直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI 常见名词 有哪些

回答

以下是一些 AI 常见名词:

  • chatGPT:由致力于 AGI 的 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,目前使用的是 GPT-4 的 LLM。
  • AI:人工智能(Artificial Intelligence)。
  • AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。
  • NLP:自然语言处理(Natural Language Processing),即让电脑处理和理解人类语言。
  • LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多。
  • 机器学习:人工智能的一个分支,是实现人工智能的途径之一,涉及多门学科,近 30 多年已发展为多领域科际集成。
  • 自然语言:是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。
  • 推理:利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断。
  • 训练:通过大数据训练出复杂的神经网络模型,用大量标记过的数据训练系统以适应特定功能。

以下是一些 AI 绘画常用的画面光线提示词:

  • 情绪照明(mood lighting)
  • 柔和的照明/柔光(Soft illuminaotion/ soft lights)
  • 荧光灯(fluorescent lighting)
  • 微光/晨光(rays of shimmering light/ morning light)
  • 黄昏射线(Crepuscular Ray)
  • 外太空观(outer space view)
  • 电影灯光/戏剧灯光(cinematic lighting/ Dramatic lighting)
  • 双性照明(bisexual lighting)
  • 伦勃朗照明(Rembrandt Lighting)
  • 分体照明(Split Lighting)
  • 前照灯(front lighting)
  • 背光照明(Back lighting)
  • 干净的背景趋势(clean background trending)
  • 边缘灯(rim lights)
  • 全局照明(global illuminations)
  • 霓虹灯冷光(neon cold lighting)
  • 强光(hard lighting)
  • 自上而下的光(god rays)
  • 荧光(glowing light)
  • 闪耀效果(sparkle)
  • 模糊的(blurry)
  • 镜头光晕(lens flare)
  • 过曝(overexposure)
  • 光线追踪(ray tracing)
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AIGC常见名词解释(字典篇)

chatGPT:是由致力于AGI的公司OpenAI研发的一款AI技术驱动的NLP聊天工具,于2022年11月30日发布,目前使用的是GPT-4的LLM。额!~ chatGPT我听过,也知道是啥,但你这个解释我直接给我干懵了,套娃呢,解释藏我不认识的单词是不!~ AI:人工智能(Artificial Intelligence)AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统NLP:自然语言处理(Natural Language Processing),就是说人话LLM:大型语言模型(Large Language Model),数据规模很大,没钱你搞不出来的,大烧钱模型。这段解释chatGPT的释义,一句话就把关于AIGC的几个常见名词都涵盖了,不愧是去年火到我卖地瓜的二姨都知道的“鸡屁屉”。一个字!绝!

AIGC常见名词解释(字典篇)

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。[heading1]自然语言是什么?[content]自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。[heading1]AI的推理是什么?[content]推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。[heading1]AI的训练是什么?[content]训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。

AI绘画常用提示词

[title]AI绘画常用提示词[heading1]画面光线提示词mood lighting情绪照明Soft illuminaotion/ soft lights柔和的照明/柔光fluorescent lighting荧光灯rays of shimmering light/ morning light微光/晨光Crepuscular Ray黄昏射线outer space view外太空观cinematic lighting/ Dramatic lighting电影灯光破剧灯光bisexual lighting双性照明Rembrandt Lighting伦勃朗照明Split Lighting分体照明front lighting前照灯Back lighting背光照明clean background trending干净的背景趋势rim lights边缘灯global illuminations全局照明neon cold lighting霓虹灯冷光hard lighting强光god rays自上而下的光glowing light荧光sparkle闪耀效果blurry模糊的lens flare镜头光晕overexposure过曝ray tracing光线追踪

其他人在问
有没有可以帮我做作品集的ai工具?
以下为您介绍一些可以帮助制作作品集的 AI 工具: 1. GPT4、WPS AI 和 chatPPT:可以用于制作 PPT 类型的作品集。例如,在制作 PPT 时,大纲内容、排版、动画等都可以借助这些工具完成。 2. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 3. Rezi:是一个受到众多用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 4. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结、技能、成就生成器和 AI 驱动的简历工作匹配。 更多相关工具,您还可以查看:https://www.waytoagi.com/category/79 。 需要注意的是,AI 工具生成的内容可能需要您进一步甄别和调整,以满足您的具体需求。
2024-11-12
什么是AI
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。 对于 AI 的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 在实际应用中,有些任务无法明确编程让计算机完成,比如根据照片判断一个人的年龄,而这类任务正是 AI 所感兴趣的。 AI 健身是利用人工智能技术辅助或改善健身训练和健康管理的方法,能根据用户情况提供定制化训练计划和建议。相关的 AI 工具包括 Keep、Fiture、Fitness AI、Planfit 等。
2024-11-12
如何使用ai帮助我写作
利用 AI 帮助写作可以参考以下步骤和方法: 1. 确定写作主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成写作的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写初稿:可以利用 AI 写作工具草拟任何东西的初稿,如博客文章、论文、宣传材料、演讲、讲座等。 6. 优化内容:将文本粘贴到 AI 中,要求它改进内容,或就如何为特定受众提供更好的建议。也可以要求它以不同风格创建多个草稿,使事物更生动,或者添加例子,以激发您做得更好。 7. 帮助完成任务:AI 可以做您没有时间做的事情,像实习生一样使用它写邮件,创建销售模板,提供商业计划的下一步等。 8. 数据分析(若涉及):如果写作内容涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查写作的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保写作的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行写作时,应保持批判性思维,并确保写作的质量和学术诚信。 目前,一些较好的写作工具包括: 最佳免费选项: 付费选项:带有插件的4.0/ChatGPT 此外,GPT4 仍然是功能最强的人工智能写作工具,您可以在 Bing(选择“创新模式”)上免费访问,或者通过购买 ChatGPT 的$20/月订阅来访问。Claude 是紧随其后的第二名,也提供了有限的免费选项。这些工具也被直接集成到常见的办公应用程序中,如 Microsoft Office 将包括一个由 GPT 提供支持的副驾驶,Google Docs 将整合 Bard 的建议。
2024-11-12
为什么AI那么厉害
AI 之所以厉害,原因主要包括以下几点: 1. 具有非凡的潜力,能够在众多领域得到应用,如改善社会和经济,其影响力可与电力和互联网相媲美,能推动增长并创造就业机会。 2. 可支持人们完成现有工作,提高劳动力效率和工作场所安全性。 3. 是人类研究世界的有力工具,能帮助解决基础科学面临的瓶颈,例如在生物领域能快速计算蛋白质的折叠结构。 4. 不断发展和创新,如 GPT4 的升级,能为用户提供更多帮助。但同时也存在耗能等问题。
2024-11-12
国内有哪些AI出海产品
国内的 AI 出海产品有 ThinkAny、GenSpark、Devv 等。 在图像类 AI 产品方面,国内有可灵和通义万相。可灵由快手团队开发,用于生成高质量的图像和视频,图像质量高,但价格相对较高;通义万相是阿里旗下的工具,在中文理解和处理方面表现出色,用户可选择多种艺术和图像风格,操作界面简洁直观,且目前免费,但在某些方面存在局限性。 在 PPT 类 AI 产品方面,国内推荐爱设计 PPT,其背后有强大的团队,能敏锐把握市场机遇,已确立市场领先地位,能提高制作效率并保证高质量输出。
2024-11-12
0基础怎么快速学会做AI
对于 0 基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下具体的学习活动: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 对于技术纯小白,您可以: 从一个最最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,让 AI 帮助您梳理出产品需求文档。
2024-11-12
Aigc 常见名词解释
以下是一些 AIGC 常见名词的解释: AIGC:AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介众多,包括语言文字类(如 OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM)、语音声音类(如 Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits)、图片美术类(如早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion)。 SD:是 Stable Diffusion 的简称。是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model; LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 AI:人工智能(Artificial Intelligence)。 AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。 此外,还有一些相对较难的名词解释: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用
2024-11-08
Ai名词解释
以下是关于 AI 的一些名词解释和相关信息: 名词解释: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理,包括认知、理解、生成等部分 LLM:大型语言模型(Large Language Model),数据规模很大,耗费资金多 机器学习:是人工智能的一个分支,是以机器学习为手段,解决人工智能中的部分问题,涉及多门学科 推理:指利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断 训练:通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未详细说明具体应用)
2024-10-29
AI名词解释
以下是关于 AI 的一些名词解释、相关概念及应用场景: 名词解释: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),即让电脑处理和理解人类语言 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多 机器学习:是人工智能的一个分支,是实现人工智能的途径之一,涉及多门学科,近 30 多年已发展为多领域科际集成。 推理:指利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断。 训练:通过大数据训练出复杂的神经网络模型,用大量标记过的数据训练系统以适应特定功能。 自然语言:自然语言(NLP)的认知和理解是让电脑把输入的语言变成有意义的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。 应用场景: 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未详细说明具体应用)
2024-10-29
ai 各种名词的关系图
以下是 AI 相关名词的关系和解释: 人工智能(Artificial Intelligence,简称 AI)是一种目标,让机器展现智慧。 生成式人工智能(Generative AI,简称 GenAI)是一种目标,让机器产生复杂有结构的内容。 机器学习是一种手段,让机器自动从资料中找到公式。 深度学习是一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型(Large Language Models,简称 LLMs)是一类具有大量参数的“深度学习”模型。 ChatGPT 是一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 AIGC(Artificial Intelligence Generated Content)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。ChatGPT 是 AIGC 技术的一个应用实例。 AGI 是通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP 是自然语言处理(Natural Language Processing),就是处理人类语言。 LLM 是大型语言模型,数据规模很大,需要大量资金投入。
2024-09-18
必须知道的最常用的名词解释比如GPU、AGI等等、列举出来按照重点排序
以下是按照重点排序的一些常用名词解释: 1. 算力:字面意思是计算能力,可简单理解为 GPU,即电脑里的显卡,购买云服务时,服务商也是购买显卡“租”给用户使用。一张显卡除了 GPU 外,显存也是重要参数。 2. GPU:图形处理器,又称显示核心、视觉处理器、显示芯片,是在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器。 3. CPU:中央处理器,作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。 4. 显存:也被叫做帧缓存,作用是存储显卡芯片处理过或者即将提取的渲染数据,如同计算机的内存,是用来存储要处理图形信息的部件。
2024-09-13
AI基础名词和知识
以下是关于 AI 基础名词和知识的介绍: Python 相关: 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及多态的实现。 异常处理:包括理解异常的概念及在 Python 中的工作方式,学会使用 try 和 except 语句处理错误。 文件操作:掌握文件的读写,以及文件路径的处理和目录下文件的列举。 AI 背景知识: 基础理论:明晰人工智能、机器学习、深度学习的定义及相互关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,如交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读相关资料熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始 AI 学习之旅:在特定的学习路径中找到为初学者设计的课程,通过在线教育平台按自己节奏学习,可获取证书。 选择感兴趣的模块深入学习:根据自身兴趣选择特定领域(如图像、音乐、视频等)深入钻研。
2024-08-30
AI相关常见缩写及对应含义,包含例如prompt,rag
以下是一些 AI 相关的常见缩写及对应含义: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可理解为与大模型说的话或下达的指令,其质量会显著影响大模型回答的质量。 Token:大模型语言体系中的最小单元。不同厂商的大模型对中文的文本切分方法不同,通常 1Token≈12 个汉字。大模型的收费计算及输入输出长度限制常以 token 为单位计量。 上下文(context):指对话聊天内容前、后的内容信息,其长度和窗口会影响大模型回答的质量。 在 AI 绘画中,常见的画面构图提示词有: 视图相关:Bottom view(底视图)、front,side,rear view(前视图、侧视图、后视图)、product view(产品视图)、extreme closeup view(极端特写视图)、look up(仰视)、firstperson view(第一人称视角)、isometric view(等距视图)、closeup view(特写视图)、high angle view(高角度视图)、microscopic view(微观)、super side angle(超博角)、thirdperson perspective(第三人称视角)、Aerial view(鸟瞰图)、twopoint perspective(两点透视)、Threepoint perspective(三点透视)、portrait(肖像)、Elevation perspective(立面透视)、ultra wide shot(超广角镜头)、headshot(爆头)、a crosssection view of)
2024-11-08
Ai常见缩写及含义
以下是一些 AI 常见缩写及含义: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),即处理和理解人类语言 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多 chatGPT:由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM 此外,还有一些相关的术语: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用 关于机器学习: 机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近 30 多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 关于自然语言: 自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。自然语言处理是人工智能和语言学领域的分支学科,此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。 关于 AI 的推理: 推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。 关于 AI 的训练: 训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。
2024-11-08
AI常见缩写及对应含义
以下是 AI 常见的缩写及对应含义: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing) LLM:大型语言模型(Large Language Model) chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 此外,还有一些其他相关缩写及含义: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用 AI 的应用场景包括: 1. 医疗保健: 医学影像分析:AI 可用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据,辅助投资者决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题,解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(未给出具体应用场景)
2024-11-08
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
了解 AI 视频制作的基本概念和常见工具
AI 视频制作的基本概念: 将小说或其他创意内容通过一系列步骤转化为视频,通常包括文本分析、角色与场景生成、视频编辑与合成等环节。 常见工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):用于创建小说中的场景和角色图像的 AI 图像生成工具。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 制作 AI 短片的故事来源和剧本写作: 1. 故事来源: 原创(直接经验):自身或周围人的经历、做过的梦、想象的故事等。 改编(间接经验):经典 IP、名著改编、新闻改编、二创等。 2. 剧本写作: 编剧是有一定门槛的手艺,不能单纯套剧作理论和模板,要多写多实践,再结合看书总结经验。 对于短片创作,可从自身或朋友的经历改编入手,或者对触动自己的短篇故事进行改编。 多与他人讨论故事,有助于修改和进步。 AI 春晚的制作分工: 1. 制片人AJ:负责影片的制作管理,包括团队组建、日程安排、信息收集、资料整理、各处岗位工作缺失时及时补上等。 2. 图像创意??:负责用 AI 生成富有想象力的角色和场景等所有出现在视频中的画面,并为每个角色赋予人物小传。 3. 视频制作??:将做好的角色场景等图像素材进行 AI 图生文的工作,需要擅长运营工具的笔刷等控制工具,更好的契合剧本。 4. 编剧?:负责撰写剧本,包括故事情节、角色串联、人物台词等。 5. 配音和配乐?:涉及背景音乐、音效、角色配音、声音克隆,用各种声音类 AI 工具捏出来。 6. 剪辑师?:负责把后期剪辑,包括镜头选择、节奏控制和音效配合。 AI 春晚团队高效协作的方法: AI 的创造速度快,每个分工职责中有擅长的共创同学,人员分工明确,形成了高效的 SOP,从而可以快速产出。
2024-10-21