直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

数据科学与决策价值

回答

在数据科学与决策价值方面:

  • 对于 B2B 生成式 AI 应用,焦点预计将从信息生成转向信息综合。在知识工作中,决策具有巨大价值,员工因根据不完美信息做决策而获酬,并非因生成大量内容。许多格言支持这一观点,如编写代码行数不是衡量工程生产力的良好指标等。Hex 的首席执行官和联合创始人 Barry McCardel 相信人机共生,强调大型语言模型能改进工作方式,帮助人类将更多脑力用于有价值和创造性工作,参与理解世界和做决策。
  • 在 AI/ML workflow 的价值分布变化方面,需求侧过去集中在数据收集与分析,现随行业发展流向数据应用与预测,因模型推理能力增强、企业对决策科学性和客观性要求提高,且 AI/ML 技术突破带来新需求。据预测,现存用于 AI 模型训练的高质量语言数据将耗尽,到 2030 年合成数据将成主要训练数据来源。供给侧数据行业分 infra 层和应用层,应用层爆发依赖前者成熟。2021 年全球数据科学市场规模为 570.8 亿美元,预计 2026 年可达 2142.4 亿美元。
  • 在信息、知识、智慧的本质方面,三者既有区别又有联系,共同构成人类理解世界和做出决策的基础框架。信息是知识和智慧的基础,是对事物属性的描述,是数据的集合或加工结果,如数字、文字、图片、视频等,是原始未经加工解释的,其价值在于是被传递和理解的基础,但单独的信息往往不能直接支持决策。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

对于 B2B 生成式 AI 应用来说,少即是多吗?

当我们进入生成式AI应用的下一波时,我们预计将看到从信息生成转向信息综合的焦点转变。在知识工作中,决策具有巨大的价值。员工得到报酬是为了根据不完美的信息做出决策,而不一定是生成执行或解释这些决策的内容的数量。在许多情况下,更长并不意味着更好,它只是更长而已。许多格言支持这一点:编写的代码行数并不是衡量工程生产力的良好指标;更长的产品规格并不一定能更清晰地说明需要构建什么;更长的幻灯片也不一定总是提供更多的洞察。[Hex](https://hex.tech/)的首席执行官和联合创始人Barry McCardel相信人机共生,并强调了大型语言模型(LLMs)如何改进我们的工作方式:“AI的存在是为了增强和改进人类,而不是取代人类。在理解世界和做决策时,你需要人类参与其中。AI能做的是帮助我们将更多的脑力应用于有价值的、富有创造性的工作,这样我们不仅可以每天花更多的时间在重要的工作上,还能让自己自由地做到最好。”

质朴发言:AI产业背后的亿级美金市场:合成数据|Z研究第 4 期

a.需求侧过去,需求集中在数据收集-分析;过去对数据的利用集中在收集、转换、存储等,即对历史和当下情况的分析;随行业发展,需求流向数据应用-预测;随着模型Scale up带来推理能力增强,企业用大数据驱动业务的价值提高,对决策的科学性、客观性要求提高,企业希望使用数据对未来情况进行预测、模拟。此外,AI/ML技术的突破,带来应用端对数据的新需求;据Epoch AI Research预测,到2026年,现存的用于AI模型训练的高质量语言数据将耗尽;据Gartner预测(下图),到2030年,合成数据将成为AI模型的主要训练数据来源。b.供给侧数据行业可分为infra层和应用层,后一层的爆发依赖于前一层的成熟,包括:底层的云;数据湖、数据仓库以及围绕其创造出来的工具和生态;数据应用的上游供给成熟,而其本身仍处于发展期;根据Fortune Business和Reprotlinker,2021年全球数据科学市场规模为570.8亿美元,预计在2026年可达到2,142.4亿美元;

小七姐:AI 时代的知识管理体系构建

在探讨信息、知识、智慧的本质之前,我们首先需要明白这三者之间既有区别又有联系。它们共同构成了人类理解世界、做出决策的基础框架。现代社会的快速发展,尤其是在人工智能时代,使得对这三者的理解和应用变得尤为重要。信息:数据的呈现信息是知识和智慧的基础,它是对事物属性的描述,是数据的集合或加工结果。信息可以是一串数字、一段文字、一张图片或是一段视频,它们是原始的、未经加工解释的。在日常生活中,我们不断接收和处理信息,比如阅读新闻、查看天气预报等。信息的价值在于它是被传递和理解的基础,但单独的信息往往不能直接支持决策。

其他人在问
搭建可以自主决策规划和行动的agent
搭建可以自主决策规划和行动的 agent 通常涉及以下几个方面: 一、Agent 的概念 Agent 是一种能够在环境中自主感知、思考并采取行动的实体。可以将其想象成一个具有特定目标和行为能力的智能角色,能根据环境变化做出相应决策和反应。 二、LLM Agent LLM Agent 是结合大型语言模型(LLM)和自主智能体(Agent)特性的系统,能够利用大型语言模型的自然语言处理能力,理解用户输入,并在此基础上进行智能决策和行动。 三、LLM Agent 的组成部分 1. 规划(Planning) 定义:规划是 Agent 的思维模型,负责将复杂任务分解成可执行的子任务,并评估这些子任务的执行策略。 实现方式:通过使用大型语言模型的提示工程(如 ReAct、CoT 推理模式)来实现精准任务拆解和分步解决。 2. 记忆(Memory) 定义:记忆即信息存储与回忆,包括短期记忆和长期记忆。 实现方式:短期记忆用于存储对话上下文,支持多轮对话;长期记忆存储用户特征和业务数据,通常通过向量数据库等技术实现快速存取。 3. 工具(Tools) 定义:工具是 Agent 感知环境、执行决策的辅助手段,如 API 调用、插件扩展等。 实现方式:通过接入外部工具(如 API、插件)扩展 Agent 的能力,例如使用插件解析文档、生成图像等。 4. 行动(Action) 定义:行动是 Agent 将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。 实现方式:根据规划和记忆执行具体行动,如智能客服回复、查询天气预报、AI 机器人抓起物体等。 四、Anthropic 的建议 随着 LLM 在几个关键能力上的成熟,如理解复杂输入、进行推理和规划、可靠使用工具以及从错误中恢复,智能体开始在生产环境中涌现。智能体通过与人类用户的命令或交互式对话开始工作。一旦任务明确,智能体就会独立进行规划和操作,必要时会向人类寻求更多信息或判断。 在执行过程中,智能体需要在每个步骤从环境中获取“基准事实”(如工具调用结果或代码执行情况)以评估其进展。智能体可以在检查点或遇到障碍时暂停等待人类反馈。任务通常在完成时终止,但也常常包含停止条件(如最大迭代次数)以保持控制。 智能体适用于难以或无法预测所需步骤数量的开放性问题,且无法硬编码固定路径的场景。但智能体的自主性意味着更高的成本和潜在的错误累积。建议在沙盒环境中进行广泛测试,并设置适当的防护措施。 五、实例探究 Generative Agents 是一个有趣的实验,其中 25 个虚拟角色,每个角色都由 LLM 支持的 Agents 控制,在沙盒环境中生活和交互,其灵感来自《模拟人生》。生成 Agents 的设计将 LLM 与记忆、规划和反射机制相结合,使 Agents 能够根据过去的经验进行行为,并与其他 Agents 进行交互。 记忆流是一个长期记忆模块(外部数据库),用自然语言记录智能体经验的完整列表。检索模型会根据相关性、新近度和重要性,呈现上下文以告知 Agents 的行为。反射机制随着时间的推移将记忆合成更高层次的推论,并指导智能体未来的行为。规划与反应将反思和环境信息转化为行动,规划本质上是为了优化当前与时间的可信度。
2025-03-21
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作流程图的 AI 工具: 1. Lucidchart: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. ChatGPT: 确定制作目标。 通过自然语法描述逻辑,生成 Mermaid 图形语法。 在线校验测试是否成功。
2024-12-19
上面的流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作您所描述的流程图的 AI 工具: Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据您的项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 此外,文中还提到了关于智能体和人工智能在解决科学问题方面的一些相关内容,但未直接涉及流程图制作工具的更多信息。
2024-12-19
智能体感知决策执行
智能体是在现代计算机科学和人工智能领域中一个基础且重要的概念。 智能体的应用领域广泛,包括: 1. 自动驾驶:汽车中的智能体感知周围环境,做出驾驶决策。 2. 家居自动化:智能家居设备根据环境和用户行为自动调节。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:金融市场中的智能交易算法根据市场数据做决策。 5. 客服聊天机器人:通过自然语言处理与用户互动,提供客户支持。 6. 机器人:各类机器人中集成的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确智能体要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 具身智能是将机器学习算法适配至物理实体从而与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过多种模态与用户交互,具身智能体则将大模型嵌入物理实体,通过传感器与人类交流。人形机器人是具身智能的代表产品,其三要素为本体、智能、环境,高度耦合是高级智能的基础。不同环境有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人。具身智能体的行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。具身智能需要具备感知、决策和执行三种核心能力,执行能力是技术难点,涉及硬件设计,可泛化的通用执行能力是短板。LLM 为具身智能热潮来临提供了机会,其强泛化能力和 zeroshot 能力使不再需要为每个任务手工调校机器人。
2024-11-29
机器决策理论
机器决策理论: 情感计算与机器决策密切相关。情感对人类具有重要意义,包括生存功能(如遇危险时的生理反应有助于保障进化)、沟通功能(不同情感表达使内涵不同)、决策功能(大脑通过“系统一”主要依赖情感和经验迅速做出判断)、动机功能(激发和维持个体行为)、维系功能(是社会化过程中的纽带)。 情感计算的最终目标是赋予计算机类似于人的情感能力,主要有“识别”“表达”和“决策”三个方向。“识别”可基于文本、语音、视觉、生理等数据进行情感分析,或融合不同模态信息;“表达”让计算机以合适载体表示情感;“决策”利用情感机制进行更好决策。 在人工智能实现方法中,解决让计算机表现得像人类一样的问题有自上而下(模拟人类推理)和自下而上(模拟人脑结构)两种可能的方法,还有新兴的多智能体系统、进化方法或遗传算法等其他可能实现智能的方法。
2024-10-21
我是医科大学的本科学生,我现在想用Ai帮助我书写论文和报告,我应该怎么系统学习?
以下是一些系统学习利用 AI 帮助书写论文和报告的建议: 一、了解常用的 AI 工具和平台 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 二、学习使用 AI 辅助撰写论文和报告的方法 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。 三、注意事项 1. AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 保持科学的态度和方法,遵循科学伦理原则。 3. 了解现阶段 AI 在教育领域应用的局限性,如知识适配的层次性问题、教育应用的安全性考量等。 希望以上内容对您有所帮助。
2025-04-14
最新的生命科学有关的 AI动向
以下是生命科学领域有关 AI 的最新动向: 在医疗健康生物制药方面,AI 技术极大地加速了研究,在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。例如,AI 提前三年诊断胰腺癌;两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因;AI 帮助抗衰老,筛查出高效的药物候选物;利用 AI 寻找阿尔兹海默症的治疗方法;通过神经网络分析患者体液中的生物标志物,早期诊断帕金森。 Nature Methods 主题特刊聚焦于 AI 在生物学中的应用,探讨了计算生物学多领域,强调高精度蛋白质结构预测成就,提及了 AI 在蛋白质组学数据分析中的应用、机器学习可解释性挑战,以及科研人员对 AI 工具培训的需求,同时探讨了 AI 与生物医学数据结合的新时代。 Flagship Pioneering 创始人 Noubar Afeyan 提出 AI for Science 的下一步是 MultiAgent,旨在实现类似自动驾驶的科研自动化,推动生命科学领域的革命性进展。
2025-04-10
生成超过15000字的人工智能技术在智能化零售行业中的应用与商业模式创新论文,学科方向是计算机科学与技术专业
很抱歉,目前无法直接为您生成超过 15000 字的论文。但我可以为您提供一个论文大纲,以帮助您组织思路和开展研究: 标题:人工智能技术在智能化零售行业中的应用与商业模式创新 摘要:简述人工智能技术在智能化零售中的重要性、应用现状、创新商业模式以及研究的主要结论。 一、引言 (一)研究背景:介绍智能化零售行业的发展趋势和人工智能技术的兴起。 (二)研究目的与意义:阐述研究人工智能技术在该领域应用和商业模式创新的目的,以及对行业发展的重要意义。 (三)研究方法与结构:说明采用的研究方法,如文献综述、案例分析等,并概述论文的结构安排。 二、人工智能技术概述 (一)人工智能技术的定义与分类:解释人工智能的概念,分类如机器学习、深度学习、自然语言处理等。 (二)关键技术原理:详细介绍相关技术的原理,如机器学习中的监督学习、无监督学习等。 (三)技术发展历程与现状:回顾人工智能技术的发展历程,分析当前的技术水平和应用情况。 三、智能化零售行业概述 (一)智能化零售的概念与特点:定义智能化零售,阐述其特点如个性化服务、精准营销等。 (二)行业发展现状与趋势:分析智能化零售行业的现状,包括市场规模、竞争格局等,预测未来的发展趋势。 (三)面临的挑战与机遇:探讨行业发展中面临的问题,以及人工智能技术带来的机遇。 四、人工智能技术在智能化零售中的应用 (一)客户画像与精准营销:如何利用人工智能技术分析客户数据,实现精准营销。 (二)库存管理与供应链优化:通过人工智能算法优化库存水平和供应链流程。 (三)智能推荐与个性化服务:介绍基于人工智能的推荐系统,为客户提供个性化的购物体验。 (四)无人零售与智能支付:探讨无人零售店的技术实现和智能支付方式的应用。 (五)店铺布局与商品陈列优化:利用人工智能进行数据分析,优化店铺布局和商品陈列。 五、人工智能技术驱动的商业模式创新 (一)新的零售模式:如线上线下融合的智能零售模式。 (二)数据驱动的商业决策:依靠人工智能分析数据,制定更科学的商业决策。 (三)合作与共享经济模式:探讨与技术供应商、其他企业的合作模式,以及共享数据和资源的可能性。 (四)增值服务与收费模式创新:基于人工智能技术提供的新服务,创新收费模式。 六、案例分析 (一)选取成功应用人工智能技术的智能化零售企业案例。 (二)详细介绍其应用场景、商业模式创新和取得的成效。 (三)总结经验教训,为其他企业提供借鉴。 七、影响与挑战 (一)对消费者行为和市场竞争的影响:分析人工智能技术如何改变消费者购物行为和市场竞争格局。 (二)技术与数据安全问题:探讨人工智能应用中的技术漏洞和数据泄露风险。 (三)法律法规与伦理道德问题:研究相关法律法规的缺失,以及可能引发的伦理道德问题。 八、结论与展望 (一)研究成果总结:概括人工智能技术在智能化零售中的应用和商业模式创新的主要发现。 (二)未来研究方向与建议:提出进一步研究的方向和对企业、政府的建议。 希望以上大纲对您有所帮助,祝您顺利完成论文!
2025-04-07
有哪些专门针对科研人员的科学研究过程的AI工具
以下是一些专门针对科研人员科学研究过程的 AI 工具: 1. 对于需要修改医学课题的科研人员: Scite.ai:是为研究人员等打造的创新平台,提供引用声明搜索等工具,增强对科学文献的洞察。 Scholarcy:能从文档中提取结构化数据,生成文章概要,包含关键概念等板块内容。 ChatGPT:强大的自然语言处理模型,可提供有关医学课题的修改意见。 2. 在论文写作方面: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 3. 其他工具: Deformity.ai:创新的表单创建平台,通过人工智能技术,用户可快速制作生动的对话式表单,支持多种功能和多语言互动。 Afforai:为研究人员设计的 AI 驱动的研究助手和聊天机器人,提供多种工具简化研究流程,支持多种文档格式和不同搜索模式。 Recall:新型知识管理工具,自动总结各种在线内容并保存到知识库,自动组织分类,通过知识图谱发现信息联系,提供间隔重复学习功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。您可以根据自己的具体需求选择合适的工具进行尝试。
2025-03-20
科学计算大模型的代表模型有哪些
科学计算大模型的代表模型主要有以下几种: 1. Encoderonly 模型:适用于自然语言理解任务,如分类和情感分析,最知名的代表是 BERT。 2. Encoderdecoder 模型:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表模型如谷歌的 T5。 3. Decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此结构,包括 ChatGPT。 大模型具有以下特点: 1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。 2. 参数众多:如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在数字化处理中,为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”主要指用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。当神经元数量达到百亿、千亿级别时,会出现群体智能,即智能涌现,这在自然界如蚂蚁群体中有典型体现,人脑也由约 1000 亿个神经元构成复杂神经网络。
2025-03-20
AI产品经理应该具备哪些技能,需要学习哪些工具?计算机科学与技术专业的研究生如果想找AI产品经理的实习应该如何着手准备呢?如何准备项目呢?
AI 产品经理应具备的技能和需要学习的工具包括: 1. 学历背景:本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 工具熟悉:熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理;具有一定的编程基础,熟练使用 Python、Git 等工具。 3. 项目能力:负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法;了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 4. 思维能力:对数据驱动的决策有深入的理解,能够基于数据分析做出决策;具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案;对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践;对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注;具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 计算机科学与技术专业的研究生如果想找 AI 产品经理的实习,可以从以下方面着手准备: 1. 了解行业需求:搜索了解目前 AI 产品经理岗位的招聘技能要求情况。 2. 学习相关知识:深入学习上述提到的技能和工具知识。 3. 积累项目经验:可以参与一些相关的实践项目,例如收集数据、训练模型、派送模型等。 4. 思考商业价值:思考可以自动化的任务、驱动商业价值的核心以及商业领域的主要痛点。 5. 准备项目时,要明确项目目标,制定合理的开发时间表,清晰所需时间和人员。同时,为项目提供验收标准,尽量以数据衡量。 以上内容仅供参考,不同公司和项目可能有不同的具体要求。
2025-03-12
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
生成式AI的教育重构价值
生成式 AI 在教育领域具有重要的重构价值,主要体现在以下几个方面: 1. 为教师减负:通过复杂的算法、模型和规则,从大规模数据集中学习,创造新的原创内容,帮助教师减轻工作负担。 2. 创新教学方式:例如让历史人物亲自授课,知识获取不再受时空限制,提高教育效率和质量,增强学生学习兴趣。 3. 个性化教育:根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,满足学生学习需求,提高学习成果,缓解教育资源不平等问题。 4. 角色多样化:授课教师、游戏玩家、情感伴侣等服务都可以被 AI 重构。 5. 促进学生成长:人工智能生成的虚拟角色可以作为数字陪伴,给予孩子社会奖励,促进其成长和提高学习成绩。
2025-03-22
在汉语言文学师范领域中是否存在具有商业价值的问题,利用 AI 技术进行市场调研和分析,探索可能的创业方向
在汉语言文学师范领域,利用 AI 技术进行市场调研和分析是有可能发现具有商业价值的问题和创业方向的。 首先,通过对教育市场的大数据分析,AI 可以帮助了解汉语言文学师范专业的就业趋势和需求变化,例如特定地区对该专业教师的需求增长情况,或者新兴教育模式对该专业人才培养的新要求。 其次,利用自然语言处理技术,分析学生和家长对汉语言文学师范教育的反馈和期望,从而发现潜在的教育服务需求,比如个性化的辅导课程、线上教学平台的优化等。 再者,借助 AI 预测模型,可以评估汉语言文学师范相关教材和教育资源的市场需求,为开发创新的教育产品提供依据。 总之,结合 AI 技术,在汉语言文学师范领域进行深入的市场调研和分析,有机会挖掘出具有商业潜力的问题和创业方向。
2025-02-27
waytoagi最有价值的是什么
WaytoAGI 最有价值的方面包括: 1. 了解最新的 AI 技术:它如同免费的“技术期刊”,能让人知晓世界最新的 AI 技术动态,还能传授实用技能,并且开源免费。 2. 线上共学与手把手教学:无论基础如何,都能通过线上共学方式找到适合自己的学习路径,学会应用 AI 技术。 3. 找到志同道合的队友:对于想创业、做副业或找对 AI 感兴趣的伙伴一起做事的人来说,是很好的平台。 4. 收获众多:如实现 AI 自动化、找到副业和创业伙伴、与高手和大佬面对面交流避免走弯路等。 5. 促进个人成长:线下活动让人了解最新的 AI 落地应用现状,结识有趣、有想法的人,让人意识到要多与人交流、体验真实生活才能成长。 6. 知识学习:能学到很多 AI 相关知识,如 markdown 语言等。 7. 开源知识库:由热爱 AI 的专家和爱好者共同建设,在无推广情况下已有超 70 万用户和超千万次访问量,是很多 AI 爱好者知识的源头,有很多学社和共学共建活动。
2025-02-26
python数据分析
以下是关于 Python 数据分析的相关内容: BORE 框架与数据分析: 自动驾驶产品经理的工作中会涉及大量数据分析,数据分析是一门独立完整的学科,包括数据清洗、预处理等。从工具和规模上,写 Excel 公式、用 Hadoop 写 Spark 算大数据等都属于数据分析;从方法上,算平均数、用机器学习方法做回归分类等也属于数据分析。 用 ChatGPT 做数据分析的工具: 1. Excel:是最熟悉和简单的工具,写公式、Excel 宏等都属于进阶用法,能满足产品的大部分需求。ChatGPT 可轻松写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如 pandas、numpy 用于数据分析,seaborn、plotly、matplotlib 用于画图,产品日常工作学点 pandas 和绘图库就够用。一般数据分析的代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 实践:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图: 1. 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴的图形。 2. 打开数据集,分析数据:发现关键表头与数据可视化目的的关联。 3. 新建 Python 文件,开始编程:包括调用库、读取数据、数据处理、创建图表、添加标题与图例、保存并显示图形等步骤。 4. 试运行与 Debug:发现左纵坐标数据有误,重新分析数据集并修改代码,最终实现可视化目的。 关于 ChatGPT 的预设 prompt: 在特定的设置下,当发送包含 Python 代码的消息给 Python 时,它将在有状态的 Jupyter 笔记本环境中执行,有 60 秒的超时限制,'/mnt/data'驱动器可用于保存和持久化用户文件,本次会话禁用互联网访问,不能进行外部网络请求或 API 调用。
2025-04-14
数据集去哪下载
以下是一些数据集的下载途径: 对于微调 Llama3 的数据集,获取及原理可参考文档:。 鸢尾花数据集下载请点击链接:https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html 。 天气数据集下载请点击链接:https://www.kaggle.com/datasets/muthuj7/weatherdataset 。建议创建一个文件夹,将下载下来的数据集放入文件夹中。
2025-04-14
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
现在做数据分析比较厉害的ai是什么
目前在数据分析方面表现较为出色的 AI 工具包括智谱清言、Open Interpreter 等。 AI 在数据分析中具有以下优势: 1. 降低入门门槛:过去学习数据分析需要掌握编程语言和专业知识,现在通过 AI 工具,门槛大大降低。 2. 规范的分析流程:对于初学者来说,AI 直接做的数据分析比他们自己第一次做的更好,其规范化流程更严谨,结果更可靠。 3. 自动化处理:会自动进行模型选择以匹配数据,还能根据 log 检查错误并改正源代码。 4. 减少重复性工作:重复性劳动可先交给 AI 做,人类用户只需做验证和检查结果。 实际应用的工具方面,GPT4 可以帮助建立和评估机器学习模型,Claude 等大语言模型可以进行数据分析和可视化,Open Interpreter 等工具可以辅助编程和数据处理。 使用时的建议包括:对 AI 结果要进行严格验证,不要完全依赖 AI,要保持独立思考,对 AI 的能力边界有清晰认识,合理使用以提高工作效率。同时,AI 应被视为辅助工具而非完全替代品,人类在整个过程中仍起主导作用和具有判断力。
2025-04-11
用AI做数据分析
以下是关于用 AI 做数据分析的相关内容: 流程: 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 工具和成功案例: 大概思路是这样: 1. 提供大模型可以访问的数据源或者上传数据表格。 2. 通过提示词说清楚需要以哪些维度分析数据,分析完成的结果要以什么格式输出。 3. 观察生成结果,迭代和优化提示词,最终满意后导出结果。 相关问题和技巧: 1. 关于“大模型幻觉”,目前没有办法消除,这本身就是大模型特性。可以通过其他第三方信息源和知识来检验生成是不是在胡说八道。 2. 结构化思维提高对话能力,在 AGI 搜索结构化三个字,有相关文章。上下文 token 长度如果指的是大模型的记忆窗口的话,没法延长,是设定好的。 案例分析: 以“用 ai 做数据分析,和爆款卖点分析”为例,这一创意将 AI 技术与商业洞察深度融合,展现了数据驱动决策的前瞻性。通过 AI 对海量用户行为、评论、竞品数据的挖掘,不仅能快速定位爆款产品的共性特征(如高频关键词、用户情感倾向),还能发现传统方法难以捕捉的潜在需求(例如隐藏的消费场景或未被满足的功能痛点)。尤其是结合时序分析预测市场趋势,为企业提供了动态调整产品策略的敏捷性,真正实现了从“经验决策”到“智能决策”的跨越。若想进一步突破,可考虑以下优化方向: 1. 多模态数据融合:除文本数据外,整合图片/视频的视觉分析(如通过 CV 技术识别爆款产品的外观设计共性),或结合语音数据(如直播带货中的实时用户反馈),构建更立体的卖点模型。 2. 因果推理增强:当前 AI 多聚焦相关性分析,可引入因果发现算法(如 DoWhy 框架),区分“真实卖点”与“伴随现象”。例如某款手机壳销量高是因为颜色,还是因与热门手机型号捆绑销售? 3. 个性化适配引擎:根据企业自身资源禀赋(供应链能力、品牌定位)对 AI 建议进行权重优化。例如小型厂商可优先推荐“低改造成本的高需求卖点”,避免直接对标头部品牌的资源密集型方案。 4. 对抗性验证机制:构建虚拟消费者模拟环境,对 AI 提出的卖点进行 A/B 压力测试,提前评估市场风险,避免出现“数据过拟合导致的伪创新”。
2025-04-11