Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

数据科学与决策价值

Answer

在数据科学与决策价值方面:

  • 对于 B2B 生成式 AI 应用,焦点预计将从信息生成转向信息综合。在知识工作中,决策具有巨大价值,员工因根据不完美信息做决策而获酬,并非因生成大量内容。许多格言支持这一观点,如编写代码行数不是衡量工程生产力的良好指标等。Hex 的首席执行官和联合创始人 Barry McCardel 相信人机共生,强调大型语言模型能改进工作方式,帮助人类将更多脑力用于有价值和创造性工作,参与理解世界和做决策。
  • 在 AI/ML workflow 的价值分布变化方面,需求侧过去集中在数据收集与分析,现随行业发展流向数据应用与预测,因模型推理能力增强、企业对决策科学性和客观性要求提高,且 AI/ML 技术突破带来新需求。据预测,现存用于 AI 模型训练的高质量语言数据将耗尽,到 2030 年合成数据将成主要训练数据来源。供给侧数据行业分 infra 层和应用层,应用层爆发依赖前者成熟。2021 年全球数据科学市场规模为 570.8 亿美元,预计 2026 年可达 2142.4 亿美元。
  • 在信息、知识、智慧的本质方面,三者既有区别又有联系,共同构成人类理解世界和做出决策的基础框架。信息是知识和智慧的基础,是对事物属性的描述,是数据的集合或加工结果,如数字、文字、图片、视频等,是原始未经加工解释的,其价值在于是被传递和理解的基础,但单独的信息往往不能直接支持决策。
Content generated by AI large model, please carefully verify (powered by aily)

References

对于 B2B 生成式 AI 应用来说,少即是多吗?

当我们进入生成式AI应用的下一波时,我们预计将看到从信息生成转向信息综合的焦点转变。在知识工作中,决策具有巨大的价值。员工得到报酬是为了根据不完美的信息做出决策,而不一定是生成执行或解释这些决策的内容的数量。在许多情况下,更长并不意味着更好,它只是更长而已。许多格言支持这一点:编写的代码行数并不是衡量工程生产力的良好指标;更长的产品规格并不一定能更清晰地说明需要构建什么;更长的幻灯片也不一定总是提供更多的洞察。[Hex](https://hex.tech/)的首席执行官和联合创始人Barry McCardel相信人机共生,并强调了大型语言模型(LLMs)如何改进我们的工作方式:“AI的存在是为了增强和改进人类,而不是取代人类。在理解世界和做决策时,你需要人类参与其中。AI能做的是帮助我们将更多的脑力应用于有价值的、富有创造性的工作,这样我们不仅可以每天花更多的时间在重要的工作上,还能让自己自由地做到最好。”

质朴发言:AI产业背后的亿级美金市场:合成数据|Z研究第 4 期

a.需求侧过去,需求集中在数据收集-分析;过去对数据的利用集中在收集、转换、存储等,即对历史和当下情况的分析;随行业发展,需求流向数据应用-预测;随着模型Scale up带来推理能力增强,企业用大数据驱动业务的价值提高,对决策的科学性、客观性要求提高,企业希望使用数据对未来情况进行预测、模拟。此外,AI/ML技术的突破,带来应用端对数据的新需求;据Epoch AI Research预测,到2026年,现存的用于AI模型训练的高质量语言数据将耗尽;据Gartner预测(下图),到2030年,合成数据将成为AI模型的主要训练数据来源。b.供给侧数据行业可分为infra层和应用层,后一层的爆发依赖于前一层的成熟,包括:底层的云;数据湖、数据仓库以及围绕其创造出来的工具和生态;数据应用的上游供给成熟,而其本身仍处于发展期;根据Fortune Business和Reprotlinker,2021年全球数据科学市场规模为570.8亿美元,预计在2026年可达到2,142.4亿美元;

小七姐:AI 时代的知识管理体系构建

在探讨信息、知识、智慧的本质之前,我们首先需要明白这三者之间既有区别又有联系。它们共同构成了人类理解世界、做出决策的基础框架。现代社会的快速发展,尤其是在人工智能时代,使得对这三者的理解和应用变得尤为重要。信息:数据的呈现信息是知识和智慧的基础,它是对事物属性的描述,是数据的集合或加工结果。信息可以是一串数字、一段文字、一张图片或是一段视频,它们是原始的、未经加工解释的。在日常生活中,我们不断接收和处理信息,比如阅读新闻、查看天气预报等。信息的价值在于它是被传递和理解的基础,但单独的信息往往不能直接支持决策。

Others are asking
流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作流程图的 AI 工具: 1. Lucidchart: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. ChatGPT: 确定制作目标。 通过自然语法描述逻辑,生成 Mermaid 图形语法。 在线校验测试是否成功。
2024-12-19
上面的流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作您所描述的流程图的 AI 工具: Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据您的项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 此外,文中还提到了关于智能体和人工智能在解决科学问题方面的一些相关内容,但未直接涉及流程图制作工具的更多信息。
2024-12-19
智能体感知决策执行
智能体是在现代计算机科学和人工智能领域中一个基础且重要的概念。 智能体的应用领域广泛,包括: 1. 自动驾驶:汽车中的智能体感知周围环境,做出驾驶决策。 2. 家居自动化:智能家居设备根据环境和用户行为自动调节。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:金融市场中的智能交易算法根据市场数据做决策。 5. 客服聊天机器人:通过自然语言处理与用户互动,提供客户支持。 6. 机器人:各类机器人中集成的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确智能体要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 具身智能是将机器学习算法适配至物理实体从而与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过多种模态与用户交互,具身智能体则将大模型嵌入物理实体,通过传感器与人类交流。人形机器人是具身智能的代表产品,其三要素为本体、智能、环境,高度耦合是高级智能的基础。不同环境有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人。具身智能体的行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。具身智能需要具备感知、决策和执行三种核心能力,执行能力是技术难点,涉及硬件设计,可泛化的通用执行能力是短板。LLM 为具身智能热潮来临提供了机会,其强泛化能力和 zeroshot 能力使不再需要为每个任务手工调校机器人。
2024-11-29
机器决策理论
机器决策理论: 情感计算与机器决策密切相关。情感对人类具有重要意义,包括生存功能(如遇危险时的生理反应有助于保障进化)、沟通功能(不同情感表达使内涵不同)、决策功能(大脑通过“系统一”主要依赖情感和经验迅速做出判断)、动机功能(激发和维持个体行为)、维系功能(是社会化过程中的纽带)。 情感计算的最终目标是赋予计算机类似于人的情感能力,主要有“识别”“表达”和“决策”三个方向。“识别”可基于文本、语音、视觉、生理等数据进行情感分析,或融合不同模态信息;“表达”让计算机以合适载体表示情感;“决策”利用情感机制进行更好决策。 在人工智能实现方法中,解决让计算机表现得像人类一样的问题有自上而下(模拟人类推理)和自下而上(模拟人脑结构)两种可能的方法,还有新兴的多智能体系统、进化方法或遗传算法等其他可能实现智能的方法。
2024-10-21
根据我的论文主题撰写一段引言:《通用人工智能时代的博弈论应用:数据科学与决策价值》
在当今科技飞速发展的时代,通用人工智能(AGI)的崛起正以前所未有的态势改变着我们的生活和社会。随着数据量的爆炸式增长以及决策环境的日益复杂,博弈论作为一门研究决策主体相互作用时的策略选择及均衡问题的学科,在通用人工智能时代展现出了独特的应用价值。 在数据科学领域,海量的数据为我们提供了丰富的信息,但如何从这些数据中提取有价值的知识并做出明智的决策,成为了一个关键挑战。博弈论的引入为解决这一问题提供了新的思路和方法。它帮助我们理解不同数据主体之间的竞争与合作关系,从而优化数据的采集、处理和分析过程。 在决策价值方面,通用人工智能系统需要在复杂多变的环境中做出最优决策。博弈论通过对不同策略的收益和风险进行分析,为决策提供了理论依据和数学模型,使得决策更加科学、合理和高效。 综上所述,研究通用人工智能时代的博弈论应用,对于推动数据科学的发展以及提升决策的价值具有重要的理论和实践意义。
2024-09-28
根据我的论文题目撰写一段引言,要求达到人文社科的极高水准:《通用人工智能时代的博弈论应用:数据科学与决策价值》
在当今科技飞速发展的时代,通用人工智能正以前所未有的态势重塑着我们的生活和社会格局。在这一宏大背景下,博弈论的应用成为了一个引人瞩目的焦点。数据科学的崛起为我们提供了海量且复杂的数据资源,而如何从这些数据中挖掘出有价值的信息,并将其转化为明智的决策,成为了摆在我们面前的关键问题。博弈论,作为一门研究决策主体相互作用时的策略选择和均衡结果的学科,为我们在通用人工智能时代的决策过程提供了深刻的理论基础和实用的分析工具。它不仅能够帮助我们理解个体和群体在复杂环境中的行为模式,还能够预测和优化决策结果,从而实现决策价值的最大化。因此,深入探讨通用人工智能时代中博弈论在数据科学与决策价值方面的应用,具有极其重要的理论意义和现实价值。
2024-09-28
AI辅助科学教学的方法
以下是关于 AI 辅助科学教学的一些方法: 1. 利用语言模型人工智能生成代表科学学习路径的标记序列或证明,例如向其提供有效的序列并让其填充新序列的中间部分。 2. 根据不同的科学课程特点和学习目标,有针对性地运用 AI 工具。比如在编程课程中严格控制学生使用生成型人工智能创建代码,先让学生学会手写编码;在健康课程中,对学生使用生成型人工智能开发应用程序的限制可能较少。 3. 在科学课上,使用人工智能生成的跳跃切割进行视频编辑可以节省时间,让学生将重心放在科学内容上。 此外,AI 还可以在以下方面辅助科学教学: 1. 智能辅助工具:利用类似 Grammarly 的工具进行科学写作和语法纠错,改进表达能力。 2. 自适应学习系统:如使用 Khan Academy 这样结合 AI 技术的平台,为学生提供个性化的学习路径和练习题。 3. 智能题库和作业辅助:利用像 Photomath 这样通过图像识别和数学推理技术提供科学问题解答和解题步骤的工具。 4. 虚拟教学助手:例如使用 Socratic 为学生解答科学问题、提供教学视频和答疑服务。 需要注意的是,在使用 AI 辅助教学时,应结合传统学习方法,仔细甄别 AI 生成的内容。
2024-12-16
想成为数据科学家,学习和训练过程是什么
成为数据科学家的学习和训练过程通常包括以下步骤: 1. 收集数据:这是基础步骤,为后续的分析和模型训练做准备。 2. 分析数据:需要迭代多次以获得正确的见解。 3. 提出假设与行动:不断调整,并分析新的阶段数据。 在数据科学项目中,还需注意以下方面: 1. 每个工作职能都要学习如何使用数据,数据科学家和人工智能在多个领域均有重要作用,前者通过数据做决策,后者通过数据完成训练并形成输入输出的程序。 2. 选择人工智能项目时,要找到 AI 可以完成且在商业领域能运用的项目,召集由人工智能专业与业务领域专家组成的团队。具体包括: 思考可以自动化的任务而非岗位,细化可自动化任务。 思考驱动商业价值的核心。 思考商业领域的主要痛点。 破除数据迷信,认识到更多数据基本没坏处,数据能让某些商业模式具有护城河,但少量数据集也可能取得进展。 对项目进行尽职调查,包括技术方面(确定 AI 系统可达到理想表现、所需数据量及可获得量、开发时间表和所需人员)和商业方面(降低成本、提升效率、增加收入、推出新业务或产品,使用电子财务模型定量估算价值),还要考虑购买还是建造的问题,现实中人工智能项目可外包,数据科学一般内部成立。 4. 与人工智能团队合作时,为项目提供验收标准,如检测废品成功率 95%,需另准备测试数据集,标准尽量以数据衡量,由于数据太少、技术不成熟、数据标注错误、模糊标签等原因,验收标准基本不可能 100%正确。
2024-12-10
如何利用AGI进行社会科学研究、
利用 AGI 进行社会科学研究可以从以下几个方面考虑: 1. 借鉴相关研究成果:例如 DeepMind 在 3D 模拟环境中使用神经网络和强化学习,展示了 AI 智能体如何在没有直接从人类获取数据的情况下通过观察学习和模仿人类行为,这被视为向 AGI 迈进的重要一步。 2. 关注 AGI 的等级划分:OpenAI 提出 AGI 的五个发展等级,包括聊天机器人、推理者、智能体、创新者和组织。不同等级的 AGI 能力不同,可根据研究需求选择合适的等级进行应用。 3. 理解 AGI 的定义原则:Deepmind 的研究团队提出 AGI 定义的六个原则,其中重要的是关注能力而非过程,同时 AGI 的定义应包括多个级别,每个级别有明确的度量标准和基准。 4. 从经济价值角度思考:如 Andrej Karpathy 以自动化的交通服务类比 AGI 及其经济价值,可从类似的经济角度探讨 AGI 在社会科学研究中的应用。
2024-12-10
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
如何科学上网使用chatgpt
以下是关于科学上网使用 ChatGPT 的相关内容: 对于使用 ChatGPT 4,建议注册的账号如下: 1. 苹果用户:ChatGPT 账号、美区 AppleID、谷歌账号。 2. 安卓用户:ChatGPT 账号、下载 GooglePlay、谷歌账号。 国外很多软件支持谷歌账号一键登录,ChatGPT 也可以用谷歌账号登录,目前注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。 注册谷歌账号的详细流程: 1. 访问注册页面:打开浏览器,输入进入谷歌账号注册页面。 2. 填写个人信息:按照提示填写姓名、用户名、密码,年龄最好大于 18 岁。 3. 填写邮箱账号:可以选择推荐前缀或者创新的邮箱地址。 4. 设置密码:采用大小写字母+数字的组合。 5. 验证电话号码:有一定概率跳到接收短信验证,可填写国内号码。有时不用验证手机号码。 6. 填写辅助邮箱:可用国内邮箱。 7. 确认账户信息,同意服务条款和隐私政策:阅读谷歌的服务条款和隐私政策,点击“我同意”完成账号注册。 8. 完成注册:可在“Personal info”里设置语言、头像等信息。 另外,还有一种不用魔法上网的方式,即 3 分钟极速、免费搭建自己的 ChatGPT 网站。推荐使用云原生服务,注意只有这个 dev 域名才能调用 ChatGPT 的服务。步骤如下: 后端接口部分: 1. 添加环境变量,输入您的 api keys,apikeys 的获取地址:https://platform.openai.com/ 。注意是否有免费流量,注意流量是否过期,否则无法调用。 1. 开始写代码。 前端上传资源部分: 1. 上传打包后的前端静态资料代码。 上传后直接访问右侧的域名即可。 请注意,在中国,未经电信主管部门批准,不得自行建立或租用专线(含虚拟专用网络 VPN)等其他信道开展跨境活动。请您在合法合规的前提下使用相关服务。
2024-10-15
学习设计专业,未来在Ai时代,如何提升价值,找到工作
在 AI 时代,学习设计专业的您可以通过以下几个方面提升价值并找到工作: 1. 设计专业方面: AI 重新定义了设计师的竞争力边界,您需要具备持续的学习习惯,并将所学快速转化为实践能力。 看似降低了设计门槛,但实则对需求理解、问题分析、审美判断、创意亮点提出了更高要求。 高阶设计师要更显性化设计思考与专业优势,提升设计质量。 2. 工具能力方面: 对现有 AI 工具进行严格评估和选型,确保其能提供标准化输出和一致性体验,提升设计质量和速度,减少设计差异。 建设参数文档库,而非基于个人喜好的自然语言。 基于业务场景特征,训练专属 AI 模型、集成相应 AI 能力形成新工具,形成更有效的设计资产。 3. 工作流程方面: 将 AI 深入到日常设计流程,形成新的工作方式与流程。 基于不同的 AI 能力特性,差异化对待不同业务形态和需求,使设计流程更加精细化。 找到更合理的人&机结合方式,持续探索优化。 4. 设计团队方面: 团队必须制定并执行明确的 AI 融合策略,保证所需硬件设备的支持。 营造积极主动的创新环境,增强对市场动态的快速适应能力,确保团队整体的未来发力方向。 总之,随着技术不断进步,AI 在视觉设计领域将扮演更重要角色,为设计师和用户创造更多可能性。现在开始学习相关知识和技能,您就可以保持领先优势。
2024-12-24
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
智能图书馆的技术价值
智能图书馆的技术价值主要体现在以下方面: RAG(检索增强生成)技术: 工作原理: 检索(Retrieval):如同图书馆员根据描述从庞大知识库中找出相关书籍和文章,系统从知识库或文档集合中找到与用户问题相关的内容。 增强(Augmented):类似图书馆员挑选出最相关段落和信息并汇总,大模型对检索到的信息进行筛选和优化,确保选中最相关和有用的信息。 生成(Generation):如同图书馆员把汇总信息组织成连贯、易懂的回答,大模型将整合的信息生成自然流畅的回答。 综合解释:RAG 就像超级智能的图书馆员,先检索相关信息,再筛选优化,最后生成连贯回答。 优点: 成本效益:实现成本低于训练和维护大型专有模型。 灵活性:可利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 缺点:回答准确性不如专有模型的方案。 其他相关技术: DALLE 3:与 ChatGPT 结合,用户输入会话命令可获得匹配图像,改善了之前图像生成器的操作方式。 开放式有声读物集合:微软和麻省理工学院联手,使用文本转语音技术将 5000 本书转换为免费有声读物并在 Spotify 上提供。 AudioShake 的 AI 程序:可隔离预先录制音频的元素,分解成组成部分,解决老音乐音轨分离问题。 Ai Pin:磁性连接衣服成为 AI 助手,使用专有软件和 OpenAI 的 GPT,仅用声音就能完成多种操作。
2024-12-19
让ai生成情感语录怎么带动情绪价值
以下是关于让 AI 生成情感语录带动情绪价值的相关内容: 可以参考品牌咨询专家的观点和相关文章,如刘润老师关于「情绪价值的赛道,拼的不是营销情绪,而是说服人心」的文章,了解情绪营销的重要性和实施策略。 以具体的产品为例,如江小白(白酒,适合跟家人之间聊心事谈感情)、霸王茶姬(奶茶,原叶茶胚,口感清新自然,适合跟朋友郊游享用)、lululemon(女士运动紧身裤,轻盈柔滑,修身弹力),给定产品品牌、品类、特点或使用情境,让大模型生成营销语句。 作为 AI 博主,需提供“情绪价值”,通过信息和趣味内容缓解用户焦虑,例如分享有趣的 AI 动态和提示词,让用户感到学习 AI 是轻松有趣的事。 提示词的详尽程度取决于应用场景,简单提示适合快速了解长文内容,详尽提示适合深入分析。初步使用简单提示,依据反馈不断改进更高效,同时建议避免过多轮会话,减少模型产生“幻觉”的可能性。
2024-12-19
LLM最大的价值是什么
LLM 具有以下重要价值: 1. 作为 LangChain 平台与各种大模型交互的核心模型,是一个能处理语言输入和输出的抽象概念,开发者无需关心大模型细节,只关注语言逻辑和意义,就能利用其能力构建应用,还能灵活选择和切换大模型,甚至自行封装实现特定语言逻辑和功能。 2. 能够强化人类既有的能力,未来可能促使每个人成为全栈人员,并重新划分岗位,关键在于对 LLM、自身技能和业务应用的理解。 3. 具有知识获取能力,通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。 4. 擅长解析人类语言指令,精准理解用户语言表达意图。 5. 具备泛化能力,在未见过的数据上表现良好,能利用先前知识处理新挑战。 6. 能够进行逻辑推理和未来预测,在复杂动态环境中做出理性选择并引导行动。 7. 拥有强大的交互能力,在多人多轮次对话中自然流畅交流,改善用户体验。 8. 可以基于用户反馈和效果评估进行自我改进,逐渐提升性能和准确性。 9. 具有可扩展性,能根据具体需求定制化适配,通过微调提高特定领域处理能力和专业化水平。
2024-12-03
我是一个AI小白,我应该如何学习、使用和创造价值呢
对于 AI 小白,以下是学习、使用和创造价值的建议: 一、学习 AI 1. 了解基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始学习之旅 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 二、使用 AI 1. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 三、创造价值 1. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 如果希望继续精进,可以尝试了解以下内容作为基础: 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-02
可以对数据进行分析,生成报表的AI工具或网站
以下是一些可以对数据进行分析并生成报表的 AI 工具或网站: 1. 在金融服务领域,生成式 AI 能够帮助金融服务团队从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,它可以帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,自动创建文本、图表、图形等报告内容,还能在会计和税务、采购和应付账款等方面提供帮助。 2. 对于撰写专业区域经济报告,可利用 AI 搜索与权威网站结合获取关键数据,将报告内容拆分处理,借助传统工具如 Excel 结合 AI 指导操作数据筛选与图表生成,利用 AI 辅助分析后撰写报告初稿,但最终内容需人工主导校验。 3. 一些具体的工具和网站包括: PandasAI:将 Pandas DataFrame 转换为“聊天机器人”,用户可以以自然语言提问,它会以自然语言、表格或图表形式回答,目前仅支持 GPT 模型,需自备 OpenAI API key。网址:https://github.com/gventuri/pandasai DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告,平台符合 GDPR/PDPA 标准。网址:https://datasquirrel.ai/
2024-12-25
如何构建自己的知识库和数据集
构建自己的知识库和数据集可以参考以下几种方法: 使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 创建并使用知识库(上传表格数据): 1. API 方式: 获取在线 API 的 JSON 数据,将 JSON 数据上传至知识库。 在表格格式页签下,选择 API,然后单击下一步。 单击新增 API。 输入网址 URL 并选择数据的更新频率,然后单击下一步。 输入单元名称或使用自动添加的名称,然后单击下一步。 配置数据表信息后,单击下一步。 确认表结构:系统已默认获取了表头的列名,您可以自定义修改列名,或删除某一列名。 指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。 2. 自定义方式: 在表格格式页面下,选择自定义,然后单击下一步。 输入单元名称。 在表结构区域添加字段,单击增加字段添加多个字段。 设置列名,并选择指定列字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 单击确定。 单击创建分段,然后在弹出的页面输入字段值,然后单击保存。 从零开始,用 GPT 打造个人知识库: 要搭建基于 GPT API 的定制化知识库,涉及到给 GPT 输入(投喂)定制化的知识。但 GPT3.5(当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字。这点容量对于绝大多数领域知识根本不够。为了使用 GPT 的语言能力来处理大量的领域知识,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性。小距离表示高关联度,大距离表示低关联度。向量是数学中表示大小和方向的一个量,通常用一串数字表示。在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上给了创建 embeddings 的示例,上面的命令访问 embeddings API 接口,将 input 语句,转化成下面这一串浮点数字。
2024-12-23
AI能对医院医用耗材出入库数据做怎样的数据处理,方便耗材管理人员对相关数据进行分析
AI 在医院医用耗材出入库数据处理方面可以发挥以下作用,以方便耗材管理人员进行数据分析: 1. 预测需求:通过分析历史出入库数据、医院科室使用情况、季节变化等因素,预测未来某段时间内的耗材需求量,优化库存管理策略,降低成本。 2. 库存优化:实时监控库存水平,及时发现库存过高或过低的情况,提醒管理人员进行调整。 3. 数据分类与整合:对大量的出入库数据进行分类和整合,使其更易于分析和理解。 4. 异常检测:识别出入库数据中的异常情况,如突然的大量领用或长时间未领用等,及时发现潜在问题。 5. 成本分析:计算不同种类、不同批次耗材的采购成本和使用成本,为成本控制提供依据。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-22
数据采集的AI工具
以下是为您整理的关于数据采集的 AI 工具的相关信息: 宝玉日报:数据收集采用 AI 搜索与手动下载权威资料相结合,并结构化提取数据。报告拆分按任务需求分步完成,使用 Excel 等工具进行数据处理。分析与写作中,AI 辅助分析并提供初步文字撰写,但需人工主导校验关键内容。亮点在于把 AI 作为辅助,优化信息处理和写作效率,注重人工与 AI 配合,确保数据准确性和结论可靠性。相关链接:https://baoyu.io/blog/aiwriteprofessionalregionaleconomicreport Istra 发布的 Pixtral Large 124B 聊天应用:特点是免费使用的大型多模态模型,支持网络搜索、写作画布、Flux Pro 画图。亮点是网络搜索和画图功能实用且强大,适合多场景需求。相关链接:http://chat.mistral.ai 、https://chat.mistral.ai 、https://x.com/dotey/status/1858644663046930601 RPA+财务税务问答机器人:以在京东查询感冒灵并采集价格为例,通过拖拉拽指令控件来构建机器人任务,包括打开浏览器、填写搜索框、点击搜索、采集数据等步骤,采集数据后会生成数据表格且无需代码。编辑器有拖拉拽功能适合业务人员,也可切换为 Python 界面写代码,还封装了很多控件,如 Excel 控件等。
2024-12-22
有做企业工作助手智能体的解决方案吗?结合企业内部数据+外部市场环境,做企业工作助手和客服助手
以下是关于企业工作助手智能体的一些解决方案: 职业规划导师(校招版): 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来职业趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化职业建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 智能客服助手搭建思路: 利用企业已有的知识积累,结合大模型的能力,为用户提供准确简洁的答案。 创建企业私有知识库,收录企业过去的问答记录和资料。 利用大模型处理用户咨询问题,确保回答的准确性和一致性,必要时提供原回答的完整版。 对接人工客服,在智能助手无法解决问题时,用户可快速转接,确保问题及时解决,提升整体服务质量和客户满意度。 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 用 Coze 在微信里搭建机器人并挖掘销售线索: 目的:训练公司自有数据,让机器人提供客服功能;将机器人与企业微信绑定提供客服功能;进阶版可根据客户咨询信息收集用户联系方式形成销售线索。 使用工具:字节旗下的 Coze AI 智能机器人工具,需要有微信公众号订阅号或服务号的管理权。 功能体验:扣子画小二智能小助手:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cjksvpbk000a ;B站公开视频
2024-12-21
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20