Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Ai名词解释

Answer

以下是关于 AI 的一些名词解释和相关信息:

名词解释

  • AI:人工智能(Artificial Intelligence)
  • AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统
  • NLP:自然语言处理(Natural Language Processing),是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理,包括认知、理解、生成等部分
  • LLM:大型语言模型(Large Language Model),数据规模很大,耗费资金多
  • 机器学习:是人工智能的一个分支,是以机器学习为手段,解决人工智能中的部分问题,涉及多门学科
  • 推理:指利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断
  • 训练:通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能

AI 的应用场景

  • 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。
  • 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。
  • 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。
  • 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。
  • 交通运输:(未详细说明具体应用)
Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC常见名词解释(字典篇)

chatGPT:是由致力于AGI的公司OpenAI研发的一款AI技术驱动的NLP聊天工具,于2022年11月30日发布,目前使用的是GPT-4的LLM。额!~ chatGPT我听过,也知道是啥,但你这个解释我直接给我干懵了,套娃呢,解释藏我不认识的单词是不!~ AI:人工智能(Artificial Intelligence)AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统NLP:自然语言处理(Natural Language Processing),就是说人话LLM:大型语言模型(Large Language Model),数据规模很大,没钱你搞不出来的,大烧钱模型。这段解释chatGPT的释义,一句话就把关于AIGC的几个常见名词都涵盖了,不愧是去年火到我卖地瓜的二姨都知道的“鸡屁屉”。一个字!绝!

AIGC常见名词解释(字典篇)

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。[heading1]自然语言是什么?[content]自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。[heading1]AI的推理是什么?[content]推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。[heading1]AI的训练是什么?[content]训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。

问:请问 AI 有哪些应用场景?

[title]问:请问AI有哪些应用场景?人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

Others are asking
ai音乐的教程
以下是为您提供的 AI 音乐相关的教程资源: 1. Suno 教程:https://waytoagi.feishu.cn/wiki/KA1GwEi8yifRmMkOM9icr8EjnAd 2. Udio 教程:https://waytoagi.feishu.cn/wiki/DSktw8uBniPOdtkt3eeccmdcnct?from=from_copylink 3. 音乐资讯:https://waytoagi.feishu.cn/wiki/UD4uw9qmYiKW9kkxNeXcUDCbnog 4. 创作案例:https://waytoagi.feishu.cn/wiki/AahewcMOBiIQ9vks1XzcVaNange 5. 风格流派:https://waytoagi.feishu.cn/wiki/NSKGwclQNig6INkGWkKcsLQNnRb 此外,7 月 20 日的 AI 音乐共学中,嘉宾 igoo2u 分享了以下内容: 1. 00:06 开始,AI 音乐制作分享,包括曲风分类、制作逻辑与软件使用,并通过实际案例详细讲解。 2. 31:58 开始,FL studio 软件介绍及基础操作演示,该软件可对 AI 生成的曲子进行二次优化,擅长电子乐,介绍了软件主要界面和基础操作。 3. 52:33 开始,FL Studio 基础教程,包括大小调及和弦构架讲解,介绍了在 SUB 层的 base 中编写曲子的方法和操作技巧,以及基础阅历。 4. 01:18:10 开始,AI 做歌的优势、弊端及二次编辑方法。
2025-01-27
企业AI开发
企业 AI 开发包括以下重要内容: 企业级 AI 应用类型: 智能体应用(Assistant):基于上下文对话,自主决策并调用工具完成复杂任务的对话式 AI 应用。通过简单配置可快速上手实现基本功能,适用于客户服务、个人助理、技术支持等场景。详情参见。 工作流应用(Workflow):将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。用户可通过拖拽节点创建自定义任务流程,适用于 AI 翻译等场景。详情参见。 智能体编排应用:支持多智能体协作的流程式 AI 应用,能编排多个智能体的执行逻辑,适用于综合调研报告、软件开发团队等场景。详情参见。 应避免的人工智能陷阱: 不要以为 AI 可以做任何事,要考虑技术、数据和工程资源的限制,有许多 AI 做不到的事情。 不要以为只雇佣 2 3 个机器学习工程师就可以满足公司的使用场景。机器学习人才很重要,也应让工程师与业务人才交流,寻找可行、有价值的项目。 不要以为 AI 项目一次就能成功,AI 开发通常需要多次尝试。 不要期待直接使用传统的计划流程而不用改变,实际需要和 AI 团队测算时间节点、里程碑与 KPI。 不需要极其优秀的 AI 人才后才启动项目,持续构建团队,普通工程师也能提供有价值和可行的项目。 阿里云百炼: 是基于通义系列大模型和开源大模型打造的一站式大模型服务平台,提供「生成式大模型的应用编排搭建能力」和「企业大模型的全链路训练部署能力」,是企业 AI 时代的首选。 核心能力和优势包括大模型 API 服务(高可用、高性能、高性价比),提供通义闭源和开源系列大模型,以及图片、语音等多模态大模型和国内优质三方大语言模型;AI 应用搭建(可观测、可干预、可追踪),提供 RAG 智能体应用、工作流编排和智能体编排三类使用场景的应用构建能力,以及包含插件能力、运营工具箱等适配工具,实现 10 分钟拖拉拽快速搭建 AI Agent。 提供很多行业级的解决方案,如短剧剧本创作、企业线索挖掘、泛企业 VOC 挖掘等。 体验入口:https://bailian.console.aliyun.com//home (需要登陆阿里云账号,也可以使用支付宝、钉钉、手机号快速注册登陆),建议注册后先进行实名认证,以方便后续体验工作及领取免费学习云资源。
2025-01-27
企业落地AI的怎么开展,有哪些团队,场景一般是哪些
企业落地 AI 可以按照以下步骤开展: 1. 启动试点项目来获得动能:选择几个小项目,在 6 12 个月内展示成效,项目可以内部进行或外包。尽量选择能够成功而非最有价值的项目。 2. 建立公司内部的人工智能团队:搭建集中统一的 AI 团队,再从中挑选人员协助不同业务部门,便于统一管理。同时建立全公司范围内的平台,如软件平台、工具或数据基础设施。 3. 提供广泛的人工智能培训:高层了解 AI 能为企业做什么,进行策略制定和资源分配;部门领导了解如何设置项目方向、资源分配与监控进度;培养内部工程师,开展相关项目。 4. 制定人工智能策略:深度了解 AI 并结合自身业务制定策略,设置与 AI 良性循环相一致的公司策略,如网络搜索或农业公司的案例。同时考虑创建数据策略,如战略数据采集,建造统一的数据仓库。 企业落地 AI 常见的场景包括: 1. 智能扬声器:包括探测触发词或唤醒词、语音识别、意图识别、执行相关程序等环节。 2. 自动驾驶汽车:涉及汽车检测、行人检测、运动规划等方面,需要多种传感器和技术。 人工智能团队的角色通常有: 1. 软件工程师:负责软件编程工作,在团队中占比 50%以上。 2. 机器学习工程师:创建映射或算法,搜集和处理数据。 3. 机器学习研究员:开发机器学习前沿技术,可能需要发表论文或专注研究。 4. 应用机器学习科学家:从学术文献中寻找技术解决问题。 5. 数据科学家:检测和分析数据。 6. 数据工程师:整理数据,确保其安全、易保存和读取。 7. AI 产品经理:决定用 AI 做什么,判断其可行性和价值。
2025-01-27
财经AI怎么落地
财经 AI 的落地可以从以下几个方面考虑: 1. 成本效益的运营: 消费者信息分散在多个数据库,交叉销售和预测需求面临挑战。 金融服务是情感购买,决策树复杂且难以自动化,需大量客服团队。 金融服务高度受监管,人类员工必须参与流程以确保合规。生成式 AI 能大幅提高获取数据、理解情境和合规法律等劳动密集型功能的效率。 2. 实现五个目标: 个性化的消费者体验:根据客户需求提供定制服务。 成本效益高的运营:优化流程,降低成本。 更好的合规性:确保符合复杂的法律规定。 改进的风险管理:有效识别和应对风险。 动态的预测和报告:提供更准确和及时的信息。 3. 面临的挑战: 使用金融数据训练 LLM:新进入者可能先使用公开数据,再用自身数据;现有参与者虽有专有数据优势,但可能过于保守,新进入者可能更具竞争优势。 模型输出准确性:金融问题答案影响大,需尽可能准确,初期人类常作为最终验证环节。 总之,生成式 AI 为金融服务带来巨大变革,现有参与者和初创公司将在关键挑战上竞争,最终受益的将是金融服务的消费者。
2025-01-27
企业财经领域落地AI怎么落地
企业财经领域落地 AI 可以考虑以下几个方面: 1. 采用创新和迭代的监管方法: 考虑如何利用可信 AI 的工具,如保证技术和技术标准,来支持监管合规。 积极主动地与政府对框架的监测和评估进行合作。 2. 关注行业发展趋势: 例如,生成式 AI 在金融服务业有巨大潜力,能催生个性化客户解决方案、更高效的运营、更好的合规和风险管理,以及更动态的预测和报告。 3. 应对挑战: 使用金融数据训练大型语言模型(LLMs):新进入者可先使用公开金融数据微调模型,现有参与者可利用专有数据,但现有金融服务公司可能过于保守,这给新进入者带来竞争优势。 确保模型输出准确性:金融问题答案影响重大,新的 AI 模型需尽可能准确,初期人类常作为最终验证环节。 同时,随着技术的发展,如大型语言模型的进步,为企业财经领域带来了更多的机遇,但也需要注意当前生成式 AI 输出的局限性,特别是在需要判断或精确答案的领域,不能完全依赖其准确性,至少需要人工审查。随着模型的改进、额外训练数据的加入和与数学模块的整合,其应用将有新的可能。
2025-01-27
企业落地AI项目应该怎么办
企业落地 AI 项目可以参考以下建议: 1. 资源评估与规划: 在引入或升级 AI 技术前,根据企业自身资源和能力进行细致评估与计划,确保所选方案可行且具成本效益。 依据资源和能力选择并规划适当的 AI 技术应用范围,评估企业现有的财务、技术基础设施、人员技能等资源,分析技术采纳和应用能力。 根据评估结果规划 AI 技术应用范围和实施步骤,可先从试点项目开始,如在客户服务领域引入 AI 聊天机器人。 明确预算,选择成本效益高的 AI 解决方案,基于财务状况设定预算,对比成本和预期收益,选择具灵活性和可扩展性的方案,实施后持续监控投资回报,适时调整预算和投资计划。 2. 逐步实施与调整: 采取循序渐进方式,从小规模试点开始,根据实际效果和反馈逐步扩展和优化。 先通过小规模试点验证 AI 技术可行性和有效性,降低风险,选择具代表性且风险可控的业务领域,如客户服务、数据分析或市场营销等,并设立监控机制跟踪性能和影响。 根据试点结果和反馈不断调整和完善 AI 应用方案,收集用户、员工和管理层的反馈,分析表现并识别改进领域,在试点成功后逐步扩大应用范围,持续监控效果。 3. 学习笔记:AI for everyone 吴恩达 启动试点项目获得动能,选择可能成功而非最有价值的项目,在 6 12 个月内展示成效,项目可内部或外包。 建立公司内部的人工智能团队,搭建集中统一的 AI 团队,从中挑选人员协助不同业务部门,方便统一管理,建立全公司范围的平台。 提供广泛的人工智能培训,高层了解 AI 为企业的作用及策略、进行资源分配,部门领导了解如何设置项目方向、资源分配与监控进度,培养内部工程师。 制定人工智能策略,深度了解 AI 并结合自身业务制定策略,设置与 AI 良性循环相一致的公司策略,考虑创建数据策略,建造统一的数据仓库。
2025-01-27
Aigc 常见名词解释
以下是一些 AIGC 常见名词的解释: AIGC:AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介众多,包括语言文字类(如 OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM)、语音声音类(如 Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits)、图片美术类(如早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion)。 SD:是 Stable Diffusion 的简称。是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model; LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 AI:人工智能(Artificial Intelligence)。 AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。 此外,还有一些相对较难的名词解释: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用
2024-11-08
AI名词解释
以下是关于 AI 的一些名词解释、相关概念及应用场景: 名词解释: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),即让电脑处理和理解人类语言 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多 机器学习:是人工智能的一个分支,是实现人工智能的途径之一,涉及多门学科,近 30 多年已发展为多领域科际集成。 推理:指利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断。 训练:通过大数据训练出复杂的神经网络模型,用大量标记过的数据训练系统以适应特定功能。 自然语言:自然语言(NLP)的认知和理解是让电脑把输入的语言变成有意义的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。 应用场景: 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未详细说明具体应用)
2024-10-29
必须知道的最常用的名词解释比如GPU、AGI等等、列举出来按照重点排序
以下是按照重点排序的一些常用名词解释: 1. 算力:字面意思是计算能力,可简单理解为 GPU,即电脑里的显卡,购买云服务时,服务商也是购买显卡“租”给用户使用。一张显卡除了 GPU 外,显存也是重要参数。 2. GPU:图形处理器,又称显示核心、视觉处理器、显示芯片,是在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器。 3. CPU:中央处理器,作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。 4. 显存:也被叫做帧缓存,作用是存储显卡芯片处理过或者即将提取的渲染数据,如同计算机的内存,是用来存储要处理图形信息的部件。
2024-09-13