Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

哪个AI网站或工具可以允许我上传数据,然后进行机器学习建模?

Answer

以下是一些可以允许您上传数据然后进行机器学习建模的 AI 网站或工具:

  1. Teachable Machine:这是由 Google 开发的机器学习工具,可应用于商品说明书、自动驾驶、教学互动等多个场景。使用步骤简单,您可以收集数据(如上传图片、录制声音或动作视频)来训练模型,然后测试并导出模型。它提供多种创建机器学习模型的方式,非常灵活和用户友好。例如,可以使用文件或实时捕捉示例,也可以在本地完成训练,保护隐私。生成的模型是真实的 TensorFlow.js 模型,可在任何运行 JavaScript 的地方工作,还能导出到不同格式以便在其他地方使用。其官方网站是:https://teachablemachine.withgoogle.com
Content generated by AI large model, please carefully verify (powered by aily)

References

Han:基于现有能力项目应用的思考

[title]Han:基于现有能力项目应用的思考|技术名称|应用场景|技术类型|简介|主要特点|工作原理|其他|官方网站|项目及演示|论文|Github|在线体验|附件|最后更新时间|<br>|-|-|-|-|-|-|-|-|-|-|-|-|-|-|<br>|Teachable Machine:一个由Google开发的机器学习工具|这个项目在很多应用场景中可以被使用,<br>例如商品说明书,自动驾驶,教学互动等多个场景。|AI学习模型|它允许用户快速、简单地创建自己的机器学习模型,而无需专业知识或编程技能。<br><br>你可以用它来教电脑识别图片、声音或人的动作。|使用这个工具的步骤很简单:<br><br>1、收集数据:你可以上传图片、录制声音或动作视频来作为训练数据。<br><br>2、训练模型:用这些数据来训练你的模型,然后测试它能否正确识别新的图片、声音或动作。<br><br>3、导出模型:完成训练后,你可以下载这个模型,或者上传到网上,用在其他项目中。|Teachable Machine提供了多种方式来创建机器学习模型,非常灵活和用户友好。<br><br>1、使用文件或实时捕捉示例:用户可以选择上传已有的图片、音频文件作为数据,也可以直接通过电脑的摄像头或麦克风实时录制视频、声音作为训练数据。<br><br>2、可以在本地完成训练:用户有选项不通过网络发送或处理数据。所有操作,包括数据的收集、模型的训练和应用,都可以在用户自己的电脑上完成,不需要将摄像头或麦克风收集的数据发送到互联网上。这对于隐私保护是非常重要的,特别是当处理敏感信息时。<br><br>3、Teachable Machine”生成的模型是真实的TensorFlow.js模型,可以在任何运行JavaScript的地方工作。<br>此外,还可以将模型导出到不同的格式,以便在其他地方使用,如Coral、Arduino等。|||[https://teachablemachine.withgoogle.com](https://t.co/pZ3hjg3U2t)|||||2024/01/12|

质朴发言:AI产业背后的亿级美金市场:合成数据|Z研究第 4 期

a.Workflow总览图:AI/ML workflow总览公开数据集:如Common Crawl、ImageNet、Open X-Embodiment等私有数据集:如企业内部数据、从其他企业购买数据(如OAI从Reddit购买数据)等互联网爬虫c.数据准备,组件包括:数据标注:对原始数据分类、标记,形成特征标注特征仓库:集中存储和管理数据特征,便于模型训练时的特征选择和复用机器学习平台:提供数据处理、转换和清洗的一站式服务平台(同时也涉及到模型训练及开发阶段)d.模型训练及开发,组件包括:模型库:含预训练和优化后的模型集合,供后续部署和应用机器学习模型框架:提供构建、训练模型的基础架构分布式计算与训练框架:用于模型训练,支持多计算机并行处理Workflow管理(训练跟踪及模型性能诊断):跟踪模型训练过程,诊断模型性能,优化模型开发流程(同时也涉及到数据准备阶段)e.模型推理,组件包括:模型部署特征服务器(feature server)管理特征数据,将数据转换为模型可理解的特征格式,提高模型推理效率和精度批量预测器(Batch Predictor)&在线模型服务器(Online Model Server)

4月动态|78个AI新产品

- ChatGPT的提示词优化及模型切换。首先,团队提供了不同模型的最佳的提示词,以便用户使用;其次,使用Lamini库的API可以快速调整不同模型的提示词;最后,通过一行代码,便可以在OpenAI和开源模型之间切换。-生成大量的输入输出数据。这些数据将展示LLM对它所接收的数据的反应,无论是自然语言(英文)还是JSON格式。团队发布了一个用Lamini库的几行代码生成的50,000个数据点的仓库——只用了100个数据点生成。-用生成数据调整原始模型。除了数据生成器外,他们还分享了一个在生成数据上训练的,由Lamini调整过的LLM模型。-把经过微调的模型进行RLHF。Lamini避免了进行RLHF所需的大规模机器学习(ML)和人类标注(HL)工作人员的需求。-将LLM上穿到云端。只需在应用程序中调用API的端点即可。🔗 https://lamini.ai/

Others are asking
openai最近有什么新闻
以下是 OpenAI 最近的一些新闻: 1. 12 天连续直播相关结果,昨天 OpenAI 把 o1 模型在 API 中正式发布,之前发布的是 o1 Preview 历史版本,正式版思考花费的 token 少了 60%。 2. 北京时间 9 月 13 号凌晨 1 点多,OpenAI 宣布推出模型 o1preview 与 o1mini,拥有 Plus 版本的用户会陆续收到新模型权限,可在 Web 客户端中尝鲜体验。 3. OpenAI 更新风控与账号共享识别力度,可能会偷偷降低 ChatGPT 模型的调用规格,如 o1pro 降级为 o1。 4. 奥特曼谈 AI 推理能力进展,o1(2024 年 9 月)排名全球第 9800 名,o3(2024 年 12 月)提升至第 175 名,现内部模型已达全球第 50 名,预计今年内登顶第一。
2025-02-17
免费图生视频AI有哪些
以下是一些免费的图生视频 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上生成视频,由 Stability AI 开源。 3. Adobe Firefly:支持文生视频、图生视频、视频翻译,免费用户赠送生成 2 个视频。访问。 4. 混元:腾讯视频模型,目前只支持文生视频,图生视频即将上线。 更多的文生视频的网站可以查看这里: 内容由 AI 大模型生成,请仔细甄别。
2025-02-17
Ai工业机械设计
以下是关于 AI 工业机械设计的相关信息: AI 绘画在工业机械设计中的应用: Midjourney 可生成包含工业机械的相关图片,如一个数据图标,蓝色渐变磨砂玻璃,磨砂玻璃建筑,白色透明科技感白色城市建筑场景,数据线链接,芯片等元素,具有高细节灰色背景与简单的线性细节,工作室照明,3d,c4d,纯白背景,8k 等特点。质感不错,可多尝试喂不同构图的图片,喂图玩法对图片影响最大的是参考图,建议多跑跑图。 AI 在航天器零部件设计中的应用: NASA 研究工程师瑞安·麦克莱兰使用商业 AI 工具设计既轻又坚固的任务硬件。AI 工具能在一小时内生成 30 或 40 个想法,设计的零件比人类设计的更强壮、更轻,且会提出人类想不到的想法,但有时也会犯人类不会犯的错误。 获取 AI 生成 CAD 图相关资料的途径: 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索。 专业书籍:查找相关专业书籍了解应用和案例。 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的课程,在 YouTube 等平台查找教程和演示视频。 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等,与专业人士交流学习,关注相关博客和新闻网站。 开源项目和代码库:探索 GitHub 等开源平台上的相关项目,如 OpenAI 的 GPT3、AutoGPT 等在 CAD 设计中的应用。 企业案例研究:研究如 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用。 在学习和研究 AI 生成 CAD 图时,掌握相关基础知识和技术细节很重要,通过多种途径逐步掌握其应用和实现。随着 AI 技术发展,在 CAD 设计中的应用会更广泛,为设计师和工程师提供更多辅助和支持。
2025-02-17
Ai工业设计
以下是关于 AI 工业设计的相关信息: 在小红书博主方面,有诸如 Ai HFBY 等博主从事工业设计相关内容的分享,您可以通过相应链接查看他们的作品和教程。 腾讯研究院的报告中提到,工业设计在基础模型和开源生态方面有所涉及,包括产品迭代、VR 构建的虚拟环境等。当前存在训练数据稀缺、泛化能力有限等瓶颈,未来方向包括 GANs 数据生成、迁移学习优化等。同时,在 3D 生成方面,须解决空间几何难题,材质还原方面基于几何模型的空间结构特征生成真实感材质与纹理映射,纹理生成方法多元化,核心技术不断突破,AI 赋能加速发展,应用场景持续扩展。 分众传媒携手阿里通义大模型开拓了品牌广告 AI 营销新模式,其中的 AI 创意设计包含 AI 设计、AI 生图、模板中心等能力,可通过对话方式表达设计需求,利用文生图/图生图能力解决各类营销场景素材生成需求,并提供数十万精选模板降低创意制作门槛。
2025-02-17
如何快速入门AI工具
以下是快速入门 AI 工具的一些建议: 1. 对于普通人来说,对 AI 最好的直观初接触有两个方面: 最低成本能直接上手试的工具是什么,自己能否亲自尝试。 现在最普遍/最好的工具是什么,能达到什么效果。 2. 虽然底层都是大模型,但 AI 工具各有侧重,不同公司也有各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。 3. 为了让普通人更直观地马上上手,可选择以下几种工具展开说明:聊天工具、绘画工具、视频工具、音乐工具。 4. 对于超出自己理解范围内的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。 5. 在面向父母的“AI 布道”活动中发现,因“AI 工具”功能强大能做无数事情,反而在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,是让普通人在这场 AI 浪潮中受益的最好方式,不论是什么人群。 6. 最后,如果想交流并一起在 AI 路上探寻,欢迎戳 。
2025-02-17
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
想在手机上通过宠物照片给宠物建模,是宠物可以有一些动态性,需要怎么做?利用 AIGC 能快速的实现吗?
在手机上通过宠物照片给宠物建模并实现一定的动态性,可以考虑以下几种方式: 1. 利用 3D 引擎:目前有一些公司提供通过手机摄像头快速创建虚拟人身体的服务,例如 NextHuman。不过,3D 引擎在拟真程度高的同时,定制化成本也较高。 2. 借助 AIGC:虽然 AIGC 省去了建模流程,能直接生成数字人的展示图片,但可能存在数字人难以保持 ID 一致性、帧与帧连贯性不佳等问题。典型的相关项目有 wav2lip等。但需要注意的是,如果对模型真实度要求较高,AIGC 方式可能不太理想,因为算法发展很快,未来可能会有更好的连贯度生成方式。 目前利用 AIGC 来快速实现可能存在一些挑战,但随着技术的发展,未来有可能更便捷高效地达成您的需求。
2025-02-13
用AI建模可以吗
AI 建模是可行的。在某些领域,如定量金融,已存在寻找简单形式的“AI 测量”之间关系的情况。“人工智能测量”能从大量非结构化数据中挑选出“小信号”,但对于如何运用它及如何形式化等问题还不是很清晰。计算语言可能是关键,像 Wolfram 语言中的某些函数可进行“AI 测量”并处理结果。 同时,在 CAD 图绘制方面,也有一些 AI 工具和插件可用,例如: 1. CADtools 12,是 Adobe Illustrator 的插件,添加了 92 个绘图和编辑工具。 2. Autodesk Fusion 360,是一款集成了 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology,基于 AI 的设计软件,可创建复杂 CAD 模型。 4. ParaMatters CogniCAD,能根据输入自动生成 3D 模型。 5. 一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 但使用这些工具通常需要一定的 CAD 知识和技能,对于初学者建议先学习基本建模技巧再尝试。 以上内容由 AI 大模型生成,请仔细甄别。
2025-02-08
AI 3d建模课程
以下是为您提供的 AI 3D 建模课程相关内容: Tripo AI 入门手册: 文生 3D 模型:在「Create」界面底部输入框输入提示词(不支持中文),不会写提示词可点击输入框左侧的</>按钮随机生成并自动填入。填写好后点击右侧「Create」生成 3D 模型,每次生成 4 个基础模型,不满意可点击「Retry」重新生成,对满意的模型点击单个模型下方黄色的「Refine」精修,精修进度在「My Models」中查看,一般 5 分钟左右完成。 图生 3D 模型:点击输入框右侧图标上传图片生成 3D 模型,一次生成一个基础模型,支持「Retry」重生成和「Refine」精修。 12 月 26 日 AI 资讯汇总: Meta:AI 建模技术 PartGen,一种从各种模态(包括文本、图像、3D 模型)进行组合/零件级 3D 生成和重建的新方法,可实现文本转 3D 零部件拆分、图像转 3D 零部件拆分、3D 模型分解和编辑。地址:https://silentchen.github.io/PartGen/ Threejs ai:由网友@vidythatte 开发的根据文字/图片提示生成极简 3D 场景工具,输入提示文字即可迭代构建场景,可用于制作简单的故事交互应用。地址:https://www.threejs.ai/ 工具汇总:AI 生成 3D 模型工具介绍: 3dfy.ai: 概览:是一家将稀疏数据转化为逼真三维世界的公司,领导团队由计算成像领域专家组成。 使用场景:数字 3D 互动体验流行但受 3D 内容可用性限制,其技术能利用稀疏数据自动创建高质量 3D 模型。 目标用户:数字内容创作者和艺术家、游戏开发者和动画制作人、教育和培训行业专业人士、医疗行业、建筑和工程领域。 应用案例:暂未提及。
2025-01-26
AI 3D建模
以下是一些 AI 3D 建模的工具和相关介绍: 1. Tripo AI:这是 VAST 发布的在线 3D 建模平台,基于数十亿参数级别的 3D 大模型,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,支持快速的 2D 到 3D 转换,具有 AI 驱动的精准度和细节。在“Create”界面,可通过输入提示词(不支持中文)生成 3D 模型,每次生成 4 个基础模型,不满意可点击“Retry”重新生成,对满意的模型可点击“Refine”精修,精修进度在“My Models”中查看,约 5 分钟完成。 2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。用户上传图片并描述材质和风格可生成高质量 3D 模型。 3. CSM AI:支持从视频和图像创建 3D 模型,其 Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象再转换为 3D 模型。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成。 5. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供图像到 3D、文本到 3D 和文本到纹理等多种功能。 此外,provisual.app 是一个 3D 模型在线可视化平台,具有易于使用、无需特殊技能或软件、可节省时间和成本等优点,功能包括在线协作、实时渲染、无限视角、材质和纹理编辑、高质量输出等,适用于产品设计、营销、教育等领域,目标客户为营销机构、创意机构、包装公司、在线商店、设计院的设计师、美术师等。 这些工具通常具有用户友好的界面,允许用户通过简单的操作来生成 3D 模型,无需专业的 3D 建模技能,可广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。
2024-12-27
AI 如何快速3D建模
以下是一些关于 AI 快速 3D 建模的信息和可用工具: GRM 可以在 0.1 秒内构建出物体或场景的 3D 模型,支持文本或图像直接转换成 3D 模型,并提供在线体验和项目演示。相关链接如下: 项目及演示:https://justimyhxu.github.io/projects/grm/ GitHub:https://github.com/justimyhxu/grm 在线体验:https://huggingface.co/spaces/GRMdemo/GRM https://x.com/imxiaohu/status/1774777805936689245?s=20 此外,还有以下图片生成 3D 建模工具: 1. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于数十亿参数级别的 3D 大模型,实现快速的 2D 到 3D 转换,并提供 AI 驱动的精准度和细节。 2. Meshy:功能全面,不仅支持文本生成 3D,还支持图片生成 3D 以及 AI 材质生成。用户可通过上传图片并描述需要的材质和风格来生成高质量的 3D 模型。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象,再转换为 3D 模型。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成。用户可上传图片或输入文本提示词来生成 3D 模型。 5. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能够将图像或文本快速转换成 3D 模型,并提供了图像到 3D、文本到 3D 和文本到纹理等多种功能。 这些工具通常具有用户友好的界面,允许用户通过简单的操作来生成 3D 模型,无需专业的 3D 建模技能,可广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-26
给多张图片生成一个3d建模
以下是一些可用于将多张图片生成 3D 建模的工具: 1. Tripo AI:是 VAST 发布的在线 3D 建模平台,基于数十亿参数级别的 3D 大模型,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,实现快速的 2D 到 3D 转换,并提供 AI 驱动的精准度和细节。在“Create”界面底部输入框输入提示词(不支持中文),或点击输入框左侧的“</>”按钮随机生成提示词,点击“Create”生成 3D 模型,每次生成 4 个基础模型,不满意可点击“Retry”重新生成,有满意的模型点击“Refine”精修,精修进度在“My Models”中查看,一般 5 分钟左右完成。还可通过点击输入框右侧的图标上传图片生成 3D 模型,图生 3D 一次生成一个基础模型,同样支持“Retry”重生成和“Refine”精修。 2. Meshy:功能全面,不仅支持文本生成 3D,还支持图片生成 3D 以及 AI 材质生成。用户可通过上传图片并描述需要的材质和风格来生成高质量的 3D 模型。 3. CSM AI:支持从视频和图像创建 3D 模型,其“Realtime Sketch to 3D”功能支持通过手绘草图实时设计 3D 形象,再转换为 3D 模型。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成。用户可上传图片或输入文本提示词来生成 3D 模型。 5. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能够将图像或文本快速转换成 3D 模型,并提供了图像到 3D、文本到 3D 和文本到纹理等多种功能。 6. Polycam:只需上传至少 20 张图片或至少 20 秒的视频,Polycam 自动处理并构建一个 3D 模型。生成后还可以编辑模型,支持 12 种以上的格式导出到流行的 3D 软件中,如 Blender、SketchUp、Unreal、Unity 等。100 张图像的云处理建模时间只需要大约 1 2 分钟。可以在网站以及 iOS 和 Android 应用中来创建、编辑和存储 3D 模型,完全免费。Polycam 还可以轻松将无人机拍摄的图像转换为广阔的 3D 模型。只需上传关键帧无人机图像,就可以快速得到 3D 模型。Polycam 与所有流行的无人机兼容,包括 DJI Mavic 3、DJI Mini 4 Pro 和 DJI Phantom 4 Pro。 这些工具通常具有用户友好的界面,允许用户通过简单的操作来生成 3D 模型,无需专业的 3D 建模技能。它们可以广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。
2024-12-26
帮我找一些具有文件上传功能的AI智能体或应用的搭建教程
以下是一些具有文件上传功能的 AI 智能体或应用的搭建教程: 使用 Coze 搭建: 方法一:直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 方法二:直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 实现文件上传:通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。在消息或对话中,文件上传成功后可通过指定 file_id 来直接引用该文件。 Coze 的 API 与工作流执行:关于 API 的使用及工作流执行流程可以参考。 设计界面:搭建 Demo 最简单的方式是首先绘制草图,然后借助多模态 AI 工具(如 GPT/Claude)生成初步的前端结构代码。前端开发语言包括 HTML 用于构建网页基础框架,定义整体页面结构;CSS 负责网页布局样式美化;JavaScript 实现交互逻辑,如信息处理、网络请求及动态交互功能。 Stuart 教学 coze 应用中的“上传图片”: 传递上传图片地址:首先,把工作流的入参设置为 File>Image。然后,注意代码内容,其中 ImageUpload1 部分是可以替换成实际的文件上传组件的组件名称的,一个引号,一个大括号都不能错。 获得图片 URL:接下来就比较简单了,工作流中可以直接用这个 image 变量,也可以用 string 模式输出,它会在工作流中变成图片的 URL。 无企业资质也能 coze 变现: 以 API 形式链接 Zion 和 Coze:同理也可以为 dify、kimi 等给任何大模型&Agent 制作收费前端。参考教程: 自定义配置:变现模版 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。相关链接:支付: 微信小程序变现模版正在开发中,不久将会上线。目前实现小程序端可以通过 API 形式搭建。 Zion 支持小程序,Web,AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。
2025-02-16
帮我查找关于文件上传的智能体搭建教程 、
以下是关于文件上传的智能体搭建教程: 1. 上传文档至知识库: 点击【上传知识】按钮,进入知识上传和配置页面。 上传文档文件或 URL 导入。 上传文档类知识:支持上传 pdf(建议)、doc/docx、ppt/pptx、xlsx、csv、txt、md 等类型的文档,当前文档默认上传大小不超过 50M。对于本地化部署的知识库,可通过配置文件调整此限制。 可以添加 URL 类知识:支持添加多个 url 链接,添加后将会至网页中抓取静态内容,当前暂不支持下钻抓取其他网页的内容;手动点击更新后将会从网页上重新爬取内容(仅包含静态网页内容,不可下钻爬取内容)。若企业自有网站会做知识的动态更新,可以手动快速同步到清流平台上。 配置知识的切片方式:切片类型选择当前系统会根据解析的知识类型自动选择,若想了解更多信息,可至【进阶功能】【文档切片调优】处查看。设置支持配置图片处理方式和自定义切片方式,了解更多信息,可至【进阶功能】【文档切片调优】、【图片解析】处查看。 知识预览:根据选择的知识类型,展示预览内容方便查看切片效果。 2. 知识处理学习:配置完成后知识将进入数据处理中状态,主要对知识进行解析、切片和向量化处理,此时耐心等待数据处理完成即可。
2025-02-16
图生图 / img2img:上传一张图片,然后系统会在这个图片的基础上生成一张新图片,修改一些提示词(Prompt)来改变新图片的效果 , 给我推荐这类大模型
以下为您推荐可用于图生图(img2img)的大模型: 1. Stable Diffusion(SD)模型:由 Stability AI 和 LAION 等公司共同开发,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。在图生图任务中,SD 模型会根据输入的文本提示,对输入图片进行重绘以更符合文本描述。输入的文本信息通过 CLIP Text Encoder 模型编码成机器能理解的数学信息,用于控制图像生成。 2. Adobe Firefly image 2 模型:上周发布了 Beta 测试版本,增加了众多功能,模型质量提升。默认图片分辨率为 20482048,对图片的控制能力增强,具有更高质量的图像和插图生成、自定义选项和改进的动态范围。支持生成匹配(img2img),应用预先选择的图像集中的风格或上传自己的风格参考图像以创建相似图像,还有照片设置、提示建议、提示链接共享、反向提示词等功能。
2025-02-12
扣子工作流上传图片并让AI理解图片内容
扣子工作流可以实现上传图片并让 AI 理解图片内容。具体步骤如下: 1. 上传输入图片:将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用。 2. 理解图片信息,提取图片中的文本内容信息:通过封装的图片理解大模型和图片 OCR 等插件来实现。 3. 场景提示词优化/图像风格化处理。 4. 返回文本/图像结果。 在搭建工作流时,主要关注以下几个步骤: 1. 点击工作流后面的“➕”来添加一个工作流。 2. 点击创建工作流。 3. 给工作流起名字和描述,名字只能用字母、数字和下划线,描述清晰以便区分。 4. 初始化的工作流:左边有各种可用的插件和搭建 Agent 的工具,可通过点击加号或直接拖拽使用。插件一般有对应的参数说明,初始化后会生成开始模块和结束模块,且只能以开始模块启动,结束模块终结工作流。 此外,扣子平台具有以下特点和功能: 1. 集成了丰富的插件工具,包括资讯阅读、旅游出行、效率办公、图片理解等 API 及多模态模型,支持内置插件和自定义插件。 2. 提供简单易用的知识库功能来管理和存储数据,支持多种格式的数据上传,包括文本格式、表格格式,也支持本地文件和在线网页内容及 API JSON 数据的上传。 3. 具有持久化的记忆能力,可记住用户对话的重要参数或内容。 4. 工作流功能灵活,可通过拖拉拽的方式搭建处理逻辑复杂且稳定性要求高的任务流。
2025-02-10
有没有上传8张照片一键生成短视频的ai
以下是一些可以实现上传 8 张照片一键生成短视频的 AI 工具及相关操作: 1. PixVerse: 网址:https://app.pixverse.ai 操作:涂抹选区,给出相应的运动方向,最后加入配音,剪辑一下即可。 2. 出门问问 Mobvoi: 网址:https://openapi.mobvoi.com/pages/videointroduce 操作: 第一步:api 申请,打开网址,找到视频生成>开始体验>登录>创建应用>查看详情,获取自己的 APP key。 第二步:启动 ComfyUI,打开 json 文件。 第三步:在 api 节点输入第一步获取的 key 进行适配,获取 key 后查看详情找到账号和密码进行输入。 第四步:上传一张照片即可。 3. 即梦: 操作:将图片上传至视频生成模块,用简单提示词描绘画面中的动态内容,可生成时长为 3 秒钟的画面。运镜类型可根据剧本中的镜头描绘设置,主要设置以随机运镜为主,生成速度可选择慢速。
2025-02-09
上传图片,通过AI生成提示词
以下是一些关于上传图片通过 AI 生成提示词的信息: Freepik 推出了 Reimagine AI 工具,用户上传图片可自动生成提示词,无需输入文字,能实时提供无限滚动结果展示,边操作边生成图像,还可通过调整提示词实时修改图片细节,支持多种风格切换。相关链接:https://freepik.com/pikaso/reimagine 、https://x.com/imxiaohu/status/1770437135738581414?s=20 StreamMultiDiffusion 项目亮相,使用区域文本提示实时生成图像,有交互式操作体验,每个提示控制一个区域,实现精准图像生成,被描述为“真正的神笔马良”。相关链接:https://arxiv.org/abs/2403.09055 、https://github.com/ironjr/StreamMultiDiffusion?tab=readmeovfile 、https://huggingface.co/spaces/ironjr/SemanticPalette 、https://x.com/imxiaohu/status/1770371036967850439?s=20 对于“城市狂想”的图片制作,有提供猫叔写的提示词示例,如远景、三分法构图等不同风格的描述,并生成了多组提示词。以悠船为例,进入页面点击开始想象按钮,粘贴提示词即可。 希望这些信息对您有所帮助。
2025-02-07
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
飞书机器人设置
以下是关于飞书机器人设置的详细步骤: 1. 工作流搭建: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的 AI 女友工作流,也可以直接将工作流文件拖拽到 Comfyui 界面中一键复刻麦洛薇机器人。 2. 飞书机器人创建: 飞书应用建立: 在中创建自建应用。 进入应用获取 app_id 与 app_secret。 添加应用能力>开启机器人应用能力。 权限管理>消息与群组>选择需要的权限打开。 安全设置>将 comfyUI 运行的电脑 IP 加入白名单。 发布机器人以应用生效。 获取群组或用户 id: 要先把创建的机器人拉到群组中或者拉进私聊。 飞书开发平台找到发送消息的开发文档。 右侧点击获取 token。 选择 receive id type,chat_id 对应群组,open_id 与 user_id 对应个人,点击选择成员,复制对应的 id 即可。 如果需要让机器人发送语音,需要自行在电脑上安装 ffmpeg。 3. 发布到飞书: 登录平台。 在左侧导航栏,选择打开个人空间或一个团队空间。 在 Bots 页面,选择需要发布的 Bot。 在 Bot 编排页面,单击发布。 首次发布时需要进行授权,根据引导完成授权。 单击配置。 在打开的页面,单击点击获取当前应用链接。 单击获取。 在打开的页面,(可选)配置安装范围,然后勾选隐私协议,最后单击授权并安装。 应用安装完成后,返回扣子 Bot 的发布页面,再次单击配置。 在弹出的页面,单击授权。 输入发布信息,勾选飞书渠道,然后单击发布。 发布完成后,可点击在飞书中打开链接跳转至飞书应用中,与 Bot 对话。 如果这是您的飞书租户第一次发布扣子 Bot 应用,您会收到飞书消息提醒。如果提醒应用审核通过,则您可以直接使用 Bot。否则您需要等待企业管理员审核完成之后,才可以使用 Bot。 4. 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档: 创建扣子的令牌: 在扣子官网左下角选择扣子 API。 在 API 令牌中选择“添加新令牌”。 名称:给令牌起一个名字。 过期时间:为了方便选择永久有效。 选择制定团队空间:可以是个人空间、也可以选择团队空间。 权限:勾选所有权限。 要保存好令牌的 Token,切勿向他人泄露。 Coze 设置: 获取机器人 ID:在个人空间中找到自己要接入到微信中的机器人,比如有计划要将画小二智能小助手接入到微信群中。点击对应的机器人进入机器人编辑界面。在浏览器地址栏的 bot/之后的数据就是该机器人的 Bot ID。 API 授权:然后再点击右上角发布。这里会发现多了一个 Bot as API,意思就是自己定义的 API 发布取到了。勾选 Bot as API,确定应用已经成功授权 Bot as API。
2025-02-16
waytoAGI知识库智能问答机器人是如何实现的
waytoAGI 知识库智能问答机器人的实现方式如下: 基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话等任务。 在飞书 5000 人大群里内置,根据通往 AGI 之路的文档及知识进行回答。使用方法为在飞书群里发起话题时,它会根据 waytoAGI 知识库的内容进行总结和回答。 其具备多种功能,如自动问答、知识搜索、文档引用、互动教学、最新动态更新、社区互动、资源共享、多语言支持等。 搭建过程包括介绍 WaytoAGI 社区的成立愿景和目标、利用 AI 技术帮助用户检索知识库内容、引入 RAG 技术、介绍基于飞书的知识库智能问答技术的应用场景和实现方法、使用飞书的智能伙伴功能搭建 FAQ 机器人以及智能助理的原理和使用方法等。
2025-02-12
如何使用钉钉中的知识库构建智能问答机器人
以下是使用钉钉中的知识库构建智能问答机器人的步骤: 1. 纯 GPT 大模型能力的微信聊天机器人搭建: 配置极简未来(Link.AI)平台:按照官方教程操作,教程地址为 https://docs.linkai.tech/platform/createapp ,学习补充可参考 https://docs.linkai.tech/platform/quickstart 。 教程中的应用是创建一个具体的 AI 问答机器人应用。 教程中的知识库是给绑定到指定问答机器人的资料数据集,让机器人基于这些内容回答问题。 知识库应用中的应用设定是给 AI 机器人的提示词内容或者人设,关于提示词可查看教程 https://waytoagi.feishu.cn/wiki/OqJQwzq2wi9EIOkFtFkclM24nSe 。 创建成功的 AI 应用,记住应用的应用 ID,用于后续对接微信聊天机器人。 生成 API Key 用于后续功能对接,地址为 https://linkai.tech/console/interface ,点击创建 API Key 并记住。 2. 用 Coze 免费打造自己的微信 AI 机器人: 设计 AI 机器人: 开始节点和结束节点会自动生成。 开始节点配置:输入变量名写“Question”,描述写“用户输入的问题”,变量类型选“String”。 知识库配置:将开始节点和知识库左侧节点连接,知识库输入引用开始节点的变量“Question”,点击“+”号选择之前创建好的知识库,将知识库右侧节点与结束节点左侧连起来。 结束节点配置:用于输出 AI 机器人的最终结果,回答格式设置为“您的问题:{{question}} 问题的答案:{{answer}}”,在输出变量那里定义“question”引用“开始节点的 Question”,“answer”引用“知识库节点的输出 output”,回答模式选择使用设定的内容直接回答。 试运行测试:点击右上角“试运行”,输入问题如“AIGC 课件”,点击右下角“运行”,查看工作流每一步的详细输入和输出。
2025-02-12
AI领域,传统机器学习,nlp,深度学习,大语言模型,rag,agent,请生成一张让普通人能看懂的AI领域概念图
以下是为您生成的 AI 领域概念图的相关解释: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失。 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因为有很多层所以叫深度),神经网络可用于多种学习方式。 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-02-11