见:讯飞旗下智慧办公服务平台。 Otter AI:转录采访和会议纪要。 写代码或辅助编程方面: CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 需要注意的是,部分工具可能存在使用时间限制或功能限制,您可以根据自己的具体需求选择适合的工具。
2025-01-31
ai本地化部署
AI 本地化部署主要包括以下方面: 线上和线下本地部署的 AI 特点: 线上 AI 出图速度快,不吃本地显卡配置,无需下载大模型,能看他人作品,但出图尺寸受限。 线下部署可添加插件,不卡算力,出图质量高,但使用时电脑易宕机,配置不高可能爆显存导致出图失败。 线上和线下平台的结合使用: 线上用于找参考、测试模型。 线下作为主要出图工具。 智谱 BigModel 共学营第二期微信助手本地电脑环境部署(以 Windows 为例): 程序在本地运行,关闭窗口进程结束,若要持续使用需保持窗口打开和运行。 若突然不管用,可点击窗口并按空格,因选中状态下 powershell 窗口不继续执行。 完成部署后: 登录成功给微信发送消息可看到正常回复。 可在智谱清流更改 AI 功能或人设,即时生效。 对文件内代码更改需重新打印登陆二维码,在“文件”的【终端】输入 python app.py 重新扫码登录。 无手机登录可用夜神模拟器模拟。 报错“wxsid”可能因微信未实名,实名即可。 制作完成后 24 小时内会掉线一次,重新登录即可,先不要急着加好友。
2025-01-31
哪些AI模型可以用于个人在股票投资中提高盈利
目前没有特定的 AI 模型被广泛认可能确保个人在股票投资中必然提高盈利。股票市场受到众多复杂且难以预测的因素影响,包括宏观经济状况、政治局势、公司财务状况、行业竞争等。 虽然一些 AI 技术和模型可能在数据分析和预测方面提供一定的帮助,但它们并不能完全准确地预测股票价格的走势和投资的盈利情况。 在股票投资中,依靠单一的模型或技术来获取稳定盈利是不现实的,需要综合考虑多种因素,并结合自身的风险承受能力和投资目标,做出谨慎的决策。
2024-10-10
个人如何利用ai在股票投资中提高盈利
以下是个人利用 AI 在股票投资中提高盈利的一些方式: 1. 借助 AI 进行财务分析:例如通过相关的 AI 工具,对股票的财务数据进行深入分析,以获取更准确的评估和预测。 2. 关注科技领域的投资机会:特别是在 AI 领域,参与相关公司的投资,如 OpenAI、Cohere 和 Anthropic 等。 3. 利用创新的 AI 产品辅助决策:如使用类似于 Maimo 这样的产品,帮助进行会议脚本的听写、研究论文的结构分析、生成式搜索等,从而加速知识处理,为投资决策提供支持。 4. 发起合规的跨境基金:与专业团队合作,为投资者提供人民币出境通道,直接投资美股二级市场,确保资金安全和合规性。 需要注意的是,股票投资存在风险,AI 只是辅助工具,不能完全保证盈利。在使用 AI 辅助投资时,仍需结合自身的投资知识和经验,谨慎做出决策。
2024-10-10
ai在股票投资的应用
AI 在股票投资领域有以下应用: 1. 推动行业发展:AI 不仅革新机器人领域,还促进智能设备、高级电池能源、电驱动火箭引擎等多个行业发展,在核聚变技术、生物制药和纳米科技等前沿领域也发挥关键作用。这一轮由 AI 催化的变革预计将促进全行业进步,对全球 GDP 产生巨大影响,帮助美国解决债务问题,为经济提供新动力。 2. 创造投资机会:AI 将引领新的服务模式,如“智能即服务”,重塑工作和生活。其发展重新赋能芯片和云计算行业,带来新投资机会,如企业软件、AI 驱动的金融服务以及 AI 健康技术等成为吸引投资的主要领域。同时,GPU 需求预计持续增长,机器人行业投资额超过企业软件,可能成为下一轮 AI 革命的重要爆发点。 3. 影响企业竞争策略:科技巨头通过资本控制 AI 模型公司,企业竞争策略出现分化,一是成长为大型模型公司并寻找强大背书,二是保持小规模专注盈利并灵活应对市场变化,这种分化使 AI 行业未来更加多元化和复杂。 4. 辅助投资决策:2024 年预计是大模型争霸的一年,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 等公司在技术上相互竞争并为未来 AI 的方向和应用设定标准,为投资者和市场观察者提供了解 AI 发展趋势的重要视角。
2024-10-10
layer_xl_bg2ble.safetensors,layer_xl_transparent_conv.safetensors,vae_transparent_encoder.safetensors这一类是大模型,还是Lora?
layer_xl_bg2ble.safetensors、layer_xl_transparent_conv.safetensors、vae_transparent_encoder.safetensors 这类文件可能是大模型的一部分,也可能是 Lora 模型。 在 AI 模型中: 基础模型(英文名 Checkpoint)是生图必需的,任何生图操作必须要选定一个基础模型才能开始。 Lora 是低阶自适应模型,可以理解为基础模型的小插件,生图时可有可无,但在控制面部、材质、物品等细节方面有明显价值。 同时,VAE 是个编码器,功能类似于滤镜,可调整生图的饱和度。
2025-01-31
deepseek的多模态大模型?
DeepSeek 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。以下是关于该模型的一些重要信息: 最新消息:DeepSeek 深夜发布该模型,它是一个强大的框架。 特点: 统一了多模态理解和生成,通过将视觉编码解耦为独立路径解决先前方法的局限性,利用单一的统一 Transformer 架构进行处理,缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性。 超越了之前的统一模型,匹配或超过了特定任务模型的性能,其简单性、高灵活性和有效性使其成为下一代统一多模态模型的有力候选者。 规模:提供 1B 和 7B 两种规模,适配多元应用场景。 开源及商用:全面开源,支持商用,采用 MIT 协议,部署使用便捷。 测试案例: 模型直接支持中文交互(图像理解+图像生成)。 云上 L4 测试,显存需 22GB。 图像生成速度约 15s/张。 图像理解质量方面,文字和信息识别基本准确,内容理解完整清晰,局部细节有欠缺。 Colab(需 Pro,因需 20GB 以上显存):https://colab.research.google.com/drive/1V3bH2oxhikj_B_EYy5yRG_9yqSqxxqgS?usp=sharing 模型地址: 7B 模型:https://huggingface.co/deepseekai/JanusPro7B 1B 模型:https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-01-30
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
现在最好的AI大模型
目前较为出色的 AI 大模型包括: 1. GPT4(免费可用):是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 2. Midjourney v5(免费):具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能,能生成令人惊叹的逼真 AI 图像。 3. DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃,能轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,在主要的大语言模型方面: 1. OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型。 2. 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 3. Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-01-29
你好,你是什么模型?
您好,我是一名 AI 知识专家,能够为您提供全面的 AI 知识指导和解答相关问题。 关于模型方面的知识: LoRA 和 LyCORIS 都属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 SD 已内置。在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 在 Tusiart 中,首页有模型、帖子、排行榜,展示了大手子炼成的模型和图片。生图必需基础模型(Checkpoint),任何生图操作必须选定一个 Checkpoint 模型才能开始,lora 是低阶自适应模型,可有可无,但对细节控制有价值。ControlNet 可控制图片中特定图像,VAE 类似于滤镜调整生图饱和度,选择 840000 即可。Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。还有图生图,即上传图片后 SD 会根据相关信息重绘。 如果您想搭建类似的群问答机器人,可以参考以下内容:
2025-01-28
为什么要布置大模型到本地
布置大模型到本地主要有以下原因: 1. 无需科学上网,也无需支付高昂的 ChatGPT 会员费用。 2. 可以通过 Web UI 实现和大模型进行对话的功能,如 Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题),这也是构建知识库的基础之一。 3. 能够更加灵活地掌握个人知识库。 但需要注意的是,运行大模型需要很高的机器配置: 1. 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 2. 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 3. 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 个人玩家的大多数机器可能负担不起,最低配置运行速度非常慢。但亲自实操一遍可以加深对大模型构建的知识库底层原理的了解。
2025-01-27
想让ai帮助写一篇论文
在论文写作方面,AI 技术的应用能提供多方面的辅助。以下为您介绍一些相关的 AI 工具和利用 AI 写论文、课题的方法: 常用的论文写作 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写论文的方法: 目前大多数人零碎使用 AI 工具,未系统应用到工作场景,可能导致整体效率不高。要形成适合自己的 AI 工作方法论和流程,比如在挑选和切换工具时避免浪费时间。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 请注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时要保持批判性思维,确保研究质量和学术诚信。
2025-01-30
哪个ai能免费帮助写ppt
以下是一些能够免费帮助写 PPT 的 AI 工具: 1. 讯飞智文:http://zhiwen.xfyun.cn 。 2. Gamma:其免费版本也能生成质量较高的 PPT,在性能和用户体验方面表现卓越。 此外,还有一些相关的信息供您参考: 1. 橙篇是百度文库于 2024 年 5 月 30 日发布的综合性 AI Native 产品,集多种功能于一身,可用于内容自动生成、格式自动调整等,也能辅助制作 PPT。 2. 卓 sir 曾使用 GPT4、WPS AI 和 chatPPT 这 3 个 AI 工具完成 PPT 作业。 您可以根据自己的需求选择适合的工具。
2025-01-29
哪个ai能帮助写ppt
以下是一些能够帮助写 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,输入简单文本描述生成专业设计,有丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 6. 闪击 7. Process ON 8. WPS AI 此外,熊猫 Jay 分享了超全的 AI 工具生成 PPT 的思路和使用指南,卓 sir 也介绍了自己使用 GPT4、WPS AI 和 chatPPT 完成 PPT 作业的经验。
2025-01-29
我是一名小说家,需要ai帮助
以下是关于小说家利用 AI 进行小说创作的相关内容: 南瓜博士在人机协作小说创作中有着丰富的经历。除了无名猫视角的获奖作品,还为 LLM 小说比赛尝试了多种方法,包括编写 agent flow 框架让 AI 自动按步骤写作和评判,但因无法认同 AI 的审美而放弃。之后选择在 GPT 页面上对话,先让 AI 生成大量创意,自己进行判断挑选,写作时 AI 勤勤恳恳,自己负责掌舵,最后给出改进意见由 AI 遵循修改。 在具体创作过程中,为确保文章前后一致,先让 AI 写故事概要和角色背景介绍并略作修改。让 AI 以表格形式输出细节描述有三个好处:打破叙事习惯避免陈词滥调;按编号做局部调整容易;确保内容都是具体细节。然后把生成的表格依次复制粘贴让 AI 写文章,偶尔需要自己给建议。 在修改环节,小说大赛要求作品不能改动且不能超 2000 字,让 GPT4 改时它很快暴露出记性不好的缺点,求助 Claude 时关键情节被改没。总之,小说创作中,人有人的用处。
2025-01-23
我需要一个能帮助写年终报告的AI
以下是一些关于利用 AI 帮助写年终报告的信息: 在金融服务业中,生成式 AI 能够帮助金融服务团队改进内部流程,简化财务团队的日常工作。它可以从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,在预测方面,能帮助编写公式和查询,发现模式并为预测建议输入;在报告方面,能自动创建文本、图表等内容,并根据不同示例调整报告。此外,在会计和税务、采购和应付账款方面也能提供帮助,如综合总结税法和潜在扣除项,自动生成和调整合同等。 安迪分享了一个实战案例,通过将过去写的文章发给 AI 总结写作特点,编写提示词来克隆自己的写作风格,从而让 AI 代替自己写“手写信”,大大提高了效率。 对于个人博客,在接触 AI 之前输出困难,而 AI 提供了不同的思路和视角,让写作变得可执行可操作。当 AI 能在几分钟内生成详细报告时,能节省大量时间和精力。但在与 AI 合作中也会面临一些问题,如如何掌控 AI 使其成为得力助手,如何应对超出理解范围的解决方案等。
2025-01-22
怎样用ai来帮助读文献
以下是利用 AI 帮助读文献的一些方法: 1. 使用 TXYZ 网站:这是一个帮助搜索、查询专业文献并进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。它是唯一和预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 TXYZ 的按钮。用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到自己想要的答案和内容,并在对话中提供论文参考,给出可信的背书。 2. 优化文档以便 AI 理解: 遵循通用原则:如果一篇文档能很容易被“人”看懂,那么这篇文档对 AI 来说应该也是好理解的。 具体技巧包括:简洁明了,避免使用复杂的词汇和句子,使用简单、清晰的语言表达想法;结构清晰,文档应有明确的结构,包括引言、主体和结论,使用标题和子标题来帮助浏览和理解文档的组织结构;段落分明,每个段落应有一个主题,且主题应在段落的开头或结尾明确表达出来;避免专业术语滥用,必要时提供清晰的定义或上下文;避免歧义,确保表达清晰,不容易被误解,必要时进行澄清,避免留下模棱两可的陈述;定期更新,确保文档信息及时准确。 3. 利用学术场景数据处理工具:如 BigModel 智谱 AI 大模型开放平台,其凭借强大的语义理解能力,能够快速总结论文内容、进行精准翻译。在处理文献时,先将海量文献通常以 PDF、Word 或 Excel 等格式存储的文件转换为可供模型解析的文本格式,然后将文件内容自动化提取并结合大语言模型进行批量分析或任务处理,适用于文档总结、信息提取等场景。
2025-01-21