直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

怎么加载开源模型?

回答

加载开源模型的步骤如下:

  1. 下载相关模型节省时间:
    • Base Model - DreamShaper XL Turbo: https://civitai.com/models/112902/dreamshaper-xl
    • LoRA:Envy Anime Watercolor XL 03:https://civitai.com/models/382684/envy-anime-watercolor-xl-03
    • Alphonse Mucha Style:https://civitai.com/models/63072/alphonse-mucha-style
  2. 打开以下链接放在后台:
    • Ollama: https://ollama.com/
    • https://github.com/stavsap/comfyui-ollama
    • IPAdapter:https://github.com/cubiq/ComfyUI_IPAdapter_plus
    • InstantID: https://github.com/cubiq/ComfyUI_InstantID
    • PuLID:https://github.com/cubiq/PuLID_ComfyUI
  3. 安装缺失节点:
    • 下载过程中若发现 layer style 下不了,可重启重新下载,尝试修复。若仍不行,从官网重新下载到./custom_nodes 的文件夹下。
  4. 从官网GitHub - cubiq/ComfyUI_InstantID下载两个文件,点击左上角部分将加载器展开并选择官网下载好的两个模型。
  5. 对于 G-Dino 加载器部分,在链接:https://github.com/storyicon/comfyui_segment_anything处下载相关文件,然后检查文件是否齐全。对于 grounding-dino 和 sams 配置是否齐全可以使用“抠头发.json”来检验。
  6. Ollama 大模型部分:
    • 首先,下载 ollama,网站:Download Ollama on Windows
    • 其次,在llama3:8b-instruct-q4_K_M(ollama.com)网站中,复制代码。然后,打开 ComfyUi 根目录下的 custom_nodes\ComfyUi-Ollama-YN 的文件路径,在上方的路径下输入 cmd,进入到命令行,右键粘贴刚才的代码,等待下载。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

4-SeasonYou 工作流 副本

[title]4-SeasonYou工作流副本[heading2]一、加载模型部分(总文件有)①可以先下载下面的模型节省时间:Base Model - DreamShaper XL Turbo:https://civitai.com/models/112902/dreamshaper-xlLoRA:Envy Anime Watercolor XL 03:https://civitai.com/models/382684/envy-anime-watercolor-xl-03Alphonse Mucha Style:https://civitai.com/models/63072/alphonse-mucha-style②以下的链接可以先打开放在后台:Ollama:https://ollama.com/https://github.com/stavsap/comfyui-ollamaIPAdapter:https://github.com/cubiq/ComfyUI_IPAdapter_plusInstantID:https://github.com/cubiq/ComfyUI_InstantIDPuLID:https://github.com/cubiq/PuLID_ComfyUI③首先,将缺失节点都安装。下载过程中发现layer style下不了。重启重新下看行不行。Try fix一下。若还是不行,那么就需要从官网重新下载了。▲我的建议是直接从官方下,下到./custom_nodes的文件夹下。

4-SeasonYou 工作流 副本

[title]4-SeasonYou工作流副本[heading2]一、加载模型部分(总文件有)官网[GitHub - cubiq/ComfyUI_InstantID](https://github.com/cubiq/ComfyUI_InstantID?tab=readme-ov-file)下载两个文件:先点击如图中的左上角部分将加载器展开且选择官网下载好的两个模型:否则将会有以下的问题:⑩G-Dino加载器部分:在链接:[https://github.com/storyicon/comfyui_segment_anything](https://github.com/storyicon/comfyui_segment_anything)处下载以下文件:然后再次检查自己的文件有没有齐全:在models下创建grounding-dino且配置以下文件命名齐全。、同理,sams也是。对于grounding-dino和sams配置有没有齐全可以使用“抠头发.json”来检验然后,接下来很大概率在运行到此节点时会报科学上网的(httpsxxxxx)错误:倘若觉得在此工作流中排除bug很慢,不妨使用此网址的工作流(可以直接复制他的json内容自己创建一个txt文件后粘贴,再改后缀名为json。)进行操作:[https://www.cnblogs.com/qcy-blog/p/18222657](https://www.cnblogs.com/qcy-blog/p/18222657)那么你就要在尝试稳定的科学上网后重启UI跑工作流。便完成了。

4-SeasonYou 工作流 副本

[title]4-SeasonYou工作流副本[heading2]一、加载模型部分(总文件有)(MaxRetryError('HTTPSConnectionPool(host=\'huggingface.co\',port=443):Max retries exceeded with url:/QuanSun/EVA-CLIP/resolve/main/EVA02_CLIP_L_336_psz14_s6B.pt(Caused by SSLError(CertificateError("hostname \'huggingface.co\' doesn\'t match either of \'*.extern.facebook.com\',\'extern.facebook.com\'")))'),'(Request ID:05b932bd-e982-434e-8dc7-e41cca2e949f)')⑧Ollama大模型部分,为了应对没下载大模型带来的报错,因此需要下载大模型首先,下载ollama,网站:[Download Ollama on Windows](https://ollama.com/download)其次,在[llama3:8b-instruct-q4_K_M(](https://ollama.com/library/llama3:8b-instruct-q4_K_M)[ollama.com](https://ollama.com/library/llama3:8b-instruct-q4_K_M)[)](https://ollama.com/library/llama3:8b-instruct-q4_K_M)网站中,复制代码如红框:然后,像我建议一样打开ComfyUi根目录下的custom_nodes\ComfyUi-Ollama-YN的文件路径,在上方的路径下输入cmd:进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可:⑨instanid部分:

其他人在问
自动生成提示词的开源工具有哪些
以下是一些自动生成提示词的开源工具: 1. Freepik 推出的 Reimagine AI 工具:用户上传图片即可自动生成提示词,无需输入文字。它还能实时提供无限滚动结果展示,边操作边生成图像,通过调整提示词实时修改图片细节,并支持多种风格切换。相关链接:https://freepik.com/pikaso/reimagine 、https://x.com/imxiaohu/status/1770437135738581414?s=20 2. StreamMultiDiffusion 项目:使用区域文本提示实时生成图像,具有交互式操作体验,每个提示控制一个区域,实现精准图像生成。相关链接:https://arxiv.org/abs/2403.09055 、https://github.com/ironjr/StreamMultiDiffusion?tab=readmeovfile 、https://huggingface.co/spaces/ironjr/SemanticPalette 、https://x.com/imxiaohu/status/1770371036967850439?s=20 3. 【SD】自动写提示词脚本 One Button Prompt:可以在主菜单输入人物提示词,在“高级”中设置提示词混合,还具有一键运行放大的模块,包括完整的文生图放大和图生图放大,甚至可接入其他脚本和 controlnet。获取方式:添加公众号【白马与少年】,回复【SD】。
2025-04-12
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08
开源AI Agent软件有哪些
以下是一些开源的 AI Agent 软件: 1. AutoGPT 和 BabyAGI:在去年 GPT4 刚发布时风靡全球科技圈,给出了让 LLM 自己做自动化多步骤推理的解题思路。 2. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具。 3. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 4. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 5. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 6. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 7. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,智谱·AI 开源的语言模型中也有与 Agent 相关的,如 AgentLM7B、AgentLM13B、AgentLM70B 等。
2025-03-29
mcp 有什么开源的方案吗
Anthropic 于 2024 年 11 月推出并开源了 MCP(模型上下文协议)。MCP 就像一个“转接头”或“通用插座”,能统一不同的外部服务,如 Google Drive、GitHub、Slack、本地文件系统等,通过标准化接口与大语言模型对接。开发者基于 MCP 规范开发一次“接口适配器”(MCP 服务器),就能让所有兼容 MCP 的模型(MCP 客户端)无缝接入,无需针对每个模型单独适配,大幅提升兼容性与开发效率。MCP 里面还包含 SSE(ServerSent Events),是一种允许服务器向浏览器推送实时更新的技术。MCP 像为 AI 模型量身定制的“USBC 接口”,可以标准化地连接 AI 系统与各类外部工具和数据源。与传统 API 相比,MCP 是单一协议,只要一次整合就能连接多个服务;具有动态发现功能,AI 模型能自动识别并使用可用的工具;支持双向通信,模型不仅能查询数据,还能主动触发操作。相关链接:
2025-03-27
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
现在Ai作图用什么?还是以前的Stable Diffusion吗?还是又出现了新的开源软件?
目前在 AI 作图领域,Stable Diffusion 仍然是常用的工具之一。Stable Diffusion 是 AI 绘画领域的核心模型,能够进行文生图和图生图等图像生成任务,其完全开源的特点使其能快速构建强大繁荣的上下游生态。 除了 Stable Diffusion,也出现了一些新的相关开源软件和工具,例如: :Stability AI 开源的 AI 图像生成平台。 :拥有超过 700 种经过测试的艺术风格,可快速搜索查找各类艺术家,并支持一键复制 Prompt。 同时,市面上主流的 AI 绘图软件还有 Midjourney,其优势是操作简单方便,创作内容丰富,但需要科学上网并且付费。如果您想尝试使用 Stable Diffusion,可以参考 B 站【秋葉 aaaki】这个 Up 主的视频了解具体的安装方法。
2025-03-24
风格模型加载器
以下是关于风格模型加载器的详细步骤: 1. 下载工作流中的所需三张图片“SeasonYou_Reference、BG、MASK”,并上传自己所需的照片到 Input 部分。注意右上角放自己的人像图片(非人像会报错提示“no face detected”)。 2. 对于 vae 加载器部分,选择 xl 版本(因为大模型用的 xl)的 vae。 3. 对于 ipadater 部分,倘若加载器部分报错说 model 不存在,将文中画圈部分修改调整到不报错。 4. Pulid 部分: 下载好对应的节点以及参考官方网站最下面的安装对应要求。 注意上图中的第二要点,对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”及对应的云盘链接:PulID 全套模型,链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb,提取码:y6hb。否则将会遇到报错。 5. 官网下载两个文件,先点击如图中的左上角部分将加载器展开且选择官网下载好的两个模型,否则将会有问题。 6. GDino 加载器部分:在链接处下载相关文件,然后再次检查自己的文件有没有齐全:在 models 下创建 groundingdino 且配置以下文件命名齐全。同理,sams 也是。对于 groundingdino 和 sams 配置有没有齐全可以使用“抠头发.json”来检验。 7. 接下来很大概率在运行到此节点时会报科学上网的(httpsxxxxx)错误。倘若觉得在此工作流中排除 bug 很慢,不妨使用此网址的工作流(可以直接复制他的 json 内容自己创建一个 txt 文件后粘贴,再改后缀名为 json。)进行操作:,那么就要在尝试稳定的科学上网后重启 UI 跑工作流。 8. Ollama 大模型部分: 首先,下载 ollama,网站:。 其次,在网站中,复制代码如红框。 然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。 9. instanid 部分。
2025-03-27
UNET加载器无法加载是什么情况
很抱歉,目前知识库中没有关于“UNET 加载器无法加载”的具体情况说明。但一般来说,UNET 加载器无法加载可能有以下几种常见原因: 1. 网络问题:网络连接不稳定或中断可能导致加载失败。 2. 资源路径错误:加载器所指定的资源路径不正确,无法找到要加载的文件。 3. 版本不兼容:UNET 加载器的版本与要加载的内容版本不匹配。 4. 权限问题:当前用户没有足够的权限来访问和加载相关资源。 5. 资源损坏:要加载的文件本身可能已损坏或不完整。 您可以进一步检查以上方面,以确定具体的问题所在。
2025-03-03
帮我写一个可以训练的分类器代码, python 代码,目的是将样本的扰动分为 0,0.001,0.003,0.005 四类,按照以下步骤写 第一步:导入需要的库 第二步:加载位于/public/xdw/ls/signaldefense/AS/perturbed_data.npy 的数据 第三步:获取数据样本的扰动值 第四步:判断扰动值的大小,比如扰动值为 0,则加一计数 第五步:打印出判断各类扰动值的正确率
以下是为您生成的 Python 代码示例,用于实现将样本的扰动分为 0、0.001、0.003、0.005 四类的分类器: ```python import numpy as np 第一步:导入需要的库 import numpy as np 第二步:加载数据 data = np.load 第三步:获取数据样本的扰动值 perturbation_values = data 假设扰动值在第二列 第四步:判断扰动值的大小并计数 count_0 = 0 count_0_001 = 0 count_0_003 = 0 count_0_005 = 0 for value in perturbation_values: if value == 0: count_0 += 1 elif value == 0.001: count_0_001 += 1 elif value == 0.003: count_0_003 += 1 elif value == 0.005: count_0_005 += 1 第五步:计算正确率 total_samples = len accuracy_0 = count_0 / total_samples accuracy_0_001 = count_0_001 / total_samples accuracy_0_003 = count_0_003 / total_samples accuracy_0_005 = count_0_005 / total_samples print print print print ```
2024-12-05
如何用langchian加载本地模型
要使用 Langchain 加载本地模型,您可以按照以下步骤进行: 1. 加载所需的库和模块,例如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型。使用 ollama 前请确保服务已经开启并下载好模型。 2. 从订阅源获取内容,通过特定函数从指定的 RSS 订阅 URL 提取内容,若需接收多个 URL 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。 3. 为文档内容生成向量,使用文本向量模型 bgem3。从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 在整个过程中,还需要了解以下相关知识: 1. RAG(Retrieval Augmented Generation):大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成。RAG 应用包括文档加载(从多种来源加载文档,LangChain 提供 100 多种文档加载器)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. Ollama:支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,提供模型库,用户可下载不同模型,还支持自定义模型、提供 REST API 用于运行和管理模型及与其他应用程序集成,社区贡献丰富。安装完后确保后台服务已启动,可通过 ollama list 确认,通过 ollama 命令下载模型。
2024-11-23
SD大模型无法加载
SD 大模型无法加载可能有以下原因及解决方法: 1. LORA 方面: LORA 可以提炼图片特征,文件通常有几十上百兆,承载信息量远大于 Embedding。下载的 LORA 放在根目录的【……\\models\\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载。 使用 LORA 时要注意看作者使用的大模型,一般需配套使用,还可能需要加入特定触发词,如盲盒 LORA 需加入“full body, chibi”等提示词。 2. Hypernetworks 方面: Hypernetworks 主要针对画风训练,文件下载后放在根目录的【…\\models\\hypernetworks】,使用时点击红色小书,找到 Hypernetworks 选项卡加载。 3. 模型下载与安装方面: 常用的模型下载网站有:。 下载模型后需放置在指定目录,大模型(Ckpt)放入【models\\Stablediffusion】,VAE 模型放入【models\\Stablediffusion】或【models\\VAE】目录(有的大模型自带 VAE 则无需再加),Lora/LoHA/LoCon 模型放入【extensions\\sdwebuiadditionalnetworks\\models\\lora】或【models/Lora】目录,Embedding 模型放入【embeddings】目录。模型类型可通过检测。 不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\\models\\Stablediffusion】,在左上角模型列表中选择(看不到就点旁边蓝色按钮刷新)。 旁边的 VAE 相当于给模型增加提高饱和度的滤镜和局部细节微调,可在启动器里下载,放在根目录的【……\\models\\VAE】。 Embedding 功能相当于提示词打包,下载 Embedding 可在 C 站通过右上角筛选 Textual Inversion 找到,放在根目录下的【embeddings】文件夹里。 由于无法确定您大模型无法加载的具体原因,您可以根据上述内容逐一排查。
2024-11-12
知道源代码就可以加载AI吗?
一般来说,仅仅知道源代码并不一定能够直接加载 AI 。以 GPT4 的代码解释器为例,它是一种特定的模式,允许用户将文件上传到 AI,让 AI 编写和运行代码,并下载 AI 提供的结果。它可以用于执行程序、运行数据分析、创建各种文件、网页甚至游戏。但使用代码解释器进行分析存在未经培训的人使用的风险,许多测试专家对此印象深刻,甚至有论文表明它可能需要改变培训数据科学家的方式。如果您想了解更多关于如何使用它的详细信息,可以访问相关帖子。
2024-10-01
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14