直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

手机怎么加开源ai模型吗?

回答

以下是为您整理的在手机上添加开源 AI 模型的相关信息:

  • 对于 Phi-3-mini 模型:
    • 主要用到开源工具 Ollama,从官网下载安装包后一路点下一步进行安装。
    • 打开终端,运行“ollama run phi3”命令,系统会自动下载并安装 Phi-3。
    • 该模型体积约 2.3GB,安装完成后终端会出现交互界面,可直接交流。
    • 若想格式化终端给出答案的 markdown 内容,可通过开源社区的 Open WebUI 解决,根据 Github 上的说明安装(需预先安装 Docker,之后执行一条命令),即可通过浏览器访问本地的 Web 聊天界面。
    • 相关链接:Ollama(https://ollama.com )、Open WebUI(https://github.com/open-webui/open-webui)
  • 对于配置微信助手相关:
    • 首先配置 OneAPI,在阿里的通义千问大模型接口创建 ApiKey 并复制。
    • 在 OneAPI 的页面,点击【渠道】添加新渠道,类型选择阿里通义千问,名称自定,将复制的 ApiKey 粘贴到秘钥里。
  • 智谱·AI 开源模型列表中的 Chat 模型:
    • ChatGLM2-6B-32k:第二代 ChatGLM 长上下文对话模型,在 ChatGLM2-6B 的基础上强化了长文本理解能力,能处理最多 32K 长度的上下文。代码链接:Huggingface,模型权重下载链接:魔搭社区、始智社区、启智社区。
    • ChatGLM2-6B-32k-int4:ChatGLM2-6B-32K 的 int4 版本。代码链接:Huggingface,模型权重下载链接:魔搭社区、始智社区、启智社区。
    • ChatGLM-6B:第一代 ChatGLM 对话模型,支持中英双语,基于 General Language Model(GLM)架构,具有 62 亿参数。结合模型量化技术,可在消费级显卡上本地部署。代码链接:ChatGLM,模型权重下载链接:Huggingface、魔搭社区、始智社区、启智社区。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

盘盘:手机AI新时代轻松运行小型模型

[title]盘盘:手机AI新时代轻松运行小型模型[heading1]建立了【爱好者交流群】大家一起测试找和找场景作者:王三十九生活的幻觉原文:https://mp.weixin.qq.com/s/akoUNFJe8gAlC5xLI8vlIwPhi-3-mini是微软发布的一个小语言模型,有38亿参数,主打一个体积小,能在端侧流畅运行,并且效果不错。今天试着在自己的Macbook上跑了一下。主要用到了一个开源的工具Ollama,这个工具把在本地运行模型的流程做到了“傻瓜式”。除了Phi-3外,它还支持许多主流开源模型,包括Llama 3,Mistral,Gemma等。从官网下载Ollama安装包后一路点下一步进行安装。之后打开终端,运行一个命令ollama run phi3系统就会自动下载Phi-3并安装。这个模型体积只有2.3GB,比我预想的小很多。安装完成后,终端里会出现一个交互界面,在这里就可以直接开聊了。用起来第一感觉是速度非常快。对简单问题的回答也比较令人满意。终端里给出答案无法格式化markdown的内容,这可以通过给它套一层Web UI来解决。开源社区也有解决方案,比如Open WebUI就可以与Ollama无缝集成。根据Github上的说明安装好之后(需要预先安装Docker,之后也是执行一条命令),就可以通过浏览器访问运行在本地的Web聊天界面了。整体操作下来,感觉现在围绕大模型应用的工具链真的很成熟了,对新手很友好。而且在本地跑模型和直接调用API时的感受很不一样,看到它吐出答案的那一刻,很难想象LLM这样强大的技术竟然可以在自己的笔记本电脑上运行起来。1.相关链接Ollama.https://ollama.com Open WebUI.https://github.com/open-webui/open-webui

DIN:全程白嫖 - 拥有一个AI大模型的微信助手

[title]DIN:全程白嫖-拥有一个AI大模型的微信助手[heading2]配置FastGpt、OneAPI1.首先配置OneAPI,还记得刚刚让你们白嫖的大模型API吗?阿里的[通义千问大模型](https://dashscope.console.aliyun.com/)接口,这时要派上用场了,去阿里模型的链接里创建ApiKey,并复制下来。然后在OneAPI的页面,点击【渠道】添加新渠道。添加时,类型选择阿里通义千问,名称自己取个,类型选择好后模型是会默认加进去,你不用删减,还有就把刚刚阿里那复制的ApiKey粘贴到秘钥里去。这样就OK了。后续有其他的大模型也是一样的添加方式。

智谱·AI 开源模型列表

[title]智谱·AI开源模型列表[heading2]Chat模型��语言模型列表|模型|介绍|上下文token数|代码链接|模型权重下载链接|<br>|-|-|-|-|-|<br>|ChatGLM2-6B-32k|第二代ChatGLM长上下文对话模型。ChatGLM2-6B-32K在[ChatGLM2-6B](https://huggingface.co/THUDM/chatglm2-6b)的基础上进一步强化了对于长文本的理解能力,能够更好的处理最多32K长度的上下文。具体地,我们基于[位置插值](https://arxiv.org/abs/2306.15595)(Positional Interpolation)的方法对位置编码进行了更新,并在对话阶段使用32K的上下文长度训练。在实际的使用中,如果您面临的上下文长度基本在8K以内,我们推荐使用[ChatGLM2-6B](https://huggingface.co/THUDM/chatglm2-6b);如果您需要处理超过8K的上下文长度,我们推荐使用ChatGLM2-6B-32K。|32K||[Huggingface](https://huggingface.co/THUDM/chatglm2-6b-32k)|魔搭社区|始智社区|启智社区|<br>|ChatGLM2-6B-32k-int4|ChatGLM2-6B-32K的int4版本|32K||[Huggingface](https://huggingface.co/THUDM/chatglm2-6b-32k-int4)|魔搭社区|始智社区|启智社区|<br>|ChatGLM-6B|第一代ChatGLM对话模型。支持中英双语的对话语言模型,基于[General Language Model(GLM)](https://github.com/THUDM/GLM)架构,具有62亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署。|2K|[ChatGLM](https://github.com/THUDM/ChatGLM-6B)|[Huggingface](https://huggingface.co/THUDM/chatglm-6b)|魔搭社区|始智社区|启智社区|

其他人在问
AI选股
以下是为您提供的关于 AI 选股的相关信息: 1. 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): Zephyr AI:2024 年 3 月 13 日融资,融资金额 1.11 亿美元,轮次 A,主营 AI 药物发现和精准医疗。 Together AI:2024 年 3 月 13 日融资,融资金额 1.06 亿美元,轮次 A,估值 12 亿美元,主营 AI 基础设施和开源生成。 Glean:2024 年 2 月 27 日融资,融资金额 2.03 亿美元,轮次 D,估值 22 亿美元,主营 AI 驱动企业搜索。 Figure:2024 年 2 月 24 日融资,融资金额 6.75 亿美元,轮次 B,估值 27 亿美元,主营 AI 机器人。 Abridge:2024 年 2 月 23 日融资,融资金额 1.5 亿美元,轮次 C,估值 8.5 亿美元,主营 AI 医疗对话转录。 Recogni:2024 年 2 月 20 日融资,融资金额 1.02 亿美元,轮次 C,主营 AI 接口解决方案。 2. 2024 年 3 月科技变革与美股投资: AI 将引领新的服务模式,即“智能即服务”,重塑工作和生活,重新赋能芯片和云计算行业,创造新的投资机会,GPU 需求预计持续增长。 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件。 科技巨头通过资本控制 AI 模型公司的趋势明显,如 OpenAI 与微软、Anthropic 与 Google 等的合作。 企业竞争策略主要集中在迅速成长为大型模型公司并寻找强大背书,或保持小规模专注盈利并灵活应对市场变化。 2024 年将是大模型争霸的一年,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 是市场上受瞩目的公司。 3. 展望 2025,AI 行业的创新机会: 在 ToP 领域,峰瑞投资的冰鲸科技是一家 AI 智能硬件公司,为全球创作者和专业玩家设计创新的私有云产品,推出集成端侧 GPU 的旗舰产品——ZimaCube。 在 ToB 领域,AI 应用进入企业内部可从纵向的独立业务模块和横向的通用技能模块切入。2024 年 7 月,美国投资机构 A16z 发布文章探讨了人工智能在变革企业销售技术中的潜力,其中提到的多数产品符合上述特点。ToB 和 ToP 存在一定交集。
2024-12-21
openai 12天都有哪些内容
以下是 OpenAI 12 天相关的内容: 12 月 18 日: API 正式版:速度更快,成本降低 60%,支持视觉识别、函数调用、结构化输出等功能。 语音交互升级:引入 WebRTC 支持,12 行代码即可实现实时语音交互,音频处理费用降低 60%。 偏好微调功能:让 AI 回答更具个性化,企业 AI 准确率提升显著。 新增 Go 和 Java 工具包,简化 API 密钥申请流程。 12 月 12 日: 苹果设备深度集成 ChatGPT,可通过 Siri 实现文档总结、任务分配、节日创意等操作。 多平台无缝衔接:支持 iPhone、iPad 和 Mac,涵盖 Siri 集成、写作工具增强、视觉智能分析等多种应用场景。 实用场景:圣诞派对策划、PDF 总结、歌单生成、视觉智能评选毛衣创意等功能演示,体现全新交互体验。 12 月 5 日: OpenAI 近日宣布将举行为期 12 天的活动,期间每天直播展示新功能或工具。 DeepMind 发布了基础世界模型 Genie 2,可以通过一张图片生成可操作的 3D 环境,实现智能体的实时交互与行为预测。 真格基金投资副总裁 Monica 在其播客「OnBoard!」发布的最新一期对谈中,与在一线大模型机构有实际训练大语言模型(LLM)经验的研究员针对 OpenAI o1 模型进行了三个多小时的拆解与解读。强化学习如何给大语言模型带来新的逻辑推理能力?这种能力的来源、实现方式和未来潜力又是怎样的?o1 带来的「新范式」会对行业有怎样的影响?
2024-12-20
有没有能根据哼唱,出伴奏的AI
以下是一些能根据哼唱出伴奏的 AI 相关信息: 在音乐创作中,如果只有词和一小段自己哼唱的旋律,可以上传这段哼唱的旋律,让 AI 扩展出自己喜欢的风格,然后将这段音轨作为动机音轨继续创作。 对于已有简单录音小样,可以利用 REMIX 优化音质与编曲结构,并利用 AI 尝试不同曲风版本,找到最喜欢的风格,然后制作成核心音轨,进而完成全曲创作。 同时,在使用 AI 进行音乐相关处理时也存在一些问题和需要注意的地方: 检查乐谱时,主旋律基本能还原,但可能会把噪声识别成音符形成错误信息,需要具备乐理知识去修复。 重奏输出方面,修谱和重奏软件可以使用 中的 Muse Score,它支持多种常用音频编辑格式的导出和高清输出。 目前存在一些待解决的问题,如延长音部分可能会抢节奏,爵士乐中的临时升降号可能导致判断混乱,高音和低音的符点会相互影响,基础修谱可能导致旋律单调等。 在将 Midi 导出到 MP3 虚拟演奏文件时,可以直接导总谱或分轨导出,后期若想输出到某些音乐平台可能需要转码。还可以使用相关软件修改音色进行渲染。把文件丢给 AI 做二次创作时,可以根据具体情况选择完整小节或在中间掐断。
2024-12-20
2025年AI的大走向是什么
2025 年 AI 的大走向可能包括以下几个方面: 1. 大型基座模型能力的优化与提升:通过创新训练与推理技术,强化复杂推理和自我迭代能力,推动在科学研究、编程等高价值领域的应用,并围绕模型效率和运行成本进行优化,为广泛普及和商业化奠定基础。 2. 世界模型与物理世界融合的推进:构建具备空间智能的世界模型,使系统能够理解和模拟三维环境,并融入物理世界,推动机器人、自主驾驶和虚拟现实等领域发展,提升对环境的感知与推理能力以及执行任务的实际操作能力,为人机交互带来更多可能。 3. AI 的多模态融合:整合文本、图像、音频、视频、3D 等多模态数据,生成式 AI 将显著提升内容生成的多样性与质量,为创意产业、教育、娱乐等领域创造全新应用场景。 4. 数字营销方面:AI 技术将成为数字营销的核心,品牌应注重利用 AI 提升用户体验,预计全球 AI 在数字营销领域的市场规模将达到 1260 亿美元,采用 AI 技术的公司在广告点击率上提高 35%,广告成本减少 20%。 5. 行业发展:2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,同时成为 AI 产业链“资产负债表”逐步修复的年份,标志着行业从高投入、低产出向商业化路径优化迈出重要一步。 6. 竞争格局:大语言模型供应商将各具特色,竞争加剧;AI 搜索引擎将成为杀手级应用,快速普及,颠覆传统搜索方式;不同领域的 AI 搜索引擎将出现,针对专业需求提供更精准的信息服务。
2024-12-20
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
AI的工具类应用有哪些?
以下是一些常见的 AI 工具类应用: 1. AI 菜谱口味调整工具:如“下厨房”的口味调整功能,使用自然语言处理和数据分析技术,根据用户反馈调整菜谱口味,市场规模达数亿美元。 2. AI 语言学习纠错平台:像“英语流利说”的纠错功能,运用自然语言处理和机器学习技术,帮助语言学习者纠正错误,市场规模达数十亿美元。 3. AI 电影剧情分析系统:例如“豆瓣电影”的剧情分析工具,通过数据分析和自然语言处理技术,为用户提供深度解读,市场规模达数亿美元。 4. AI 办公文件分类系统:如“腾讯文档”的分类功能,借助数据分析和机器学习技术,自动分类办公文件,方便管理,市场规模达数亿美元。 5. AI 美容护肤方案定制平台:“美丽修行”的定制方案功能,利用图像识别和数据分析技术,根据用户肤质定制护肤方案,市场规模达数亿美元。 6. AI 菜谱生成平台:“豆果美食 APP”,采用自然语言处理和数据分析技术,根据用户口味和现有食材生成个性化菜谱,市场规模达数亿美元。 7. AI 语言学习助手:“沪江开心词场”,通过自然语言处理和机器学习技术,辅助用户学习语言,提供个性化学习方案,市场规模达数十亿美元。 8. AI 电影推荐系统:“爱奇艺”的智能推荐功能,运用数据分析和机器学习技术,根据用户喜好推荐电影,市场规模达数亿美元。 9. AI 办公自动化工具:“WPS Office”,借助自然语言处理和机器学习技术,提高办公效率,实现自动化办公流程,市场规模达数十亿美元。 10. AI 游戏道具推荐系统:在一些游戏中的推荐功能,使用数据分析和机器学习技术,根据玩家需求推荐游戏道具,市场规模达数亿美元。 11. AI 天气预报分时服务:“彩云天气”的分时预报,利用数据分析和机器学习技术,提供精准的分时天气预报,市场规模达数亿美元。 12. AI 医疗病历分析平台:“医渡云”的病历分析系统,通过数据分析和自然语言处理技术,分析医疗病历,辅助诊断,市场规模达数十亿美元。 13. AI 会议发言总结工具:“讯飞听见”的会议总结功能,运用自然语言处理和机器学习技术,自动总结会议发言内容,市场规模达数亿美元。 14. AI 书法作品临摹辅助工具:书法临摹软件,借助图像识别和数据分析技术,帮助书法爱好者进行临摹,市场规模达数亿美元。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
开源的开源的 LLM 微调推理,agent开发平台
以下是为您整理的关于开源的 LLM 微调推理、agent 开发平台的相关内容: LLM 作为 Agent 的“大脑”的特点: 1. 知识获取能力:通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。 2. 指令理解:擅长解析人类语言指令,采用深度神经网络进行自然语言理解和生成,精准理解意图。 3. 泛化能力:在未见过的数据上表现良好,能利用先前知识处理新挑战,形成对语言结构的通用理解。 4. 推理和规划:能够进行逻辑推理和未来预测,分析条件制定最佳行动方案,在复杂环境中做出理性选择。 5. 交互能力:拥有强大对话能力,在多人多轮次对话中自然流畅交流,改善用户体验。 6. 自我改进:基于用户反馈和效果评估,通过调整参数、更新算法提升性能和准确性。 7. 可扩展性:可根据具体需求定制化适配,针对特定领域数据微调提高处理能力和专业化水平。 相关产品和平台: 1. ComfyUI:可在其中高效使用 LLM。 2. Vercel AI SDK 3.0:开源的工具,可将文本和图像提示转换为 React 用户界面,允许开发者创建丰富界面的聊天机器人。 3. OLMo7BInstruct:Allen AI 开源的微调模型,可通过资料了解从预训练模型到 RLHF 微调模型的所有信息并复刻微调过程。 4. Devv Agent:能提供更准确、详细的回答,底层基于 Multiagent 架构,根据需求采用不同 Agent 和语言模型。 实例探究: 1. ChemCrow:特定领域示例,通过 13 个专家设计的工具增强 LLM,完成有机合成、药物发现和材料设计等任务。 2. Boiko et al. 研究的 LLM 授权的科学发现 Agents:可处理复杂科学实验的自主设计、规划和执行,能使用多种工具。
2024-12-12
开源大模型训练推理,应用开发agent 平台
以下是一些关于开源大模型训练推理、应用开发 agent 平台的相关信息: Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,可将 Copilot 部署到多种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 Gemini 相关:大型语言模型的推理能力在构建通用 agents 方面有潜力,如 AlphaCode 团队构建的基于 Gemini 的 agent 在解决竞争性编程问题方面表现出色。同时,Gemini Nano 提升了效率,在设备上的任务中表现出色。 成为基于 Agent 的创造者的学习路径:未来的 AI 数字员工以大语言模型为大脑串联工具。Agent 工程如同传统软件工程学有迭代范式,包括梳理流程、任务工具化、建立规划、迭代优化。数字员工的“进化论”需要在 AI 能力基础上对固化流程和自主思考作出妥协和平衡。
2024-12-12
对企业来说直接用开源大模型和用国内大厂收费的大模型有哪些区别
对于企业来说,直接使用开源大模型和使用国内大厂收费的大模型主要有以下区别: 数据方面: 开源大模型的数据获取相对容易,但数据质量可能参差不齐。例如,OpenAI 训练大模型所用的中文数据虽源自中国互联网平台,但经过了深度处理,而国内中文互联网数据质量普遍被认为相对较低。 国内大厂收费的大模型可能在数据处理和质量上更具优势,但获取高质量数据对于企业尤其是初创企业来说成本较高且存在风险。 商业化落地方面: 客户在商业化落地时更关注实用性而非原创性,有时因成本低会倾向选择开源大模型的非原创技术。 但使用开源大模型可能存在拼装和套壳后强调原创,从而影响迭代能力,导致内耗、刷榜和作假等问题。 其他方面: 金沙江创投主管合伙人朱啸虎指出,使用大模型要有垂直行业数据,能实现数据闭环,并持续保持和客户的连接。对于大厂而言,要关心自身边界,而创业公司必须对客户和大厂有自身价值才能立足。 目前国内大模型的商业化落地仍处于拿着锤子找钉子的阶段,预计到今年年底头部大模型能基本达到 3.5 水平,明年 11 月有望到 4,但真正能落地的商业化场景有限。
2024-12-07
最新的开源的关于大语言模型的书有哪些?
以下是一些最新的开源的关于大语言模型的书籍和资源: 《LLM 开源中文大语言模型及数据集集合》: Awesome Totally Open Chatgpt: 地址: 简介:This repo record a list of totally open alternatives to ChatGPT. AwesomeLLM: 地址: 简介:This repo is a curated list of papers about large language models, especially relating to ChatGPT. It also contains frameworks for LLM training, tools to deploy LLM, courses and tutorials about LLM and all publicly available LLM checkpoints and APIs. DecryptPrompt: 地址: 简介:总结了 Prompt&LLM 论文,开源数据&模型,AIGC 应用。 Awesome Pretrained Chinese NLP Models: 地址: 简介:收集了目前网上公开的一些高质量中文预训练模型。 《AIGC Weekly 19》:包含了多篇相关文章,如腾讯的开源图像模型 Stable Diffusion 入门手册、马丁的关于 AIGC 的碎片化思考、多邻国创始人 Luis von Ahn 专访、Meta AI 发布的自监督学习 CookBook 等。 《进阶:a16z 推荐进阶经典》: 《GPT4 technical report》(2023 年):来自 OpenAI 的最新和最伟大的论文。 《LLaMA:Open and efficient foundation language models》(2023 年):来自 Meta 的模型。 《Alpaca:A strong,replicable instructionfollowing model》(2023 年):来自斯坦福大学的模型。
2024-12-03
强化学习+开源代码
以下是关于强化学习的开源代码入门指南: 1. 基础知识准备: 若概率论和线性代数基础薄弱,可利用周末约一天时间学习相关课程,若不关注公式可忽略。 若机器学习基础为零,先看吴恩达课程,再以李宏毅课程作补充,若仅为入门强化学习,看李宏毅课程前几节讲完神经网络部分即可,此课程约需 25 小时。 2. 动手实践: 跟随《动手学深度学习 https://hrl.boyuai.com/》学习并写代码,入门看前五章,约 10 小时。 观看 B 站王树森的深度学习课程前几节学习强化学习基础知识点,约 5 小时。 3. 项目实践: 参考《动手学强化学习》(已开源 https://hrl.boyuai.com/),看到 DQN 部分,约十几小时。 模型构建:DQN 的网络模型采用一层 128 个神经元的全连接并以 ReLU 作为激活函数,选用简单的两层网络结构。 缓存区:需要一个缓存区来存放从环境中采样的数据。 训练函数:批量从缓存区获取数据,使用 DQN 算法进行训练。 主循环函数:在每个 episode 中,选择一个动作(使用 εgreedy 策略),执行该动作,并将结果存储在 replay buffer 中。训练完使用保存好的 model.pth 参数即可实际使用。 4. Qlearning 算法: 比如在状态 s1 上,根据 Q 值表选择行动,如发现向下行动 Q 值最大则向下走。获取 Q(s1,下)乘上衰减值 gamma(如 0.9)并加上到达下一个状态的奖励 R,作为“Q 现实”,之前根据 Q 表得到的是“Q 估计”。通过公式更新 Q(s1,下)的值,公式为:。 算法流程:初始化 Q,for 序列 e = 1 > E do: 用 ε Greedy 策略根据 Q 选择当前状态 s 下的动作 a,得到环境反馈的 r,s‘,得到初始状态 s,for 时间步 t = 1> T do: ,End for,End for。启动程序训练 100 次后可较好进行游戏。
2024-11-21
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
老照片修复有手机端吗
老照片修复在手机端是可行的。以下是一些相关信息: 图像放大修复是 AI 绘画领域的重要部分,能应用于旧照片重现清晰、人像高清修复等场景。以前手机拍摄的低分辨率图片,如今可用 AI 技术进行高清修复。用手机也能拍摄出高清大片,提升照片质量。 【SD】用 AI 给老照片上色时,可将照片放入后期处理,使用 GFPGAN 算法让人脸变清晰。还可将图片发送到图生图中,打开 stableSR 脚本放大。切换到 sd2.1 模型修复,启用 MutiDiffusion 插件等。对于复杂的照片,可在 PS 里调整角度和裁切,放弃人物服装颜色指定,只给场景方向,让 AI 自行决定,加入第二个 controlnet 控制颜色。
2024-12-19
老照片修复有手机端app吗
以下是为您整理的关于老照片修复的相关内容: 老照片修复可以利用 AI 技术实现。在手机端,您可以通过以下步骤和方法进行操作: 1. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够的情况下放大图片。 2. 在 PS 里进行角度调整和照片裁切,然后使用特定步骤上色。对于复杂的照片,可只给场景方向,让 AI 自行决定颜色。 3. 利用 GFPGAN 算法将人脸变清晰,具体可参考相关文章。 4. 将图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 模型进行修复,vae 选择 vqgan。 此外,图像放大修复是 AI 绘画领域的重要部分,其应用场景广泛: 1. 旧照片重现清晰,让模糊的旧照片保留珍贵回忆。 2. 人像高清修复,用手机也能拍摄出高清大片,提升照片质量。 3. 图像分辨率可无限扩大且不失真,如马斯克原始图像可多次采样放大提升分辨率。 目前不太明确是否有专门的老照片修复手机端 APP,但您可以通过上述方法和技术在手机上进行相关操作。
2024-12-19
ChatGPT与Sora 是不是只有苹果手机或苹果电脑才能注册与登入?
ChatGPT 注册与登录: 苹果系统: 中国区正常无法在 AppleStore 下载 ChatGPT,需切换到美区。美区 AppleID 注册教程可参考知乎链接:https://zhuanlan.zhihu.com/p/696727277 。 最终在 AppleStore 搜到 ChatGPT 下载安装,注意别下错。 打开支付宝,地区切换到美区任意区,购买【App Store&iTunes US】礼品卡,按需要金额购买(建议先买 20 刀),然后在 apple store 中兑换礼品卡,在 chatgpt 中购买订阅 gpt plus,中途不想继续订阅可到订阅列表中取消。 会员不管在苹果还是安卓手机上购买的,电脑上都能登录。 注册美区 ID 详细步骤: 1. 电脑上打开 Apple ID 的注册页面:https://appleid.apple.com/ac 。 2. 填写验证码后点继续。 3. 到谷歌邮箱接收邮箱验证码。 4. 接着验证手机号码。 5. 验证完后会出现页面,此时美区 ID 已注册但未激活,切换到手机操作。 6. 打开 App Store,点击右上角人形头像。 7. 拉到最底下,点击退出登录,先退出国内的 ID。 8. 之后再点击右上角人形头像。 9. 手动输入美区 ID,会收到短信进行双重验证。 10. 之后完成美区的 ID 登录。 11. 随便找个软件下载,会弹出提示,点击“检查”进行激活。 12. 点击同意,进入下一页填写美国地址。 13. 若付款方式中没有“无”或“none”选项,输入街道地址和电话。 14. 至此,通过中国 IP、中国手机号、免信用卡成功注册一个美区 ID,可用于下载例如小火箭、ChatGPT、Discord、X、TikTok 等软件。 关于 Sora 的注册与登录相关信息未提及。
2024-12-16
海外手机AI怎么变化
海外手机 AI 的变化情况如下: 《平安证券:AI 系列深度报告(五)AI 手机》指出,AI 手机的发展重心正逐步向端侧转移,全球出货量将呈现指数级增长。 关于海外 AI 的其他相关信息: 《》显示,上周,Ideogram 推出功能强大的 2.0 图像生成模型,同时 Jamba 1.5 系列在非 Transformer 架构上取得突破。AI 工具如 ComfyUI 和 Cluade 更新,Cursor 获巨资融资。Google 的 Gemini AI 项目新增技术领导,亚马逊通过 AI 工具极大提升代码开发效率。 《》由垦丁律师事务所联合 WEEE Consulting 和 Boosterhub 撰写,深入分析了东南亚地区生成式人工智能(AI)的产业现状、监管框架及合规要求。报告涵盖了新加坡、越南、泰国、马来西亚、印度尼西亚和菲律宾六国,探讨了 AI 产品合规性、数据本地化、跨境数据传输、内容安全和知识产权等关键问题。报告指出,尽管东南亚国家在 AI 发展上展现出潜力,但各国法规和伦理标准存在差异,对 AI 的法律监管和合规要求也各不相同。 此外,还有全球 AI APP 增长榜中虚拟角色相关的数据: |排行|产品名|分类 aiwatch.ai|6 月 APP 下载量 k|相对 5 月变化| |||||| |18|Crushon AI|虚拟角色|83|0.186| |19|Pocket Girl|虚拟角色|75|0.038| |20|SynClub|虚拟角色|72|0.25| |21|AI Fantasy|虚拟角色|69|0.242| |22|Jupi|虚拟角色|56|0.164| |23|HiChat|虚拟角色|56|0.176| |24|Planet J|虚拟角色|51|50| |25|Wow|虚拟角色|49|2.356| |26|AI Dungeon|虚拟角色|48|0.314| |27|Charstar|虚拟角色|44|0.12| |28|Monaland|虚拟角色|35|0.255| |29|Sakura|虚拟角色|35|0| |30|MeetAI|虚拟角色|30|0.483| |31|Spicy Chat AI|虚拟角色|29|0.356| |32|Call annie|虚拟角色|24|0.455| |33|筑梦岛|虚拟角色|22|0.043| |34|Koko AI|虚拟角色|21|0.447| |35|BALA AI|虚拟角色|20|0.375| 在图像 AI 领域,国内的图像 AI 产品发展迅速,如快手团队开发的“可灵”,主要用于生成高质量的图像和视频,图像质量高,但价格相对较高;阿里的“通义万相”在中文理解和处理方面表现出色,操作界面简洁直观,用户友好度高,重点是现在免费,每天签到获取灵感值就可以,但也存在一些局限性,如某些类型的图像可能无法生成,在处理非中文语言或国际化内容方面可能不如一些国际 AI 图像生成工具出色,在处理多元文化内容时可能存在偏差。
2024-12-10
请罗列一些内置大模型的手机产品
以下是一些内置大模型的手机产品: 华为、荣耀、小米、OPPO、VIVO、三星等品牌都已宣布会在手机端侧搭载大模型。 三星 S24 搭载了 Google Gemini Nano。 Vivo 推出了五个大型自研模型,宣称在中文能力方面达到行业第一。 目前这些手机搭载大模型还存在一些问题,如只能用最新的骁龙 8Gen3 旗舰处理器,且耗能散热都是问题。短期内的端上智能仍有诸多限制。
2024-11-29
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22