直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我想知道AI怎么帮人类提高工作效率

回答

以下是关于 AI 如何帮助人类提高工作效率的相关内容:

  • 哈佛商学院的研究表明,在工作中使用 AI 能显著改善工作效率。使用 AI 的被测试者比未使用者平均多完成 12.2%的任务,完成速度提高 25.1%,结果质量提高 40%。
    • 研究还发现,类似 GPT-4 这样的模型有能力边界,边界内任务处理良好,边界外则可能表现不佳,但具体边界未知。
    • 实验分三组,不使用 AI、使用 AI 以及使用 AI 并给予培训,后两组任务完成效率和质量都远超未使用组。
    • AI 对工作能力差的被测试者提升更大,会拉平高级和低级人才的差距。
    • 过于依赖 AI 可能适得其反,降低工作效率和质量,因为人们难以区分其能力边界。
    • 人类和 AI 协作有“半人马”模式,即人与 AI 紧密结合、各司其职,人类主导流程,根据任务性质调配资源,充分利用人类智慧与判断力以及 AI 的计算与生成能力。
  • 英国相关研究指出,AI 具有巨大潜力,能像电力或互联网一样对社会和经济产生重大影响,能支持人们开展现有工作,帮助提高工作效率和工作场所安全性。
  • 微软与 LinkedIn 的 2024 工作趋势报告显示,75%的全球知识工作者已使用生成式 AI,79%的领导者认为 AI 是竞争力的关键,重度用户表示 AI 让工作更高效、更具创造力、更易管理。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

工作:人类和AI协作效率探讨

今天哈佛商学院的一篇论文给出了一些参考,他们研究发现:在工作中使用AI可以带来工作效率的显着的改善。使用AI的被测试者比没有使用AI的被测试者平均多完成了12.2%的任务,完成任务的速度提高了25.1%,并且产生的结果质量提高了40%。同时他们还发现了一些其他的有趣结论:类似GPT-4这样的模型是有一个能力的边界的,在边界内的任务他们可以处理的很好,边界外的任务则会搞得一塌糊涂但是没有人知道这类AI具体的能力边界。他们分了三组一组不使用AI另一组使用AI,第三组使用AI的同时给与一定的培训,使用AI的两组任务完成效率和质量都远高于没有使用AI的组。AI对工作能力越差的被测试者的提升越大,能力越强提高越小。所以高级人才和低级人才的差距会被快速拉平。过于依赖AI可能会适得其反,反倒降低工作效率和质量,因为这些人无法区分AI的能力边界。他们还为人类和AI协作的两种方式起了名字:半人马:强调人与AI紧密结合,但是各司其职,人类主导整个流程,根据任务的性质合理调配人类和AI资源。。这种模式充分利用了人类的智慧与判断力以及AI的计算与生成能力。

【法律法规】《促进创新的人工智能监管方法》.pdf

extraordinary potential to transform our society andeconomy.22It could have as much impact aselectricity or the internet,and has been identified as one of five critical technologies in the UKScience and TechnologyFramework.23As AI becomes more powerful,and as innovatorsexplore new ways to use it,we will see more applications of AI emerge.As a result,AI has ahuge potential to drivegrowth24and createjobs.25It will support people to carry out their existingjobs,by helping to improve workforce efficiency and workplacesafety.26To remain worldleaders in AI,attract global talent and create high-skilled jobs in the UK,we must create aregulatory environment where such innovation can thrive.

XiaoHu.AI日报

🔔Xiaohu.AI日报「5月8日」 ✨✨✨✨✨✨✨✨1⃣️🤝微软与LinkedIn的2024工作趋势报告:-分析了生成式AI如何重塑工作和劳动力市场,覆盖31个国家的3.1万名受访者。-主要发现:75%的全球知识工作者已使用生成式AI,79%的领导者认为AI是竞争力的关键。-重度用户表示AI让工作更高效、更具创造力、更易管理。🔗 https://microsoft.com/en-us/worklab/work-trend-index/ai-at-work-is-here-now-comes-the-hard-part/#section12⃣️🦾德克萨斯大学的可拉伸电子皮肤:-为机器人赋予人类般的触感和灵敏度,解决材料拉伸时感应精度下降的问题。-模仿人类皮肤的柔软和灵敏度,适用于需要精确控制的任务。🔗 https://xiaohu.ai/p/7583🔗 https://x.com/imxiaohu/status/17882004468779052133⃣️🌅IC-Light:图像重新照明技术:-通过文本提示生成特定光照方向的图像,例如模拟“左侧日光”效果。-结合背景提示信息实现前景物体的不同风格光照变化。

其他人在问
有哪些关于toB 营销的 ai应用
在 ToB 营销领域,目前常见的 AI 应用主要有以下几类: 1. 智能办公:在办公垂域场景中发挥作用,比如快速总结群聊内容或会议信息,为写公文提供结构模板参考等。 2. 智能客服:通常借助 agent 实现,接入企业的 QA 知识库,回应用户信息并下达诸如取消订单、催快递之类的 action 指令。 3. AI 导购:在用户和商家之间发挥作用,依据用户问题,结合产品介绍和评论信息等,为用户推荐更准确、精准的产品。 4. 智能营销:应用于营销环节,通过 AIGC 生成话术、物料、口播等内容,有些还会融入用户的个性化元素以指导物料生成。 5. 智能人力资源:主要利用模型进行简历初筛、JD 自动生成、数据分析等工作。 此外,在 AI 产品的发展中,还呈现出从通用能力到专业化细分的趋势,如图像生成的 Midjourney、Stable Diffusion 等,视频制作的 Pika、Runway 等,音频处理的各种 AI 配音、音乐生成工具等。商业模式上也有创新尝试,如 ToB 市场的深耕,如针对内容创作者的 ReadPo 等。
2024-11-16
AI写信息报道软件
以下为您推荐一些好用的 AI 写信息报道软件: 1. Copy.ai:是一款功能强大的 AI 写作助手,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,节省写作时间并提高效率。 2. Writesonic:专注于写作的 AI 工具,提供新闻稿件生成、标题生成、摘要提取等功能,其智能算法能根据用户提供的信息快速生成高质量新闻内容,适合新闻写作和编辑人员使用。 3. Jasper AI:人工智能写作助手,虽主打博客和营销文案,但也可用于生成新闻类内容,写作质量较高,支持多种语言。 此外,随着人工智能技术的迅猛发展,小型企业在 2024 年也迎来了新的应用场景: 1. 聊天机器人:分为信息型和实用型,在企业网站上用于回答常见问题或执行特定任务,能大幅减少客户服务方面的人力成本。 2. AI 撰写内容:如 ChatGPT 等工具,为内容创作有困难或资源有限的小型企业提供高效解决方案,快速生成高质量文本内容。 3. 语音搜索优化:小型企业需优化网站以适应语音搜索普及的趋势,确保内容清晰准确,使用架构标记等技术提高语音助手理解度。 4. 网站个性化:为每位访客提供定制化体验,增强客户参与度和忠诚度。 5. 利用 AI 分析客户数据:通过机器学习算法进行预测性分析,发现模式和趋势,为营销活动或个性化体验提供有价值洞见。 6. 社交媒体管理与情绪分析:利用情绪分析工具深入了解客户反馈,调整产品和营销策略。 以下是 1 月 3 日的一些 AI 相关资讯: 1. 微软研究团队利用合成数据训练 AI,减少成本和偏见,生成 100 种语言的文本数据提高训练效率。论文链接:https://arxiv.org/abs/2401.00368 。 2. Pile:开源的 AI 日记软件,界面美观,集成 OpenAI API,有 AI 搜索和问题解答功能,保证安全隐私。下载链接:https://udara.io/pile/ ,项目源码:https://github.com/UdaraJay/Pile 。 3. VCoder:视觉编码器增强模型,增强 LLM 的视觉理解和分析能力,处理分割图和深度图,改善对象感知,在对象识别任务中表现优于 GPT4V。项目链接:https://praeclarumjj3.github.io/vcoder/ ,代码库:https://github.com/SHILabs/VCoder 。 4. M2UGen:多模态音乐理解生成模型,能理解音乐风格、乐器、情感,进行音乐问答,根据文本、图像、视频生成音乐,由腾讯与新加坡国立大学开发。 5. DreamTalk:人物头像动画生成开源,使人物照片头像根据音频说话或唱歌,保持嘴型和表情一致。代码库:https://github.com/alivilab/dreamtalk 。 内容由 AI 大模型生成,请仔细甄别。
2024-11-16
AI学习从哪开始?
对于新手学习 AI ,可以从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-16
我如何才能更快的成为AI领域的专家
要更快地成为 AI 领域的专家,您可以参考以下几个方面: 1. 学习基础:像预医学生一样,从相关的基础课程开始,例如数学、统计学、计算机科学等,为深入学习 AI 奠定坚实的基础。 2. 实践经验:通过参与实际项目、实习或研究工作,积累实践经验,从实践中获取那些书本上没有的知识和直觉。 3. 模型训练:采用堆叠模型的训练方式,而非单纯依赖大量数据和生成模型。例如,先训练基础学科的模型,如生物学、化学等,再添加特定领域的数据点。 4. 开发特定领域模型:创建专门针对特定领域的 AI 模型,如医疗保健领域的专家 AI,而不是追求全能的通用 AI。 5. 多样化方法:在编码、数据和测试方面采用多样化的方法,创建多个专家 AI 并在需要时提供不同意见。 6. 现实世界互动:让人类专家配备可穿戴设备,收集现实世界的互动数据供 AI 学习,使 AI 接触到多样化的视角,避免偏见。 总之,成为 AI 领域的专家需要系统的学习、丰富的实践和不断的探索创新。
2024-11-16
有没有用Stata的最小二乘法处理相关的AI
目前在 AI 领域中,较少直接将 Stata 的最小二乘法与 AI 进行特定的结合应用。Stata 的最小二乘法主要用于传统的统计分析,而在 AI 中,更多采用的是基于机器学习和深度学习的算法和模型。但如果您是在处理某些与数据相关的任务,最小二乘法的原理和思路在一定程度上可能对您理解和设计 AI 中的数据处理方法有所帮助。
2024-11-16
有没有自动AI样机的工具 mockup
目前在 AI 领域,暂时没有特别知名的专门用于生成自动 AI 样机的工具 mockup。但随着技术的不断发展,未来可能会出现相关的创新工具。您可以持续关注 AI 技术的最新动态,以获取相关信息。
2024-11-16
哪些AI工具可以帮助采购提高工作效率
以下是一些可以帮助采购提高工作效率的 AI 工具: 1. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,能通过分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让采购人员专注关键方面。 2. Clari:专门从事智能收入运营的软件,以创建高度准确的收入预测能力闻名,能统一数据并以易理解方式呈现,简化财务预测过程。 此外,以下是一些与其他工作相关的 AI 工具,供您参考: 1. 编程相关: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型。 Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手。 Codeium:AI 驱动的编程助手工具,提供代码建议等帮助。 2. 留学顾问相关: 智能问答系统:提供 24/7 在线咨询服务,回答常见问题等。 个性化留学规划:利用机器学习和数据分析制定个性化规划和申请策略。 语言学习辅助:利用语音识别等技术提供个性化语言学习辅助。 智能文书起草:自动生成留学申请文书等文件。 数据分析和预测:分析历史数据和趋势,预测录取率等信息。 虚拟导览和校园参观:利用虚拟现实技术提供虚拟校园参观服务。 需要注意的是,每个工具的功能和适用场景可能不同,您可以根据具体需求选择最适合的工具。
2024-11-14
哪些AI工具可以帮助财务提高工作效率
以下是一些可以帮助财务提高工作效率的 AI 工具: 1. 生成式 AI: 预测方面:帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,从更广泛、更复杂的数据集中为预测建议输入,并建议如何适应模型以支持公司决策。 报告方面:自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 会计和税务方面:综合、总结税法和潜在扣除项,提供可能的答案。 采购和应付账款方面:自动生成和调整合同、采购订单、发票以及提醒。 2. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,能通过分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务。 3. Clari:专门从事智能收入运营的软件,能统一各种来源的数据并以易于理解的方式呈现,简化财务预测过程。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-14
设定好程序,在没有人工干预的情况下,AI能保持多久的工作效率。
AI 在没有人工干预的情况下能保持的工作效率时长难以给出确切的固定值,其受到多种因素的影响。 一方面,AI 系统的设计和训练质量会对其持续工作效率产生重要影响。如果系统经过良好的设计和充分的训练,具备应对各种情况的能力,可能在较长时间内保持较高的工作效率。 另一方面,运行环境和所处理任务的复杂性也起着关键作用。例如,处理简单、重复性高且规则明确的任务时,AI 可能在较长时间内保持稳定的效率。但对于复杂多变、需要不断适应新情况的任务,其效率可能会随着时间有所波动。 在实际应用中,一些案例显示,如产品经理使用 GPT 解决性能问题,SQL 执行时间大幅缩短,效率显著提升。但也有观点认为,对于某些工作场景,AI 带来的效率提升有限。 此外,政策层面,如拜登签署的 AI 行政命令中,也强调了在医疗、教育等领域推进 AI 的合理使用,并关注其对劳动力市场的影响,采取措施支持工人等。 总之,AI 无人工干预下的工作效率保持时间因多种因素而异,需要综合考虑系统本身、任务特点等多方面因素。
2024-11-13
如何利用Ai帮助我们提高工作效率
以下是利用 AI 帮助提高工作效率的一些方式: 1. 对于企业领导者,AI 可作为工具处理大量数据、创建演示文稿或响应业务需求,从而将更多精力投入创新和战略规划。 2. 工作中使用 AI 能带来显著改善,如被测试者使用 AI 后平均多完成 12.2%的任务,完成速度提高 25.1%,结果质量提高 40%。但要注意类似 GPT4 等模型有能力边界,过于依赖可能适得其反。 3. 人类和 AI 协作可采用“半人马”模式,即人类主导流程,根据任务性质合理调配人类和 AI 资源,充分利用双方优势。 4. 中小企业可利用 RPA(机器人流程自动化)技术等自动化软件,用于自动化标准化、规则性任务,如数据录入、文件处理等。在部署后要进行测试、调整优化,以提高效率、降低错误率,减轻员工负担,让其专注更重要和创造性工作。 同时需注意,AI 无法完全取代需要人际交往、团队领导和复杂决策制定的角色。能力越强的人使用 AI 提升相对较小,而能力较差的人提升较大。高级人才和低级人才的差距会被快速拉平。
2024-09-20
有什么提升工作效率的Ai神器么
以下是一些能够提升工作效率的 AI 神器: 销售工作相关: 1. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,能通过分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 2. Clari:专门从事智能收入运营的软件,以创建高度准确的收入预测能力闻名,能统一各种来源数据并以易理解方式呈现,简化财务预测过程。 3. Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 编程相关: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助 Sourcegraph 强大的代码语义索引和分析能力,了解开发者的整个代码库,不止是代码片段。 在游戏制作方面,AI 能提高生产效率,如创造美术资源,在创意瓶颈时提供启发和灵感。但目前在有具体需求的项目中运用 AI 仍存在困难,AI 的准确性也有待提高,未训练过的内容较难生成。
2024-09-05
如何利用 AI 提高工作效率
利用 AI 提高工作效率可以从以下几个方面入手: 1. 对于企业领导者而言,在处理大量数据、创建演示文稿或响应业务需求时,可将 AI 作为工具,从而将更多精力投入到创新和战略规划上。 2. 工作中使用 AI 能带来显著改善,使用 AI 的被测试者比未使用者平均多完成 12.2%的任务,完成任务速度提高 25.1%,结果质量提高 40%。但要注意类似 GPT4 这样的模型有能力边界,过于依赖可能适得其反。 3. 对于工作能力较差的被测试者,AI 的提升作用更大,高级人才和低级人才的差距会被快速拉平。 4. 采用“半人马”模式,即人与 AI 紧密结合、各司其职,人类主导流程,根据任务性质合理调配人类和 AI 资源,充分利用人类智慧与判断力以及 AI 的计算与生成能力。 5. 对于中小企业,可通过观察和记录确定具体目标,如提高效率、减少错误率、优化工作流程等。特别关注耗时、重复性高的任务,如数据输入、文件整理等。分析收集的数据,确定可通过引入自动化工具优化的任务,制定行动计划并实施,持续监测效果。
2024-09-04
你觉得人工智能带给人类的到底是提升还是毁灭呢?
人工智能带给人类的影响既有提升也有潜在的挑战,但并非必然导致毁灭。 从提升的方面来看: 技术上可以解决类似于社会歧视等问题,如通过 RLHF 等方法。 优化工作效率,虽然可能导致某些岗位的调整,但实际每个工作的组成部分不是单一的,人可以和人工智能更好地协同。例如放射科医生的案例,解读 X 光照片只是其工作的一部分,实际并未失业。 可以成为解决气候变化和大流行病等问题的关键。 作为自主的个人助理,代表人们执行特定任务,如协调医疗护理。帮助构建更好的下一代系统,并在各个领域推动科学进展。 潜在的挑战和担忧包括: 可能放大人类的负面影响,需要在技术层级加以解决。 导致失业,但能掌握人工智能的人会取代不会的人。 存在人类毁灭的担忧,不过目前此类观点缺乏具体的说明和论证。 对于强人工智能,目前 ChatGPT 的崛起引发了相关讨论,但通用技术并非等同于强人工智能。对于复杂的神经网络和黑箱模型的研究仍在进行,如何使用和控制这些模型是业界和社会争论的热点。科技公司倾向于训练辅助人类的超级智能助手,而非自我改进升级的超级智能体,以推动新一轮的工业革命和经济增长。 总之,人工智能的发展带来了巨大的机遇和挑战,需要我们聪明而坚定地采取行动,以实现其正面影响并应对潜在风险。
2024-11-16
人工智能会取代人类吗
人工智能是否会取代人类是一个复杂且备受关注的问题。 从一些观点来看,按照目前 AI 发展的速度,在未来十几年内,人类的所有事情乃至人类这个种族有可能被 AI 完全替代。比如,当函数的参数超过兆亿级时,硅基生物可能会理解人类的所有行为及背后的意义,从而实现对人类的全面超越。 然而,也有不同的看法。虽然 AI 会优化效率,但每个工作的组成部分并非单一,人可以和 AI 更好地协同。例如放射科医生的工作,解读 X 光照片只是其中一部分,实际该岗位并未因 AI 而失业。 同时,对于人工智能的担忧还包括是否会放大人类的负面影响、导致失业以及人类毁灭等。但在技术层级上可以解决类似于社会歧视等问题,人类也有丰富的经验来控制比个体强大的事物,许多未完全控制的事物也有其价值和安全性,而且 AI 还可能成为解决气候变化和大流行病等问题的关键。 另外,ChatGPT 的崛起使人们认为大模型可能是通用的,但通用技术并非通用人工智能(强人工智能),强人工智能的定义是可以像人一样做任何智力任务。
2024-11-13
AI会杀死人类吗
目前对于“AI 是否会杀死人类”这个问题,存在不同的观点和看法。 一方面,有人认为 AI 更像是打开新世界大门的钥匙,能够解锁人类认知的新境界,展现更为广阔的创意领域,赋予想象力以翅膀,而非颠覆或毁灭人类。例如,在一些节目和创作中,AI 被用于辅助生成内容,展现出其积极的作用。 另一方面,也有人对此持有警觉态度。比如 Amazon 的创始人 Jeff Bezos 就做了形象的比喻,认为大语言模型的智能像是被召唤出来的。对于复杂的神经网络内隐藏的秘密研究才刚开始,如何使用和控制这些黑箱模型是业界和社会争论的激烈话题。有人担心 AGI 不加以控制会导致人类灭亡,也有人认为当前的架构即便扩展算力也根本实现不了 AGI。 此外,OpenAI 作为在 AI 领域有重要影响力的机构,其高层认为员工大多是相信 AGI 会到来且将带来伟大时刻的信徒。但 OpenAI 也面临着在满足商业需求和竞争中保持领先的同时,肩负提升人类而非消灭人类的使命的压力。 综合来看,目前不能简单地得出 AI 会杀死人类的结论,但对于 AI 的发展和应用需要谨慎对待,通过合理的约束和引导,让其成为辅助人类、推动社会发展的工具。
2024-10-30
Ai以后会取代人类吗?
AI 是否会取代人类是一个复杂且备受关注的问题。目前有以下观点: 一方面,有人认为按照当前 AI 迅猛的发展速度,在 5 年左右的时间里整个行业就会发生巨大变化。当函数的参数超过兆亿级时,硅基生物可能会理解人类的所有行为及背后意义,从而实现对人类的全面超越。比如,现在觉得 AI 的一些缺点,如画图构图不好、语言模型不够精确等,只是发展过程中的阶段性问题,随着技术进步这些都可能被解决。十几年内,人类的所有事情乃至人类这个种族可能会被 AI 完全替代。 另一方面,也有观点认为鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习比预期更快地获得知识,并带着人类一同进步。AI 的性质让人类可以做一些对人无法做的事情,通过构建系统深入探索其内部工作机制,可能成为下一代专家的教师。 总之,AI 的发展对人类的影响仍存在多种可能性,需要持续关注和研究。
2024-10-16
写一篇 人工智能不能超越人类智能的二辩稿子
以下是为您提供的人工智能不能超越人类智能的二辩稿子: 虽然 GPT4 等技术代表了向通用人工智能(AGI)的进展,但仍存在诸多局限性。例如,GPT4 在智能的某些衡量标准如规划方面不太清晰,缺少“快速学习和从经验中学习”的部分,且存在幻觉问题、基本算术错误等已知缺陷。尽管它在许多任务上达到或超过人类水平,但其智能模式显然不像人类。 生成式 AI 的革命带来了大语言模型,然而人类面对这种人造智能时会产生警觉,关于如何使用和控制这些黑箱模型存在激烈争论。目前科技公司研发的方向是训练辅助人类的超级智能助手,而非自我改进升级的超级自能体,以实现 AI 渐进式融入社会。 总之,当前的技术表明,人工智能在很多方面仍无法超越人类智能,且在未来的发展中需要受到合理的约束和引导。
2024-10-12
ai会替代人类吗,你只能回答是或者否
否。有人认为十几年内人类的所有事情乃至人类这个种族会被 AI 完全替代,但也有人认为即使部分工作被 AI 替代,人类仍有其他事情可做,新的技术会催生新的岗位,且担心人类因依赖 AI 而退化思考和自主决策能力。
2024-09-14
AI帮助人事提高效率
以下是关于 AI 帮助人事提高效率的相关内容: 在金融服务业中,生成式 AI 有望使从多个位置获取数据、理解非结构化的个性化情境和非结构化的合规法律等劳动密集型功能效率提高 1000 倍,但目前仍存在消费者信息分散于多个数据库、金融服务决策复杂且难以自动化、行业高度受监管等问题。 在招聘方面,人工智能虽能简化流程和提高效率,但也带来风险。公司需采取更新人力资源程序、进行尽职调查、修改隐私声明、审查训练数据、保障信息透明度、提供便利措施、定期评估等应对策略。 关于人类和 AI 协作效率,研究发现使用 AI 可显著改善工作效率,如被测试者完成任务量增多、速度加快、质量提高。同时,类似 GPT4 有能力边界,使用 AI 时能力差的被测试者提升更大,过于依赖则可能适得其反。人类和 AI 协作有“半人马”和“机械人”两种方式,前者强调人类主导、合理调配资源,后者注重人机高度融合、循环迭代优化。 综上所述,AI 在人事领域有提高效率的潜力,但也需注意应对相关风险和问题,合理选择协作方式。
2024-11-14
AI如何在平面设计工作流中提高效率,具体的步骤有哪些
以下是 AI 在平面设计工作流中提高效率的具体步骤和相关信息: 1. 工具选择 主要工具:Midjourney 和 Stabel Diffusion。 辅助工具:RUNWAY 和 PS beta 等。 2. 工作流效果 创意多样:设计解决方案更为多样和创新,项目中不同创意概念的提出数量增加了 150%。 执行加速:AI 生成的设计灵感和概念显著缩短了创意阶段所需时间,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效:在整体项目的设计时间减少了 18%。 3. 提升能力的方法 建立针对性的 AI 工作流:使用 lora 模型训练的方式,生成特定的形象及 KV 风格,建立包含品牌形象、风格视觉 DNA 的模型,并根据实用场景进行分类。 实用的模型训练:在营销活动期间,根据市场环境和消费者偏好的变化迅速调整 lora 模型。 AI 设计资产储备:建立和管理 AI 设计资产,沉淀相关知识、技能、工具,促进团队内部的知识积累和提升。 此外,对于建筑设计师审核规划平面图,以下是一些可用的 AI 工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入需求自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据的汇总与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-11-12
如何提高RAG应用中的准确率
以下是一些提高 RAG 应用准确率的方法: 1. 基于结构化数据来 RAG: 避免数据向量化和语义搜索的问题,直接利用原始数据和 LLM 的交互,提高准确率。因为结构化数据的特征和属性明确,能用有限标签集描述,可用标准查询语言检索,不会出现信息损失或语义不匹配的情况。 减少 LLM 的幻觉可能性,LLM 只需根据用户问题提取核心信息和条件,并形成标准查询语句,无需理解整个文档语义。 提高效率,省去数据向量化和语义搜索过程,直接使用标准查询和原始数据进行回复,且结构化数据的存储和更新更易更省空间。 增加灵活性,适应不同数据源和查询需求,只要数据是结构化的,就可用此方法进行 RAG。 2. 参考行业最佳实践,如 OpenAI 的案例: 从较低的准确率开始,尝试多种方法,标记哪些被采用到生产中。 通过尝试不同大小块的信息和嵌入不同内容部分,提升准确率。 采用 Reranking 和对不同类别问题特别处理的方法进一步提升。 结合提示工程、查询扩展等方法,最终达到较高的准确率,同时强调模型精调和 RAG 结合使用的潜力。 3. 深入了解 RAG 的基础概念: RAG 由检索器和生成器组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
2024-11-08
算力怎么提高
提高算力的方法主要有以下几种: 1. 技术创新: 继续在硅基上发展,如采用 3D 堆叠形态,但需要解决更好的散热问题。 材料创新,包括硅基掺杂、石墨烯片等。 探索计算原理的创新,如量子计算,不过目前距离商用还有不少理论和技术需要突破。 2. 提升传输速度:高速网络会进一步进化,片间链接、片上内存等技术都会有明显的进展。 3. 解决能耗和散热问题:高温超导技术是这方面的关键。 4. 白嫖算力的思路: 利用 Groq 平台提供的个人免费 APIKEY 接口,不同模型有相应限制。以 llama370b 为例,每分钟 30 次 request,每分钟 6000 tokens,每天 14400 次。 将 API 调用接入各种平台提供方,无需购买和部署云服务器。 考虑通过代理的方式解决国内 IP 访问限制,如 Cloudflare 或 Deno Deploy 等。 5. 从模型变强的要素来看: 算力方面,根据预估,到 2027 年底很可能会再增加 2 个 OOM,甚至在微软和 OpenAI 的超算合作下,接近 3 个多 OOM 也是有可能的。 算法效率方面,通过对架构的优化,到 2027 年能提升 1 2 OOM。 额外的潜力方面,通过强化反馈学习 RLHF、思考链 CoT、工具和 Scaffolding 等方法微调来提升模型能力。
2024-11-06