直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI 常见名词 有哪些

回答

以下是一些 AI 常见名词:

  • chatGPT:由致力于 AGI 的 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,目前使用的是 GPT-4 的 LLM。
  • AI:人工智能(Artificial Intelligence)。
  • AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。
  • NLP:自然语言处理(Natural Language Processing),即让电脑处理和理解人类语言。
  • LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多。
  • 机器学习:人工智能的一个分支,是实现人工智能的途径之一,涉及多门学科,近 30 多年已发展为多领域科际集成。
  • 自然语言:是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。
  • 推理:利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断。
  • 训练:通过大数据训练出复杂的神经网络模型,用大量标记过的数据训练系统以适应特定功能。

以下是一些 AI 绘画常用的画面光线提示词:

  • 情绪照明(mood lighting)
  • 柔和的照明/柔光(Soft illuminaotion/ soft lights)
  • 荧光灯(fluorescent lighting)
  • 微光/晨光(rays of shimmering light/ morning light)
  • 黄昏射线(Crepuscular Ray)
  • 外太空观(outer space view)
  • 电影灯光/戏剧灯光(cinematic lighting/ Dramatic lighting)
  • 双性照明(bisexual lighting)
  • 伦勃朗照明(Rembrandt Lighting)
  • 分体照明(Split Lighting)
  • 前照灯(front lighting)
  • 背光照明(Back lighting)
  • 干净的背景趋势(clean background trending)
  • 边缘灯(rim lights)
  • 全局照明(global illuminations)
  • 霓虹灯冷光(neon cold lighting)
  • 强光(hard lighting)
  • 自上而下的光(god rays)
  • 荧光(glowing light)
  • 闪耀效果(sparkle)
  • 模糊的(blurry)
  • 镜头光晕(lens flare)
  • 过曝(overexposure)
  • 光线追踪(ray tracing)
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AIGC常见名词解释(字典篇)

chatGPT:是由致力于AGI的公司OpenAI研发的一款AI技术驱动的NLP聊天工具,于2022年11月30日发布,目前使用的是GPT-4的LLM。额!~ chatGPT我听过,也知道是啥,但你这个解释我直接给我干懵了,套娃呢,解释藏我不认识的单词是不!~ AI:人工智能(Artificial Intelligence)AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统NLP:自然语言处理(Natural Language Processing),就是说人话LLM:大型语言模型(Large Language Model),数据规模很大,没钱你搞不出来的,大烧钱模型。这段解释chatGPT的释义,一句话就把关于AIGC的几个常见名词都涵盖了,不愧是去年火到我卖地瓜的二姨都知道的“鸡屁屉”。一个字!绝!

AIGC常见名词解释(字典篇)

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。[heading1]自然语言是什么?[content]自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。[heading1]AI的推理是什么?[content]推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。[heading1]AI的训练是什么?[content]训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。

AI绘画常用提示词

[title]AI绘画常用提示词[heading1]画面光线提示词mood lighting情绪照明Soft illuminaotion/ soft lights柔和的照明/柔光fluorescent lighting荧光灯rays of shimmering light/ morning light微光/晨光Crepuscular Ray黄昏射线outer space view外太空观cinematic lighting/ Dramatic lighting电影灯光破剧灯光bisexual lighting双性照明Rembrandt Lighting伦勃朗照明Split Lighting分体照明front lighting前照灯Back lighting背光照明clean background trending干净的背景趋势rim lights边缘灯global illuminations全局照明neon cold lighting霓虹灯冷光hard lighting强光god rays自上而下的光glowing light荧光sparkle闪耀效果blurry模糊的lens flare镜头光晕overexposure过曝ray tracing光线追踪

其他人在问
有什么类似于ai秘书的产品吗?
以下是一些类似于 AI 秘书的产品: Replika:用户可在与它的关系中找到意义,每周花费数小时进行对话。 Anima:是一款 AI 聊天机器人产品。 CharacterAI:也是一款相关的产品。 Millie:可以优化约会应用程序的个人资料和消息。 YourMove:具有类似的优化功能。 Mumkin:能够帮助用户应对困难的对话。 早期的聊天机器人如 ELIZA、Clippy、SmarterChild、Alicebot 和 Kuki 等虽曾流行,但未给消费者留下深刻印象。新一波聊天机器人不同,如 ChatGPT 成为最快达到 1 亿用户规模的消费产品,这得益于大型语言模型(LLMs),使聊天机器人能自由流畅对话,听起来和人类无异。如今,容易想象出如人工智能朋友、心理治疗师、导师、教练等角色,早期版本常带有浪漫色彩,这可能与成人娱乐行业处于新技术前沿及社会变化有关。
2024-11-21
帮我推荐一些适合产品经理使用的AI产品吧
以下是为产品经理推荐的一些 AI 产品: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(https://uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(https://www.hypertype.co/) 会议信息:AskFred(http://fireflies.ai/apps) 团队知识库:Sense(https://www.senseapp.ai/) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(https://www.ellie.ai/) 企业自动化:Moveworks(moveworks.com) 此外,还有以下相关内容供您参考: 《AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会》中提到,AI 产品经理可分为入门级、研究级和落地应用级。入门级能通过开源网站或课程了解 AI 概念并实践;研究级有技术和商业化研究两条路径;落地应用级则有成功案例和商业化价值。 余一相关的内容,如《AI 时代个人生存/摸鱼探索指南.Beta》的迭代更新,以及《从 2023 年报,看中国上市公司怎么使用生成式 AI》等。 相关链接: 创新公司观察: 2022 2024 年融资 2000w 美金以上的公司列表和详细公司分析:https://ameliadev.notion.site/202220242000w08f50fafd81b420fa7f26ecd6c0b3243?pvs=4 AI Grant 公司列表和详细公司分析(三期):https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AIGC 行业与商业观察(2024.1):https://gamma.app/docs/AIGCDev9q1bax2pspnlxqu AI 产品/功能构建: 顶级科技公司产品团队正在构建哪些 AI 功能【总览】:https://gamma.app/docs/AIzawqmb2ff3cv958 顶级科技公司产品团队正在构建哪些 AI 功能【产品分析】:https://gamma.app/docs/AItebxqet8ubz3rje 顶级科技公司产品团队正在构建哪些 AI 功能【思考借鉴】
2024-11-21
请介绍图片搜索最好用的AI工具
以下为您介绍一些在图片搜索相关方面表现出色的 AI 工具: 图片去水印工具: 1. AVAide Watermark Remover:在线工具,支持多种图片格式,操作简单,可去除水印、文本、对象等。 2. Vmake:可上传最多 10 张图片,自动检测并移除水印,适合快速处理。 3. AI 改图神器:能一键去除图片中的多余物体、人物或水印,支持粘贴或上传手机图像。 图生图产品: 1. Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 2. Retrato:将图片转换为非凡肖像,有 500 多种风格选择。 3. Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:将上传照片转换为芭比风格。 图片生成 3D 建模工具: 1. Tripo AI:在线 3D 建模平台,能利用文本或图像快速生成高质量 3D 模型。 2. Meshy:支持文本、图片生成 3D 及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 可通过手绘草图实时设计 3D 形象。 4. Sudo AI:通过文本和图像生成 3D 模型,适用于游戏领域。 5. VoxCraft:免费工具,能将图像或文本快速转换成 3D 模型,提供多种功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。这些工具各有特点,您可以根据具体需求选择最适合您的工具。
2024-11-21
有没有免费的好用的ai
以下为一些免费且好用的 AI 工具: 获取信息和学习东西:最佳免费选项为必应(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)。对于儿童,来自可汗学院的 Khanmigo(https://www.khanacademy.org/khanlabs)提供由 GPT4 驱动的良好的人工智能驱动辅导。 写东西:最佳免费选项为 Bing(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)和 Claude 2(https://claude.ai/)。 在写代码方面的免费替代品有: Tabnine(https://tabnine.com/):AI assistant that speeds up delivery and keeps your code safe Codeium(https://codeium.com/):Free AI Code Completion & Chat Amazon CodeWhisperer(https://aws.amazon.com/codewhisperer/):Build applications faster and more securely with your AI coding companion SourceGraph Cody(https://cody.sourcegraph.com/):The AI that knows your entire codebase Tabby(https://tabby.dev/):Opensource, selfhosted AI coding assitant fauxpilot/fauxpilot(https://github.com/fauxpilot/fauxpilot):An opensource alternative to GitHub Copilot server 需要注意的是,虽然 ChatGPT 功能强大,但它是收费的且不面向中国。此外,虽然 ChatGPT 的开发者 OpenAI 并不像其名字那样开放,其源码与模型数据不对外开放,但 Meta 在 2023 年 2 月开源了 LLaMA 1,并在 7 月发布了进阶的 Llama 2 且允许商用。
2024-11-21
python编写比较好的AI有哪些
以下是一些用 Python 编写的与 AI 相关的内容: 1. 对于 AI 的基础学习,您需要了解以下方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的发展历程和重要里程碑。 数学基础:如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 算法和模型:监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习的基本概念。 评估和调优:了解如何评估模型性能(包括交叉验证、精确度、召回率等),以及如何使用网格搜索等技术优化模型参数。 神经网络基础:理解神经网络的基本结构(包括前馈网络、卷积神经网络、循环神经网络)和常用的激活函数(如 ReLU、Sigmoid、Tanh)。 2. 如果您想在 Python 中安装 FittenAI 编程助手: 首先需要安装 Python 的运行环境,具体可参考 。 安装步骤:点击左上角的 File Settings Plugins Marketplace 。安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。 其功能包括智能补全(按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议)、AI 问答(通过点击左上角工具栏中的 Fitten Code –开始新对话打开对话窗口进行对话)、自动生成代码(Fitten Code 工具栏中选择"Fitten Code 生成代码",然后在输入框中输入指令即可生成代码)、代码转换(Fitten Code 可以实现代码的语义级翻译,并支持多种编程语言之间的互译。选中需要进行翻译的代码段,右键选择"Fitten Code –编辑代码",然后在输入框中输入需求即可完成转换)、自动生成注释(Fitten Code 能够根据代码自动生成相关注释,通过分析代码逻辑和结构,为代码提供清晰易懂的解释和文档)。 3. 若希望更深入地学习 Python 和 AI,至少要熟悉以下 Python 基础内容: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等基本数据类型。 控制流:学习条件语句和循环语句来控制程序执行流程。 函数:包括定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块和使用包来扩展程序功能。 面向对象编程:了解类和对象、属性和方法、继承和多态。 异常处理:理解异常以及如何使用 try 和 except 语句处理错误。 文件操作:学习文件读写和文件与路径操作。
2024-11-21
360AI搜索
以下是关于 360AI 搜索的相关信息: 360AI 搜索是 360 公司推出的 AI 搜索引擎,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 其定位是新一代答案引擎,在传统搜索的网页检索能力基础上,结合大型语言模型意图识别、信息提炼、归纳整理、生成文案等一系列技术能力,学习人类的思维和语言组织模式,生成有理有据、逻辑清晰的优质答案。 具有以下特点: 针对模糊问题,可通过反问和几轮交互理解问题,给出答案。 搜索全网上万条相关内容,深度阅读 20+网页,生成的答案非常丰富。 对比大模型产品特别是聊天机器人,回答更具时效性。 通过主动追问帮助用户延展学习,了解更多周边信息。 功能包括阅读提炼全网内容,并归纳总结,相当于替用户读了几十个精选网页,并进行归纳总结。其工作流程为:分析问题语义→提炼搜索关键词→查询全网相关内容→精选出参考价值较高的网页→进行结构化总结,重点突出,详略得当。 在国内总榜中排名第 3,4 月访问量为 1134 万次,相对 3 月变化为 13。 Web 端和 H5 端的网址为: ,手机端可扫码下载 360 AI 搜索 APP。
2024-11-21
Aigc 常见名词解释
以下是一些 AIGC 常见名词的解释: AIGC:AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介众多,包括语言文字类(如 OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM)、语音声音类(如 Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits)、图片美术类(如早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion)。 SD:是 Stable Diffusion 的简称。是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model; LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 AI:人工智能(Artificial Intelligence)。 AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。 此外,还有一些相对较难的名词解释: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用
2024-11-08
Ai名词解释
以下是关于 AI 的一些名词解释和相关信息: 名词解释: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理,包括认知、理解、生成等部分 LLM:大型语言模型(Large Language Model),数据规模很大,耗费资金多 机器学习:是人工智能的一个分支,是以机器学习为手段,解决人工智能中的部分问题,涉及多门学科 推理:指利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断 训练:通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未详细说明具体应用)
2024-10-29
AI名词解释
以下是关于 AI 的一些名词解释、相关概念及应用场景: 名词解释: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),即让电脑处理和理解人类语言 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多 机器学习:是人工智能的一个分支,是实现人工智能的途径之一,涉及多门学科,近 30 多年已发展为多领域科际集成。 推理:指利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断。 训练:通过大数据训练出复杂的神经网络模型,用大量标记过的数据训练系统以适应特定功能。 自然语言:自然语言(NLP)的认知和理解是让电脑把输入的语言变成有意义的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。 应用场景: 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未详细说明具体应用)
2024-10-29
ai 各种名词的关系图
以下是 AI 相关名词的关系和解释: 人工智能(Artificial Intelligence,简称 AI)是一种目标,让机器展现智慧。 生成式人工智能(Generative AI,简称 GenAI)是一种目标,让机器产生复杂有结构的内容。 机器学习是一种手段,让机器自动从资料中找到公式。 深度学习是一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型(Large Language Models,简称 LLMs)是一类具有大量参数的“深度学习”模型。 ChatGPT 是一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 AIGC(Artificial Intelligence Generated Content)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。ChatGPT 是 AIGC 技术的一个应用实例。 AGI 是通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP 是自然语言处理(Natural Language Processing),就是处理人类语言。 LLM 是大型语言模型,数据规模很大,需要大量资金投入。
2024-09-18
必须知道的最常用的名词解释比如GPU、AGI等等、列举出来按照重点排序
以下是按照重点排序的一些常用名词解释: 1. 算力:字面意思是计算能力,可简单理解为 GPU,即电脑里的显卡,购买云服务时,服务商也是购买显卡“租”给用户使用。一张显卡除了 GPU 外,显存也是重要参数。 2. GPU:图形处理器,又称显示核心、视觉处理器、显示芯片,是在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器。 3. CPU:中央处理器,作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。 4. 显存:也被叫做帧缓存,作用是存储显卡芯片处理过或者即将提取的渲染数据,如同计算机的内存,是用来存储要处理图形信息的部件。
2024-09-13
AI基础名词和知识
以下是关于 AI 基础名词和知识的介绍: Python 相关: 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及多态的实现。 异常处理:包括理解异常的概念及在 Python 中的工作方式,学会使用 try 和 except 语句处理错误。 文件操作:掌握文件的读写,以及文件路径的处理和目录下文件的列举。 AI 背景知识: 基础理论:明晰人工智能、机器学习、深度学习的定义及相互关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,如交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读相关资料熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始 AI 学习之旅:在特定的学习路径中找到为初学者设计的课程,通过在线教育平台按自己节奏学习,可获取证书。 选择感兴趣的模块深入学习:根据自身兴趣选择特定领域(如图像、音乐、视频等)深入钻研。
2024-08-30
AI相关常见缩写及对应含义,包含例如prompt,rag
以下是一些 AI 相关的常见缩写及对应含义: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可理解为与大模型说的话或下达的指令,其质量会显著影响大模型回答的质量。 Token:大模型语言体系中的最小单元。不同厂商的大模型对中文的文本切分方法不同,通常 1Token≈12 个汉字。大模型的收费计算及输入输出长度限制常以 token 为单位计量。 上下文(context):指对话聊天内容前、后的内容信息,其长度和窗口会影响大模型回答的质量。 在 AI 绘画中,常见的画面构图提示词有: 视图相关:Bottom view(底视图)、front,side,rear view(前视图、侧视图、后视图)、product view(产品视图)、extreme closeup view(极端特写视图)、look up(仰视)、firstperson view(第一人称视角)、isometric view(等距视图)、closeup view(特写视图)、high angle view(高角度视图)、microscopic view(微观)、super side angle(超博角)、thirdperson perspective(第三人称视角)、Aerial view(鸟瞰图)、twopoint perspective(两点透视)、Threepoint perspective(三点透视)、portrait(肖像)、Elevation perspective(立面透视)、ultra wide shot(超广角镜头)、headshot(爆头)、a crosssection view of)
2024-11-08
Ai常见缩写及含义
以下是一些 AI 常见缩写及含义: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),即处理和理解人类语言 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多 chatGPT:由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM 此外,还有一些相关的术语: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用 关于机器学习: 机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近 30 多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 关于自然语言: 自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。自然语言处理是人工智能和语言学领域的分支学科,此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。 关于 AI 的推理: 推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。 关于 AI 的训练: 训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。
2024-11-08
AI常见缩写及对应含义
以下是 AI 常见的缩写及对应含义: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing) LLM:大型语言模型(Large Language Model) chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 此外,还有一些其他相关缩写及含义: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用 AI 的应用场景包括: 1. 医疗保健: 医学影像分析:AI 可用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据,辅助投资者决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题,解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(未给出具体应用场景)
2024-11-08
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
了解 AI 视频制作的基本概念和常见工具
AI 视频制作的基本概念: 将小说或其他创意内容通过一系列步骤转化为视频,通常包括文本分析、角色与场景生成、视频编辑与合成等环节。 常见工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):用于创建小说中的场景和角色图像的 AI 图像生成工具。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 制作 AI 短片的故事来源和剧本写作: 1. 故事来源: 原创(直接经验):自身或周围人的经历、做过的梦、想象的故事等。 改编(间接经验):经典 IP、名著改编、新闻改编、二创等。 2. 剧本写作: 编剧是有一定门槛的手艺,不能单纯套剧作理论和模板,要多写多实践,再结合看书总结经验。 对于短片创作,可从自身或朋友的经历改编入手,或者对触动自己的短篇故事进行改编。 多与他人讨论故事,有助于修改和进步。 AI 春晚的制作分工: 1. 制片人AJ:负责影片的制作管理,包括团队组建、日程安排、信息收集、资料整理、各处岗位工作缺失时及时补上等。 2. 图像创意??:负责用 AI 生成富有想象力的角色和场景等所有出现在视频中的画面,并为每个角色赋予人物小传。 3. 视频制作??:将做好的角色场景等图像素材进行 AI 图生文的工作,需要擅长运营工具的笔刷等控制工具,更好的契合剧本。 4. 编剧?:负责撰写剧本,包括故事情节、角色串联、人物台词等。 5. 配音和配乐?:涉及背景音乐、音效、角色配音、声音克隆,用各种声音类 AI 工具捏出来。 6. 剪辑师?:负责把后期剪辑,包括镜头选择、节奏控制和音效配合。 AI 春晚团队高效协作的方法: AI 的创造速度快,每个分工职责中有擅长的共创同学,人员分工明确,形成了高效的 SOP,从而可以快速产出。
2024-10-21