Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

统一的AIGC界面,目前有哪些?

Answer

AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。其技术可应用于多种领域,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。

ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是美国 OpenAI 公司开发的一款基于大型语言模型(Large Language Model,简称 LLM)的对话机器人,能够根据用户输入生成连贯且相关的文本回复。

目前常见的统一 AIGC 界面可能因不同的应用和平台而有所差异,暂时没有明确的统一标准界面。但一般来说,像一些专门的 AIGC 工具或平台,会有各自独特的用户交互界面,以方便用户输入需求和获取生成的内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

快速学习 AIGC,有料通俗易懂版!

人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:

快速学习 AIGC,有料通俗易懂版!

人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:

Others are asking
AIGC视频生成领域的最新技术动态
以下是 AIGC 视频生成领域的最新技术动态: 以生成方式划分,当前视频生成可分为文生视频、图生视频与视频生视频。主流生成模型为扩散模型,其涉及深度学习技术如 GANs 和 Video Diffusion。视频生成可用于娱乐、体育分析和自动驾驶等领域,且经常与语音生成一起使用。 用于语音生成的模型可以由 Transformers 提供,可用于文本到语音的转换、虚拟助手和语音克隆等。生成音频信号常用的技术包括循环神经网络(RNNs)、长短时记忆网络(LSTMs)、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能够生成长达一分钟的高保真视频。支持文本生成视频、视频生成视频、图像生成视频,在文本理解方面表现出色,还能在单个生成的视频中创建多个镜头,保留角色和视觉风格。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数,可通过单张图像提示生成交互式环境。 此外,AIGC 周刊中也有相关动态: 2024 年 7 月第三周:未提及视频生成领域的具体内容。 2024 年 7 月第四周:未提及视频生成领域的具体内容。 2024 年 7 月第五周:未提及视频生成领域的具体内容。 2024 年 8 月第一周:未提及视频生成领域的具体内容。 在 AIGC 概述中提到,AIGC 主要分为语言文本生成、图像生成和音视频生成。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。
2024-12-26
AIGC视频生成领域的最新技术动态
以下是 AIGC 视频生成领域的最新技术动态: 以生成方式划分,当前视频生成可分为文生视频、图生视频与视频生视频。主流生成模型为扩散模型,其涉及深度学习技术,如 GANs 和 Video Diffusion。视频生成可用于娱乐、体育分析和自动驾驶等领域,且经常与语音生成一起使用。 用于语音生成的模型可以由 Transformers 提供,可用于文本到语音的转换、虚拟助手和语音克隆等。生成音频信号常用的技术包括循环神经网络(RNNs)、长短时记忆网络(LSTMs)、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能够生成长达一分钟的高保真视频。支持文本生成视频、视频生成视频、图像生成视频,在文本理解方面表现出色,还能在单个生成的视频中创建多个镜头,保留角色和视觉风格。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数,可通过单张图像提示生成交互式环境。 此外,AIGC 周刊中也有相关动态: 2024 年 7 月第三周:未提及视频生成的具体内容。 2024 年 7 月第四周:未提及视频生成的具体内容。 2024 年 7 月第五周:未提及视频生成的具体内容。 2024 年 8 月第一周:未提及视频生成的具体内容。 AIGC 作为一种强大的技术,能够赋能诸多领域,但也存在多重潜在的合规风险。我国对 AIGC 的监管框架由多部法律法规构成。AIGC 主要分为语言文本生成、图像生成和音视频生成,在多个领域展现出广泛的应用前景。
2024-12-26
AIGC
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等都属于 AIGC 的应用。 AIGC 常见的应用包括: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面: 1. 个性化营销内容创作:根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型,开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:自动生成数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。 5. 智能翻译和本地化:提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。 6. 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 AIGC、UGC(普通用户生产)和 PGC(专业用户生产)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式: 1. AIGC:由人工智能生成的内容。AI 通过学习大量的数据,能够自动生成文本、图像、视频等内容。优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。 2. UGC:由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。 3. PGC:由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 SD 是 Stable Diffusion 的简称。它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。我们可以通过一系列的工具搭建准备,使用 SD 进行想要的图片 AIGC。 不过在 AIGC 的应用过程中,仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-12-25
AIGC
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等都属于 AIGC 的应用。 AIGC 常见的应用包括: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面: 1. 个性化营销内容创作:根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型,开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。 5. 智能翻译和本地化:提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。 6. 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 AIGC、UGC(普通用户生产)和 PGC(专业用户生产)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式: 1. AIGC:由人工智能生成的内容。AI 通过学习大量的数据,能够自动生成文本、图像、视频等内容。优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。 2. UGC:由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。 3. PGC:由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 SD 是 Stable Diffusion 的简称。它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。我们可以通过一系列的工具搭建准备,使用 SD 进行想要的图片 AIGC(心想事成的魔法施与)。 不过在 AIGC 的应用过程中,仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-12-25
AIGC的技术原理
AIGC(Artificial Intelligence Generated Content,人工智能生成内容)的技术原理如下: 生成式人工智能(GenAI):基于深度学习技术和机器学习算法,从已有数据中学习并生成新的数据或内容。通过大规模数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。典型的 GenAI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。 机器学习:让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络,具有非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型。 AIGC 工具通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容,从而能够生成包括文本、图像、音频、视频和三维模型等多种形式的内容。
2024-12-24
如何利用 AIGC 技术实现游戏产业的生产力革命,请结合相关技术的原理和框架图进行阐述
利用 AIGC 技术实现游戏产业的生产力革命主要体现在以下几个方面: 1. 降低开发成本:AIGC 技术能够极大程度地减少游戏开发过程中的人力、物力和时间投入。 2. 缩减制作周期:加快游戏的制作速度,使游戏能够更快地面向市场。 3. 提升游戏质量:例如生成新的高质量游戏内容,如地图、角色和场景,改进游戏的图像和声音效果等。 4. 带来新的交互体验:为玩家提供更加丰富和独特的游戏体验。 游戏人工智能技术的未来发展方向还包括: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所,但将游戏中的技术推广到现实世界应用仍面临诸多挑战,需要进一步研究和发展。 2. 为通用人工智能的孵化给予帮助:经多个复杂游戏训练后的“玩游戏”的人工智能体,将为通用人工智能的发展提供支持。 随着游戏中生成式人工智能革命的进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能,创作者只会受到他们的精力、创造力和想象力的限制。生成式人工智能将通过使游戏创作民主化来改变和颠覆 UGC 游戏领域,让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。
2024-12-24
现在有哪些给非设计师快速构建界面的ai工具
以下是一些可以帮助非设计师快速构建界面的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建视图。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持创建逻辑和部署视图等。 7. PlantUML:文本到 UML 转换工具,可自动生成序列图等帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 目前用于产品原型设计的 AIGC 工具包括: 1. UIzard:利用 AI 技术生成用户界面。 2. Figma:基于云的设计工具,提供自动布局和组件库,社区有 AI 插件。 3. Sketch:流行的矢量图形设计工具,插件系统中有利用 AI 技术辅助设计的插件。 在游戏中,从文本提示生成 2D 图像的工具如 Midjourney、Stable Diffusion 和 DallE 2 已广泛应用。生成性 AI 工具在概念艺术方面能帮助非艺术家快速探索概念和想法,一些工作室也尝试用其制作游戏内的生产艺术品。例如,可参考 Albert Bozesan 提供的使用 Stable Diffusion 创建游戏内 2D 资源的教程。
2024-12-19
如果要设计一个对话式的AI用户界面,有哪些要点需要注意?
设计一个对话式的 AI 用户界面,以下要点需要注意: 1. 语言使用: 使用用户熟悉的词语、短语和概念,避免内部术语。 遵循现实世界的惯例,使信息呈现自然和逻辑的顺序。 确保用户能够理解单词的含义,无需查阅字典。 永远不要假设自己对单词或概念的理解与用户匹配,通过用户研究揭示用户熟悉的术语和他们对重要概念的心智模型。 2. 行为引导: 明确告诉 API 意图以及如何行事,避免其偏离轨道。 给 API 赋予一个身份,有助于其以接近真相的方式进行回答。 提供问题和答案示例,让 API 掌握回复模式。 3. 编程方式: 从命令式编程转变为对话式编程,与 AI 进行深度互动,讨论需求而非直接命令。 利用 AI 从想法到实现的全程协助,但初学者需谨慎使用,避免过度依赖导致基础知识缺失,应将其作为学习工具。
2024-12-12
有什么可以生成ui界面的ai工具??
以下是一些可以生成 UI 界面的 AI 工具: 1. UIzard:利用 AI 技术生成用户界面,能根据提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发的一些 AI 插件可增强设计流程。 3. Sketch:流行的矢量图形设计工具,插件系统中部分插件利用 AI 技术辅助设计工作,如自动生成设计元素。 4. Midjourney:目前较容易上手,能通过输入特定指令生成 UI 设计图,如用「ui design forapplication,mobile app,iPhone,iOS,Apple Design Award,screenshot,single screen,high resolution,dribbble」的指令模板,并替换“类型”为产品关键词描述(英文)。还可通过添加页面指令描述生成指定页面,如“landing page、Profile Page”。但目前其产出的设计图更适合在 APP 设计的初始阶段提供灵感和创意,直接落地开发仍有距离。
2024-12-01
图片生成应用界面的工具有哪些
以下是一些图片生成应用界面的工具: 1. 图片生成 3D 建模工具: Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于数十亿参数级别的 3D 大模型,实现快速的 2D 到 3D 转换,并提供 AI 驱动的精准度和细节。 Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成,用户可通过上传图片并描述材质和风格生成高质量 3D 模型。 CSM AI:支持从视频和图像创建 3D 模型,其 Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象再转换为 3D 模型。 Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成,用户可上传图片或输入文本提示词来生成 3D 模型。 VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供图像到 3D、文本到 3D 和文本到纹理等多种功能。 2. 生成透明背景图像的辅助工具: 安装好插件后,在生成图片时勾选“layerdiffusion enabled”。 在“layerdiffusion method”中选择生成透明图像的模式,如“Only Generate Transparent Image”。 提示中输入透明物体的描述,例如“玻璃杯”,点击生成后可得透明背景的玻璃杯图像。 也可上传背景图像,在“layerdiffusion method”中选择“From Background to Blending”,然后生成透明图像。 反之,也可以先生成透明的前景,然后选择“From Foreground to Blending”模式,生成背景。 特定模型: layer_xl_transparent_attn:用于将 Stable Diffusion XL 模型转化为透明图像生成器的模型。 layer_xl_transparent_conv:与 layer_xl_transparent_attn 类似,通过修改 conv 层的 offset 实现将 XL 模型转化为透明图像生成器。 layer_xl_fg2ble:用于将 XL 模型转化为前景图像到混合图像的生成模型。 layer_xl_fgble2bg:用于基于前景和混合图像生成背景的模型。 layer_xl_bg2ble:将 XL 模型转化为根据背景图像生成混合图像的模型。 layer_xl_bgble2fg:将 XL 模型转化为根据背景和混合图像生成前景的模型。 vae_transparent_encoder:图像编码器,用于从像素空间中提取潜在偏移,帮助透明图像的生成。 vae_transparent_decoder:图像解码器,输出真实的 PNG 图像。 3. 文生图工具: DALL·E:OpenAI 推出的一款文生图工具,可根据输入的文本描述生成逼真的图片。 StableDiffusion:开源的文生图工具,能生成高质量的图片,支持多种模型和算法。 MidJourney:因其高质量的图像生成效果和用户友好的界面设计而受到广泛欢迎,在创意设计人群中尤其流行。 您可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。
2024-11-13
coze怎么设置中文界面
要将 Coze 设置为中文界面,您可以按照以下步骤进行操作: 1. 打开 coze.cn/home ,点击创建 Bot 。 2. 输入相关信息,例如“尝试联网”。 3. 尝试询问:今天的 hacker news 上有什么新闻?如果答不出,引入联网插件 WebPilot ,操作方式为:插件> + >选择 WebPilot ,重新尝试联网。 4. 点击右侧设置进入设置界面,下滑找到语言选项选择中文即可。 另外,关于页面汉化中文版的相关信息: 地址:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 安装目录:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 安装方法:三种安装方法具体步骤请跳转 使用说明:点击右侧设置进入设置界面,下滑找到语言选项选择您想要切换的语言。
2024-10-29
我需要找一个根据用户故事 输出界面原型的工具
以下为您推荐一些根据用户故事输出界面原型的工具: 1. 即时设计:https://js.design/ 这是一款可在线使用的“专业 UI 设计工具”,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-18
目前我在帮助出版社改教材,以下是步骤:1.将pdf转为word 2.将公式图片转为公式编辑器中可编辑的公式 3.将相关带29章的文本统一改成23章。哪一步可以借助ai更简便
在您所描述的这三个步骤中,将公式图片转为公式编辑器中可编辑的公式这一步骤可以借助 AI 来更简便地完成。目前有一些 AI 工具和技术能够对图片中的公式进行识别和转换,提高工作效率。但需要注意的是,AI 转换可能存在一定的误差,仍需要人工进行检查和修正。
2024-12-05
sd 人物的模样及服装等统一
以下是关于人物模样及服装的 SD 关键词描述: 人物类型:肌肉公主、舞者、啦啦队等。 性别:单人,包括女人和男人。 身体特征:有光泽的皮肤、苍白皮肤、白皙皮肤等。 头发样式:直发、卷发、波浪卷等。 头发颜色:挑染、内层挑染、头发内变色等。 头发长度:长发、很短的头发、短发等。 具体人物:初音未来、绫波(碧蓝航线)、比那名居天子、蛮啾(碧蓝航线)、爱宕、时崎狂三、洛琪希、西住美穗、星街彗星、时雨、蒂法·洛克哈特、中野一花、南达科他州(碧蓝航线)、白上吹雪、白井黑子、岛风等。 发型特点:身前,单侧编发,人妻发型;挑染,条纹发色;短碎发等。 面部特征:死鱼眼、晒痕、眼睛发光、垂耳(狗)等。
2024-11-20
生图后,人物的模样及服装等统一,用哪一款
在保持人物模样及服装等统一方面,如果使用 Midjourney ,有以下相关信息: 1. Midjourney 有新功能 Cref ,可以先跑一张主角的定妆照,在需要出现主角人物的地方,扔进去 Cref 以保持发型、人脸、衣服。但需要注意的是,Midjourney 对亚洲人脸的 Cref 一致性,比对欧美的人脸的一致性效果差,年轻人的效果相对较好,亚洲老人的效果惨不忍睹。而且 Cref 的效果在画面的审美和构图上有一定的破坏性,所以原则上能不用 Cref 就不用,比如只有背影的时候,写个短发男人黑卫衣就可以。 2. 对于人物一致性,还有两个取巧的方式,一个是生成动物,动物会比较容易保持一致性,另一个方式是特定的名人或有特殊属性的人物。 3. 在使用 Cref 时,您可以在提示词后添加 cref URL 并附上人物图像的 URL ,还可以使用 cw 来修改参考强度,强度 100(cw 100)为默认值,会使用人物的脸、头发和衣服,强度 0(cw 0)时则只关注脸(适合改变服装或发型等)。Cref 不仅适用于 Niji 和普通的 Midjourney 模型,还可以与 sref 结合使用。在网页版 alpha 中,您可以通过拖拽或粘贴图像到想象栏,选择相应图标来设置图像为图像提示、风格参考或人物参考,Shift + 选择一个选项可以将一张图像用于多个类别。
2024-10-10
提示词一定要统一吗
提示词不一定要统一。在一些情况下,使用统一的提示词可能有其优势,例如能更清晰地表达意图、增强可读性、便于扩展和维护等。但在实际应用中,是否采用统一的提示词取决于具体的需求和使用场景。 对于结构化提示词,其具有层级清晰、结构可扩展性强、格式和语义一致性好等优点,其思维链通常包括角色、角色简介、角色技能、角色要遵守的规则、工作流程、初始化准备等环节。但要注意,结构化框架的核心在于清晰、简明、有效、统一,不应为了结构化而结构化。如果不需要增设新的模块,就不必强行加入。 在写提示词时,一般要根据自己想画的内容来写。多个提示词之间使用英文半角符号可将权重降低至原先的 90.91%,可将权重减少为原先的 25%。
2024-10-10
请问国内用什么ai制作绘本是免费且角色统一的?
目前国内有一些可用于制作绘本的免费 AI 工具和相关资源,以下为您提供部分参考: 您可以根据自己的需求选择适合的工具和资源来制作绘本。
2024-09-26
我希望举办一个AGI培训班,要给学员们提供一个统一的AIGC平台,使用chatgpt、midjourney、即梦等AI模型。我该如何办
举办一个 AGI 培训班并为学员提供统一的 AIGC 平台,使用 ChatGPT、Midjourney、即梦等 AI 模型,您可以按照以下步骤进行: 首先,需要明确法律和使用条款方面的问题。ChatGPT 等模型的使用可能受到服务提供商的限制和规定,确保您的使用方式合法合规。 其次,准备必要的技术设施。这包括稳定的网络环境、足够的服务器资源以支持学员的同时使用,以及确保平台的安全性和稳定性。 然后,进行平台的整合和定制。将 ChatGPT、Midjourney、即梦等模型集成到一个统一的界面中,方便学员使用,同时可以根据培训的需求进行一定的定制和优化。 再者,为学员提供清晰的使用指南和教程。包括如何注册、登录、使用各个模型,以及如何理解和应用模型生成的结果。 最后,建立有效的支持和反馈机制。学员在使用过程中可能会遇到问题,需要及时为他们提供技术支持和解答疑问,同时根据学员的反馈不断改进平台和培训内容。 希望以上建议对您有所帮助,祝您成功举办 AGI 培训班!
2024-09-25
文生视频目前最新最主流好用的有哪些,国内外均可
以下是一些国内外最新且主流好用的文生视频工具: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 3. Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多的文生视频网站可查看:https://www.waytoagi.com/category/38 。 以生成方式划分,当前视频生成可分为文生视频、图生视频与视频生视频。视频生成涉及深度学习技术,如 GANs 和 Video Diffusion,主流生成模型为扩散模型。一些具有代表性的海外项目如: 1. Sora(OpenAI):以扩散 Transformer 模型为核心,能生成长达一分钟的高保真视频,支持多种生成方式,在文本理解方面表现出色,能在单个生成的视频中创建多个镜头,保留角色和视觉风格。 2. Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数,被定位为基础世界模型,可通过单张图像提示生成交互式环境。
2024-12-26
目前智能化最好的智能体平台是有哪些?
以下是一些智能化较好的智能体平台: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot,能拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者按需打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 您可以根据自身需求选择适合的平台进行进一步探索和应用。
2024-12-26
目前国内有哪些AI工具,他们分别在哪方面比较厉害
目前国内有以下一些比较出色的 AI 工具: 1. 图像类: 可灵:由快手团队开发,主要用于生成高质量的图像和视频,图像质量高,但价格相对较高,重度用户年费可达几千元,轻度用户有每日免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,生成图像质量高、细节丰富,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可使用。但某些类型的图像因国内监管要求无法生成,处理非中文语言或国际化内容可能存在不足。 2. 编程类: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,可为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于 130 亿参数的预训练大模型,能快速生成代码。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手,基于自研基础大模型微调。 Codeium:通过提供代码建议、重构提示和代码解释帮助软件开发人员提高效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择。
2024-12-26
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
目前字节有哪些可以运用到审核安全业务的ai?
字节在审核安全业务方面可以运用的 AI 包括: 1. OpenAI 的审核(Moderation)Endpoint:可用于检查内容是否符合使用策略,其模型分为 hate(表达、煽动或宣扬基于种族、性别等的仇恨内容)、hate/threatening(仇恨内容且包括对目标群体的暴力或严重伤害)、selfharm(宣扬、鼓励或描绘自残行为)、sexual(旨在引起性兴奋的内容)、sexual/minors(包含未满 18 周岁的个人的色情内容)、violence(宣扬或美化暴力或歌颂他人遭受苦难或羞辱的内容)、violence/graphic(以极端血腥细节描绘死亡、暴力或严重身体伤害的暴力内容)等类别。在监视 OpenAI API 的输入和输出时,可以免费使用审查终结点,但目前不支持监控第三方流量,且对非英语语言的支持有限。 2. 专利审查方面的 AI: 专利趋势分析和预测:AI 可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体 AI 应用示例: Google Patents:使用 AI 技术进行专利文献的全文检索和分析,提高了专利检索的准确性和效率。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地进行专利检索、分类和分析,减少了人工工作量,提高了专利审查的效率和准确性。 其他应用: 专利检索与分类:通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
目前AI不能做哪些事情?
目前 AI 不能做的事情包括: 1. 尽管在某些方面取得了成功,但不能解决所有科学问题。几个世纪以来人类在科学领域逐步积累,仍有众多问题存在,AI 无法完全介入并解决所有这些问题。 2. 目前还不足以完全替代开发者进行复杂项目的开发,尚未达到“言出法随”的境界。 3. 由于技术快速发展,当前使用的某些 AI 工具可能并非最优,且需要考虑其是否适合应用目的以及存在的弱点。 4. 在使用 AI 时需要注意众多道德问题,如侵犯版权、作弊、窃取他人工作、操纵等,特定 AI 模型的构建及受益情况等问题复杂且尚不清晰,使用者有责任以道德方式使用这些工具。
2024-12-25