Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI数据分析案例,工具,玩法,技巧推荐?

Answer

以下是为您推荐的 AI 数据分析相关内容:

Content generated by AI large model, please carefully verify (powered by aily)

References

ChatGPT 助力数据分析:实际案例与技巧

AI数据分析,我这里实现了两种方式,支持多维数据分析:1.SQL分析:分析平台自身的使用情况,如图表配置化平台,输入一句话可分析用户配置图表相关的数据2.个性化分析:平台上支持上传数据,可提供数据信息(非必填),以此自定义分析用户自己上传的数据分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图,可随意切换。

AI 产品案例严选

|标题|简介|作者|分类|前往查看👉|封面|入库时间|<br>|-|-|-|-|-|-|-|<br>|ChatGPT助力数据分析:实际案例与技巧|本文将重点介绍AI与数据分析结合的应用,通过实际案例与相关技巧,描述ChatGPT如何助力数据分析,帮助读者更好地理解并掌握这一领域的创新实践。|krryguo|开发|[ChatGPT助力数据分析:实际案例与技巧](https://waytoagi.feishu.cn/wiki/VYemwG9rIiUHyhkBq9GcXAnUnFf?table=tblJzotqp5g7xZ2b&view=vewJuuzsne)||2023/11/15|<br>|Generative AI的开发工具和基础设施的趋势|这张图描绘了Generative AI的开发工具和基础设施的趋势。它代表了在AI开发领域中,为满足不同需求,工具和基础设施正在逐渐模块化和专业化的趋势。||开发|[Generative AI的开发工具和基础设施的趋势](https://waytoagi.feishu.cn/wiki/CxYhw2XKvi3a5AkzEdBcHV2lnLc?table=tblJzotqp5g7xZ2b&view=vewJuuzsne)||2023/11/15|<br>|Open AI的API和微软Azure并发分析|OpenAI官方并发量是3500 request/minute,90000 token/minute.但是Azure的并发量是300 request/minute,120000 token/minute.相比之下token/minute并发差距不大,但是request/minute差距是10倍.||开发|[Open AI的API和微软Azure并发分析](https://waytoagi.feishu.cn/wiki/RoDEwEmo5i3uc7kIyQIcnp3snvg?table=tblJzotqp5g7xZ2b&view=vewJuuzsne)||2023/11/15|

AI 产品案例严选

|标题|简介|作者|分类|前往查看👉|封面|入库时间|<br>|-|-|-|-|-|-|-|<br>|营销:定制营销报告|汇报对象身份(下属、跨部门平级、领导)、销售数据(销售额、销售量、销售渠道)、财务报告(营业收入、净利润、成本费用)、市场分析(市场份额、竞争情况、市场趋势)、客户反馈(客户满意度、客户投诉、客户留存率)、营销效果评估(广告投放效果、促销活动效果、营销策略效果)||工作|[营销:定制营销报告](https://waytoagi.feishu.cn/wiki/YUDXwnj39itoxEkw446cLh1snCe?table=tblwdvsWICkId67f&view=vewm6DMY99)||2023/10/30|<br>|办公:高效做PPT|用ChatGPT做PPT,我们还需要用到另一个小技巧,就是希望它用Markdown语法来展示内容。后面再借用另一个工具MindShow把Markdown内容转换为精美的PPT。||工作|[办公:高效做PPT](https://waytoagi.feishu.cn/wiki/RWZPwT0ETiqVwIkB8qQcrgRwnog?table=tblwdvsWICkId67f&view=vewm6DMY99)||2023/10/30|

Others are asking
想转型AI产品经理,推荐学习的资料有?
以下是为您推荐的学习资料,有助于您从产品经理转型为 AI 产品经理: 1. 林粒粒呀的相关视频,如“小白如何理解技术原理与建立框架”,其中介绍了思维链、RAG、PAL、ReAct 等概念,并且提到 Transformer 是仿生算法的阶段性实现。 思维链:谷歌在 2022 年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】。 RAG:检索增强生成(RetrievalAugmented Generation),外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 PAL:程序辅助语言模型(ProgramAided Language Model),2022 年一篇论文中提出,对于语言模型的计算问题,核心在于不让 AI 直接生成计算结果,而是借助其他工具比如 Python 解释器作为计算工具。 ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助 LangChain 等框架简化构建流程。 2. 余一的相关内容,如《AI 时代个人生存/摸鱼探索指南.Beta》《从 2023 年报,看中国上市公司怎么使用生成式 AI》。 3. 相关网页链接: 创新公司观察: 2022 2024 年融资 2000w 美金以上的公司列表和详细公司分析:https://ameliadev.notion.site/202220242000w08f50fafd81b420fa7f26ecd6c0b3243?pvs=4 AI Grant 公司列表和详细公司分析(三期):https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AIGC 行业与商业观察(2024.1):https://gamma.app/docs/AIGCDev9q1bax2pspnlxqu 【AI 产品/功能构建】: 顶级科技公司产品团队正在构建哪些 AI 功能【总览】:https://gamma.app/docs/AIzawqmb2ff3cv958 顶级科技公司产品团队正在构建哪些 AI 功能【产品分析】:https://gamma.app/docs/AItebxqet8ubz3rje 顶级科技公司产品团队正在构建哪些 AI 功能【思考借鉴】
2025-03-18
有什么使用AI驱动的游戏项目吗?其中有哪些比较热门
以下是一些使用 AI 驱动的游戏项目及热门情况: 1. 《Among Us》:由只有 5 名员工的工作室 Innersloth 制作。 2. 《微软模拟飞行》:有新的游戏类型和与新内容实时生成结合的特点。 3. 《AI Dungeon》和《Hidden Door》:基于文本的早期游戏例子。 4. 《Suck Up!》:2023 年 12 月由 Proxima 工作室开发的“喜剧欺骗游戏”,玩家扮演吸血鬼与 LLM 驱动的 NPC 对话,上线仅两周全网播放火速突破千万。 此外,还有以下趋势和特点: 1. 由人工智能辅助的“微型游戏工作室”逐步崛起,小型工作室能创造的游戏规模将增长。 2. 每年发布的游戏数量会增加。 3. 新的游戏类型将会被创造出来,例如以人工智能创造的角色为特色的 Spellbrush 的 RPG 游戏 Arrowmancer。 4. 有的游戏开发商使用人工智能让玩家在游戏中创建自己的头像。 生成式 AI 将使生产高质量游戏变得更加简单、更快和更便宜,同时使玩家能够真正定制他们的游戏体验。我们已经看到像 Scenario、Iliad 这样可以创建游戏资源的 AI 工具,以及像 Promethean 这样可以构建整个虚拟世界的平台。甚至可以用像 Inworld、Charisma 和 Convai 这样的产品生成非玩家角色(NPC)。
2025-03-18
有没有适合记录会议纪要的AI
以下是一些适合记录会议纪要的 AI 工具和方法: 1. 案例一:【普通人秒变效率王】AI 工作流秒记会议纪要 视频讲解:https://m.okjike.com/originalPosts/65fa9d1112ed2fda68e6215e?s=eyJ1IjoiNTlhZDcyZDUwYjAyYTEwMDEyMjc3YmZmIiwiZCI6MX0%3D 工作流概述: 文本导出:使用飞书妙记将会议对话导出为 txt 文件 纪要生成:启动 Kimichat 输入会议纪要 prompt 提示词并上传 txt 文件 内容完善:与 Kimichat 对话并补充会议中未记录或需强调的信息 纪要微调:审阅 Kimichat 生成的会议纪要草稿进行必要微调 成品输出:确认会议纪要内容无误后,输出最终版文档 和 Kimichat 的完整对话(点击可直接复用并接着聊):https://kimi.moonshot.cn/share/cnsk08phmfr6s04umlrg 2. 总结类 AI 工具: 3. 免费的会议语音转文字工具: 飞书妙记:https://www.feishu.cn/product/minutes ,飞书的办公套件之一 通义听悟:https://tingwu.aliyun.com/home ,阿里推出的 AI 会议转录工具 讯飞听见:https://www.iflyrec.com/ ,讯飞旗下智慧办公服务平台 Otter AI:https://otter.ai/ ,转录采访和会议纪要 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-18
我自己想做一个英语背单词的游戏,让AI写出Markdown代码运行后,发现问题很大,但是我有不知如何修改这些代码。所以我觉得自己应该懂Markdown 代码语言。但是我不知道Markdown是最适合的编程语言吗?
Markdown 语言不太适合用于编写复杂的英语背单词游戏。虽然 Markdown 简单易用,常用于文档格式化,但在实现游戏逻辑和功能方面存在较大局限性。 如果您想开发英语背单词游戏,更适合使用编程语言,如 Python 等。在处理代码问题时,您可以参考以下方法: 1. 对于编程小白,向 AI 提供代码范例,尤其是新进入代码节点的 IDE 中的范例,减少对 AI 所写代码的改动。 2. 向 AI 说清楚输入变量与输出变量的类型。 3. 说明与工作流中匹配或想要的变量名称,以减少二次修改。 4. 列出输入变量的具体书写形式,对于复杂形式可使用特定方法获取。 5. 说清楚代码要实现的功能,复杂功能尽量将运行逻辑描述清楚,多用变量名称指代涉及的变量。 如果代码运行效果不尽人意,可把当前的代码、输入变量、预期结果提供给 AI,并告知错误的结果或者报错信息,让 AI 帮忙寻找问题并提供修改方案。提问时可参考以下方式: 以上是我目前的 python 代码,我的输入变量。 但是代码运行后的实际结果却是。 另外,在游戏开发与修改过程中,还需注意文件的存放要求、功能优化、平台上传等方面的问题。例如,三个重要文件需在一个文件夹,本地内置图像、音乐等也需在同一文件夹。游戏功能可增加关卡、调整金币获取和技能点花费、解决 Bug 等。研究将游戏发布到 4399 开放平台时,需注册、实名制,审核较严格。获取游戏素材可从官网免费下载或淘宝购买抠好的素材。
2025-03-18
什么ai可以帮我修改简历美化简历
以下是一些可以帮助您修改和美化简历的 AI 工具: 1. 超级简历优化助手:分析简历内容并提供优化建议,帮助用户优化简历提高求职成功率。 2. ResumeMatcher:AI 驱动的开源简历优化工具,提供智能关键词匹配、深入分析见解,提升简历通过 ATS 筛选的几率。 3. KickResume:提供 AI 简历重写服务,使用 OpenAI 的 GPT4 语言模型,能在几秒钟内修复简历错误、使其更专业,并使用行业术语和关键词优化简历,帮助用户通过 ATS 筛选,生成与求职职位匹配的求职信。
2025-03-18
AIGC 检测
以下是一些常见的 AIGC 检测相关的信息: AIGC 论文检测网站和工具: 1. Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统自动分析并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 6. :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统提供分析结果。 7. GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统分析并提供报告,显示文本是否由 GPT3 生成。 8. Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统分析并提供结果。 判断一张图片是否 AI 生成: 可以使用一些网站,例如 ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中可能存在误判,比如将结构严谨的真实摄影作品识别为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。
2025-03-18
请起草一份小白学习AI辅助修图的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是为您提供的小白学习 AI 辅助修图从入门到精通的教程大纲: 一、基础知识与基本玩法 1. 了解 AI 辅助修图的概念和基本原理。 2. 熟悉常见的 AI 修图工具和软件。 二、常见问题与注意事项 1. 风格局限性:如全是二次元风格,缺少适合特定需求的风格。 2. 图像叙事性不足:画出来的多为美少女看镜头,缺乏叙事内容。 3. 素材局限性:已有素材单一,图生图可行性低,训练泛化性差。 三、常见误区与避坑指南 1. 避免盲目依赖初始的 Embedding、CKPT 等方法,不断尝试和改进。 2. 注意训练集中人物朝向固定等问题,采取相应处理措施,如镜像处理。 四、从入门到精通的进阶玩法 1. 掌握不同的训练方法,如 Lora 等,以获得更理想的效果。 2. 学会引导 AI 画出具有前景后景区分明显的图像,如制作引导图。 五、高级卡 bug 玩法 探索一些非常规但有效的技巧和方法,以突破常规限制,实现更出色的修图效果。但需注意,此部分玩法可能存在一定风险和不确定性。 六、常见红海赛道 分析当前 AI 辅助修图在不同领域的竞争激烈程度和应用热点。 在学习过程中,还需了解以下 AI 相关的技术原理和概念: 1. 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈中学习。 深度学习参照人脑神经网络,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式。 LLM 为大语言模型,不同模型有不同擅长的任务。 3. 技术里程碑:2017 年 6 月谷歌团队发表的《Attention is All You Need》提出了 Transformer 模型。
2025-03-05
请起草一份小白学习AI应用(包括app和网站)的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是一份小白学习 AI 应用(包括 app 和网站)的入门到精通的教程,涵盖学习大纲、常见问题等方面: 一、学习大纲 1. 了解 AI 基本概念 阅读相关资料,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅 参考「」中的初学者课程,了解生成式 AI 等基础知识,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,包括图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 分享实践后的经验和成果。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用体验。 二、常见红海赛道 目前,AI 在自然语言处理、图像识别、智能推荐等领域竞争较为激烈。 三、常见问题 1. 对复杂应用的需求理解不准确,导致产品出错。 2. 技术组件的配置和整合可能遇到困难。 四、注意事项 1. 注重基础知识的学习,打牢根基。 2. 实践过程中要耐心,遇到问题多尝试解决。 五、常见误区 1. 认为 AI 学习短期内就能精通,忽略了长期积累和实践的重要性。 2. 过度依赖现成的模型和工具,缺乏对原理的深入理解。 六、避坑指南 1. 在选择学习资源时,要注意其权威性和适用性。 2. 开发 AI 应用时,要充分考虑用户需求和实际场景,避免盲目跟风。 希望以上内容对您有所帮助,祝您在 AI 学习的道路上取得成功!
2025-03-05
请起草一份小白学习AI视频制作的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是一份小白学习 AI 视频制作从入门到精通的教程大纲: 一、基础玩法 1. 项目规划 确定短片主题和目标观众。 制定详细的制作计划。 2. 剧本创作 编写故事脚本。 设计角色和场景以及创意。 3. 分镜头脚本 根据脚本制作分镜头脚本,确定每个镜头的画面和动作。 4. 资源准备 准备动画制作所需的素材,包括背景、角色和音效。 5. 画面图片制作 利用 AI 出图工具,比如通过 ChatGPT、MJ、SD 等工具快速生成高质量的图片。 6. 视频制作 利用 AI 工具制作动画,通过 RUNWAY、Luma、Dreamina 等平台快速生成高质量的动画。 7. 后期剪辑 添加音效、配音和字幕,进行最终的剪辑和合成。 8. 发布和推广 将完成的动画短片发布到各大平台,并进行推广和宣传。 二、高级玩法 1. 写提示词 掌握有效的提示词撰写技巧,以获得更符合需求的生成结果。 2. 导入图片用 Mini Max、模型的首尾帧玩法等操作实现一镜到底效果。 3. 利用不同模型进行创作,如海螺无限生成。 4. 反复修改提示词以优化生成效果。 三、常见红海赛道 1. 创意广告类视频。 2. 短视频故事类。 四、常见问题 1. 生成效果不符合预期。 2. 工具操作不熟练。 3. 资源获取困难。 五、注意事项 1. 注重版权问题,合法使用素材和工具。 2. 不断学习和更新知识,跟上 AI 技术发展。 六、常见误区 1. 过度依赖 AI,忽略自身创意和审美。 2. 忽视视频的逻辑性和连贯性。 七、避坑指南 1. 提前了解不同工具的收费模式,避免不必要的费用支出。 2. 多参考优秀案例,避免重复常见错误。 希望这份大纲能帮助您在 AI 视频制作的学习道路上不断进步!
2025-03-04
DeepSeek玩法
以下是关于阿里云上的 DeepSeek 玩法的相关信息: 课程安排: 2025 年 2 月 25 日 20:00 :阿里云百炼篇:用 DeepSeek 搭建智能体,包括阿里云百炼满血版 DeepSeek 介绍,基于阿里云百炼的 DeepSeek 智能体搭建。课程文档: 2025 年 2 月 26 日 20:00 :人工智能平台 PAI 篇:本地部署满血版 DeepSeek,包括 DeepSeek R1 技术原理,解锁 DeepSeek 的不同玩法(问答助手、蒸馏、微调),实战演练:DeepSeek R1 满血版快速部署&蒸馏训练。课程文档: 讲师:许键,AI 产品经理,创业公司联合创始人,WayToAGI 社区 Agent 版主,各大 Agent 平台奖项“杀手” 课程内容亮点: 第一节:用 DeepSeek 搭建智能体 第二节:全网最简单的 DeepSeek 的部署和蒸馏手把手教程 相关链接: 飞书会议链接:https://vc.feishu.cn/j/254331715 共学文档链接: 阿里云百炼地址:https://bailian.console.aliyun.com/ 开通满血版 R1 模型: 在模型广场找到 DeepSeekR1 并授权。页面上有免费的 100w 额度和已使用量,每人免费送 100w 额度,过期则浪费。此模型是阿里云自主部署,经推理优化,性能强于多数满血版本地部署。用完还有免费的蒸馏版 R1 模型,也是 100w token。这些模型可在“首页”或“直接体验”直接使用,也可通过 API 调用,如 chatbox 直接使用,还可进行模型效果对比。
2025-02-25
PIKA和pixverse的特效玩法,原理是什么
PIKA 推出了特效工具 PIKAFFECT,它能够提供崩塌、溶解、瘪掉、魔术等特效处理,有助于创意视频的制作。关于 Pixverse 的特效玩法原理,目前所提供的内容中未给出明确的相关信息。
2024-11-20
coze主要的作用和玩法
Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它旨在简化 AI 机器人的开发过程,使得无论是开发者还是非技术用户,都能够快速搭建基于 AI 模型的各类问答 Bot,处理从简单问答到复杂逻辑对话的任务。 Coze 平台的主要特点包括: 1. 多语言模型支持:Coze 使用了大型语言模型,如 GPT48K 和 GPT4128K,并提供了云雀语言模型等,以支持不同场景下的对话和交互。 2. 插件系统:平台集成了超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件,以扩展 Bot 的能力。 3. 知识库功能:Coze 允许用户上传和管理数据,支持 Bot 与用户数据交互,可以上传 TXT、PDF、DOCX、Excel、CSV 格式的文档,或基于 URL 获取在线内容和 API JSON 数据。 4. 数据库和记忆能力:Coze 提供了数据库功能,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 5. 工作流设计:用户可以通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,Coze 提供了大量灵活可组合的节点,如大型语言模型(LLM)、自定义代码、判断逻辑等。 总的来说,Coze 是一个强大而灵活的 AI 聊天机器人和应用程序编辑开发平台,它提供了丰富的功能和工具,帮助用户快速构建和部署智能聊天机器人应用程序。
2024-06-14
数据分析 转成可视化图
以下是关于将数据分析转成可视化图的相关内容: 实践 1:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴图形。 打开数据集,分析数据: 发现第一行有着 Formatted Date,Precip Type,Temperature 表头,这三列与数据可视化目的明显关联,Formatted Date 数据提取整理后可作横坐标,Precip Type 数据反映月降雨天数,Temperature 数据反映气温趋势。 新建 python 文件,开始编程: 选择 python 文件,命名保存。 调用库: 读取数据:文件格式为 csv,可用 pandas 库。 数据处理:处理出 x 轴及有关气温、降雨的数据。 创建图表、添加标题与图例、保存并显示图形。 试运行与 Debug: 可能出现左纵坐标数据明显有误的情况,如降雨天数数值过大。原因是一天记录了多个时刻的天气状况,而写代码时未考虑,直接把出现“rain”的都记录了进去。 给 MarsCode 说明问题,重新生成代码,结果符合预期,可视化目的实现。 ChatGPT 助力数据分析:实际案例与技巧 问题与技巧: 公用逻辑: 在 user prompt 限定 SQL 和数据分析及其返回格式,不用 system prompt 的原因:一是 system prompt 已承载表结构信息;二是 user prompt 遵循力度更高。 分开定义单维度数据和多维度数据的 prompt,而不直接丢给让 GPT 判断的原因:存在两种结果导向的 prompt 约有 50%几率 GPT 会犯傻,最好在发送请求前用条件运算符区分格式的 prompt,代码判断后决定使用。 前端渲染图表:SQL 分析的接口或个性化分析解析的数据文件所获得的 tableData,其格式与渲染表格的格式一样为对象数组。让 GPT 判断出对象的 key 值映射:keyMap,得知维度、数据项、数据值的 key,就可拿到并处理成图表所需的 series、xAxis。 流程: 第一个 user prompt:限定 SELECT SQL,要求不要用 SELECT查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列:数据项、数据值,且不能直接查询长类型字段。 system prompt 是表结构信息,如有难以理解的字段可告知 GPT 字段意义,多个表可分开描述。 校验 GPT 生成的 SQL,不通过直接返回提示,通过再执行 SQL 查询数据。 数据分析的 user prompt:提示数据分析,限定返回的 JSON 格式:conclusion、keyMap、title。采取分开定义单维度数据和多维度数据的 prompt,根据结果数据 tableData 的维度,用条件运算符选择对应的 prompt,再传递给 GPT。 结果数据 tableData 跟随接口一起返回到前端,已通过 SQL 查询的数据,不能让 GPT 又生成一次。
2025-03-16
帮我生成一个本科的论文题目,专业是学前教育,要有数据分析
以下为您生成几个关于学前教育专业且包含数据分析的本科论文题目,供您参考: 1. 《基于数据分析的学前教育课程设置对幼儿发展的影响研究》 2. 《学前教育中幼儿游戏行为的数据分析与教育策略研究》 3. 《通过数据分析探究家庭环境对学前儿童心理健康的影响》 4. 《基于大数据分析的学前教育师资培训效果评估》 5. 《利用数据分析研究学前教育机构设施配备与幼儿学习效果的关系》
2025-03-16
AI可以做数据库的数据分析
AI 可以用于数据库的数据分析,以下是相关内容: ChatGPT 助力数据分析的流程: 逻辑流程图如下: 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 相关问题与技巧: 1. SQL 分析: 反复校验是否为 SELECT SQL 语句,不仅因为 AI 不完全可控,还因为不能相信用户输入,防止恶意操作。非查询类 SQL 坚决不通过,提示不支持此类请求。 到 AI 分析步骤拼接上下文,是为了让 GPT 更好理解数据和字段的意义,使分析更准确。 针对表结构长类型字段,不允许直接查询,防止 token 消耗过多。最好告诉 GPT 只允许查询哪几个字段,或者用哪几个 SQL 函数,尽量让 GPT 生成可控。 2. 个性化分析: 用户上传的数据解析后需判断数据格式是否符合要求,超长可限制截取前面若干项,防止 token 消耗过多。 在前端解析用户上传的数据,分析完可直接用于渲染数据图表,无需后端再返回。 支持用户补充输入,可简单描述数据、字段意义或作用,用于辅助 AI 分析。对于易理解语义化的字段名,可不描述,GPT 也能识别。遇到多维度数据,为保证准确性,可输入“以 xxx为维度分析”或“这是 xxx 数据”。 AI 术语库中的相关术语: |术语 ID|原文|译文|领域|易混淆|缩写|不需要提醒| |||||||| |ROW1|DataDriven Spectral Analysis|数据驱动的光谱分析|AI||| |ROW1|DataMining|数据挖掘|AI|1|| |ROW1|Database|数据库|AI||| |ROW1|DE Algorithm|差分进化算法|AI|1|| |ROW1|Deeplift|DeepLift 模型|AI||| |ROW1|Dendrogram|树状图|AI||| |ROW1|Density Functional Theory|密度泛函理论|AI||| |ROW1|DensityBased Spatial Clustering Of Applications With Noise|DBSCAN 密度聚类|AI||| |ROW1|Descriptor|描述符|AI||| |ROW1|DFT Calculations|DFT 计算|AI||| |ROW1|Dice Similarity|戴斯相似度|AI||| |ROW1|Differential Evolution|差分进化|AI|||
2025-03-14
怎么基于飞书表格数据分析
基于飞书表格进行数据分析可以参考以下步骤: 1. 应用的背景说明 解决的问题:使用 Coze、飞书多维表格、自定义 AI 字段捷径来实现数据的高效抓取与批量 AI 化处理。 技术场景:包括 Coze 定义智能体并发布到飞书多维表格字段捷径,多维表格中使用和配置自定义的 AI 字段捷径,Coze 应用采用交互式界面将数据导入到飞书多维表格并驱动其自动运行,以及多维表格仪表盘对数据的可视化。 期望达到的目的:更多是希望大家能了解“如何最高效率使用 AI”,并将方案泛化到自己的实际工作中,同时选择了最适合的技术路线(不懂代码即可完成)。 2. 动手实践 设计多维表格:进到飞书,新建一个多维表格,配置字段,新建一列,选择编辑列,完成相关设置。配置完后,打开自动更新,若 note_url 有赋值,模型分析会自动触发。 配置其它列:例如在第一列中设置提取标题,同理可新建列提取正文、点赞、转发、评论列表等数据,进行更多自动化处理,包括笔记内容分析、仿写、改写,封面分析、标题拆解、图文复刻、视频提取分析(逐帧解析)分析视频、音频和字幕等数据分析,基于评论列表的舆情分析、情绪分析、线索挖掘、需求挖掘等。 更多资源:关于多维表格相关教程,推荐复习。 3. 创建知识库并上传表格数据 上传方式:本地文档 操作步骤: 在表格格式页签下,选择本地文档,然后单击下一步。 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档,然后单击下一步。目前支持上传.csv 和.xlsx 格式的文件内容,且表格内需要有列名和对应的数据。每个文件不得大于 20M。一次最多可上传 10 个文件。 配置数据表信息后,单击下一步。包括指定数据范围(通过选择数据表、表头、数据起始行指定数据范围)、确认表结构(系统已默认获取了表头的列名,可自定义修改列名,或删除某一列名)、指定语义匹配字段(选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配)。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。
2025-03-12
AI赋能办公,包含AI+对话、AI+写作与PPT、图片与视频生成和数据分析,还有面向HR、行政、财务、营销等岗位的AI赋能课
以下是关于 AI 赋能办公的相关内容: GPT 使用场景: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 演示:https://chat.openai.com/ 、https://bard.google.com/extensions 、https://claude.ai/ 2. 聊天机器人:作为聊天机器人后端,提供自然对话体验。 演示: 3. 问答系统:为用户提供准确答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:虽非专门设计,但有不错表现。 6. 群聊总结: 7. 代码生成:GPT3 及后续版本可生成代码片段,帮助解决编程问题。 8. 教育:用于教育领域,帮助学生解答问题或提供学习材料。 9. 浏览器插件:webpilot 10. PDF 对话:演示 www.chatpdf.com PPT 相关: 1. 2. AiPPT.cn:爱设计&AiPPT.cn 是一家 AIGC 数字科技企业,致力于打造“下一代个人与组织的 Ai 工作站”。旗下产品包括 AiPPT 等超过 10 余款应用 AI 能力的内容创作工具。23 年在 Ai+办公领域推出 AiPPT.cn/AiPPT.com,帮助用户“一分钟一键生成 PPT”,是国内 AiPPT 赛道创业公司第 1 的产品,全球第 4,国内所有 AIGC 产品 PC 端 Top10。目标市场主要是市场、运营、销售、人力、财务、行政、技术、产品、总助、公务员、学生、老师等基层及中高层管理岗位人员。 3. 在众多的 PPT 工具中,AI 带来便捷高效体验。深入了解了五大 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI,它们各自有鲜明特色和擅长场景。选择合适工具要根据实际需求调整,试用和体验比盲目跟风更明智。 其他: 1. 音视频提取总结:https://bibigpt.co/r/AJ 2. 播客总结:https://podwise.xyz/dashboard/trending 3. 生成脑图:https://xmind.ai/editor/
2025-03-12
数据分析师常用的prompt
以下是数据分析师常用的 prompt 相关内容: 1. ChatGPT 助力数据分析: 第一个 user prompt:限定 SELECT SQL,不要用 SELECT查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段(如 mediumtext/longtext),可用 count/substring 等函数查询。 system prompt 是表结构信息,如有难以理解的字段可告知 GPT 字段意义,多个表可分开描述。 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 数据分析的 user prompt:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title),keyMap 用于数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,用于映射数据渲染图表,根据结果数据 tableData 的维度选择对应的 prompt 传递给 GPT。 结果数据 tableData 跟随接口返回到前端,已通过 SQL 查询的数据,不能让 GPT 再次生成,否则耗时。 2. 数据:数据分析 prompt:https://notion.castordoc.com/gptprompts,castordoc 整理的适合数据团队日常使用的 prompt 案例。 3. 潘帅:手把手分享法律人如何用好 AI—Prompt 篇: 律师常用 Prompt 场景: 案例检索:最好使用法律行业垂类的 AI 产品,通用型 AI 存在问题。 Prompt 指令词示例: 请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。 检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。 比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。 研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。 Promopt 结构提示:【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望 AI 做的事情】 类案检索:最好使用法律行业垂类的 AI 产品,通用型 AI 存在问题。
2025-03-11
AI和教育结合的案例以及资料
以下是一些 AI 和教育结合的案例及相关资料: 张翼然是湖南农业大学教育技术系副教授,国家教学成果奖获得者,也是“人工智能+教育”实践专家。其相关研究包括 AI 从工具到助手赋能教师提升效率与能力、AI 与教育场景融合拓展教学边界与创新场景、AI 与人类智能的共生放大学生思考力塑造深度学习能力、AIGC 教育革命:技术原理与课堂实践、大语言模型的教学潜力:交流技巧与心得、一线教师的 AI 需求与高效工具推荐、AI 赋能课堂的核心逻辑:从理论到应用、解码 AI 教学案例:创新与实践等。 例如,在个性化支持与学习自主性方面,AI 通过数据分析与即时反馈,提供定制化学习路径和资源,帮助学生根据自身兴趣、需求和能力规划学习,同时赋予学生更多学习自主权,支持自定步调学习,实现精准教学,关注每个学生的个体需求,帮助学生在学习过程中培养自主决策能力。 在科技伦理与批判性思维方面,通过 AI 生成的开放性问题与多维数据,帮助学生审视技术的潜在风险,培养批判性思维与负责任的科技使用态度,引导学生辨析技术优劣,理解科技的伦理边界,通过讨论和反思提升学生的审辨能力。如课堂讨论 AI 生成内容的真实性与偏见,并设计项目探索数据隐私的保护方案。 同时也指出了大模型在多数任务中可快速达到及格水平,但在绝大多数领域难以达到优秀水平,以及现阶段 AI 在教育领域应用存在知识适配的层次性问题等局限性。 深圳福田区梅山中学梁玉老师使用百度文库的 AI 有声画本导入故事生成,用即梦 AI 生成数字人。 教研员贺亚使用通义千问根据评分标准改英语作文。 黎加厚提出让每一位教师都掌握教育智能体金钥匙。
2025-03-17
我要策划一个朋友圈发的海报,需要有些prompt指导,看看有没有类似的案例或者相似的案例
以下为您提供一些朋友圈海报的 prompt 指导及相关案例: 即梦图片 2.1 模型: 模型上线,已支持在图片中生成中文字体。 操作步骤: 第一步:打开即梦官网 https://jimeng.jianying.com/ 第二步:点击进入图片生成页面 第三步:生图模型选择图片 2.1 模型 案例: 提示词:咖啡店穿着服务员服装的猫咪,揉着眼睛,文字“小店打烊了” 提示词:一只布偶猫举着牌子,牌子上写着“睡什么睡,起来嗨” 提示词:电影宣传海报,画面中间是韦小宝,四周是七个宫女,标题文字“重生之我是韦小宝” 提示词:电商节日海报,背景是上海外滩,圣诞节布置,旋转木马,节日的气氛,标题文字“圣诞集市” 即梦:女神节海报教程: 原文链接:https://mp.weixin.qq.com/s/CYmlZDPjrchnKr8V4lvmRQ 操作步骤: 第一步:打开即梦 AI,选择“图片生成”功能 https://jimeng.jianying.com 第二步:模型选择图片 2.1,输入提示词(可以直接参考案例提示词) 第三步:点击生成,几秒钟后,专属字体海报完成 案例: 案例一:提示词:女神节主题,3D 设计,梦幻氛围,明亮春天场景,花田,数字 38,天空“女神节”,五彩缤纷的蝴蝶,晴朗的蓝天,茂密的绿色草地,盛开的花朵,柔和光线 案例二:提示词:粉色主题,梦幻氛围,数字 38,心形气球,花卉装饰,玫瑰花,漂浮的花瓣,柔和的云朵,美丽的湖面倒影,奇幻风格,柔和的色调,庆祝场景 案例三:提示词:妇女节,3D 设计,粉色主题,大号装饰数字 38,爱心,郁金香花朵,柔和光照,背景城市天际线,精致花卉装饰,优雅节日氛围,金色文字,春天氛围,细致鲜艳 希望这些内容对您策划朋友圈海报有所帮助!
2025-03-13
教育行业有那些基于aigc的业务实际落地的产品和案例?
以下是教育行业基于 AIGC 的一些业务实际落地的产品和案例: 教师的 AI 减负指南生成式人工智能在教学中的应用,包括教师使用 AI 的小技巧。涉及人员有张亚丽、富露露、张亚玲、张楚璇、吴箭枢等,学校有深圳大学附属中学、苏州工业园区娄葑学校、上海市静安区风华初级中学南校、江苏省苏州工业园区教师发展中心中学、苏州工业园区唯亭学校初中、中央民族大学附属中学等。 AIGC 人机协同国家课程项目化学科实践设计与实施,例如以科学《计量时间博物展》为例,以及基于思维可视化的项目式主题学习设计与实践,如以智驾未来课程为例。相关人员有祝琛、崔琴、张然、刘敏、王国庆、吴沁珂等,学校有深圳市南方科技大学教育集团实验二小、成都经济技术开发区实验小学校。 Al 创作家:用 AI 辅助设计桌游,解决学校实际问题,如北京市新英才学校的魏一然所做的工作。 生成式人工智能与教学变革:AI 领雁行动的探索与实践,相关人员有邹贤莲、向雪萍、陈治佑、余初冉、阊洪娇,学校有重庆两江新区行远小学校。 北京市新英才学校的跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 的帮助下备课和授课,生物和信息科技老师合作一起带着学生用训练 AI 模型,用以识别植物。 AIGC 常见名词解释,如 AIGC 意为人工智能生成内容,能进行 AIGC 的产品项目和媒介众多,包括语言文字类的 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等,语音声音类的 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,图片美术类的 Midjourney、Stable Diffusion 等。
2025-03-13
有没有接入微信消息的coze工作流案例
以下是一些接入微信消息的 Coze 工作流案例: 1. 【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程) 搭建工作流: 设置 Bot: 人设和回复逻辑:由于 Bot 主要依托于工作流,设置提示词,直接调用工作流,将 sum_weixin_2_2 替换为工作流的名称。 工作流:添加刚刚创建的工作流。 设置触发器:选择「定时触发」,选择触发的时间,比如每天 18 点,任务执行时输入工作流中开始节点的输入参数,如 key 为 Server 酱的 sendkey,rss_list 可以使用提供的测试数据。触发器在设定时间点根据输入项内容执行工作流,从而在微信收到推送的总结内容。可以同时设置多个触发器,最多 10 个,可推送给不同的人或分不同时间段给自己推送不同内容。 发布到飞书:点击右上角「发布」,注意渠道选择飞书,因为目前 Coze 平台触发器只对飞书渠道生效。 2. AI 实战:搭建信息情报官 Agent 先在 http://open.feishu.cn 上建飞书机器人,并添加知识库或多维表格编辑权限,获得机器人的 app_id 和 app_secret 以获取租用 token:tenant_access_token 来获取多维表格数据和编辑能力。 工作流一:通过微信文章链接进行文章解读成摘要报告,通过 LLM 能力,开源提示词如下。由于 Coze 使用 LLM 和批量执行任务延时的约束,建议不要同时处理太多文章(如 6 篇左右)。执行后将多维表格的文章状态转换成“已通知”并生成简报。 消息情报官 Bot:通过 Coze 建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,变成一个消息情报官的 Agent,发布到 Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等。可以构建多个分身,收集整理不同领域和行业的情报信息。 3. Bot 智能体|用 Coze 实现【多模态资讯的跨平台推送】 技术实现原理: Coze API 接入微信群 Bot:登录宝塔面板,在宝塔面板当中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。chatgptonwechat(简称 CoW)项目是基于大模型的智能对话机器人,可以接入微信公众号、企业微信应用、飞书、钉钉,可选择多种模型,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源。点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后点击容器,可看到运行的是两个服务,点击“wcandyaibot”后面的日志按钮,用微信扫码,手动刷新日志,看到 WeChat login success 即成功将 Bot 接入微信。
2025-03-12
提供给我一个agent落地的具体案例
以下为您提供几个 Agent 落地的具体案例: 彬子基于 ComfyUI 做油管封面 Agent:彬子是 ComfyUI 新人,之前更多使用 Coze 做 Agent 并调用其图像流完成绘图功能,还在 Glif 上做若干 Bot 以插件调用 API 方式完成绘图功能调用。Glif 提供的云端 ComfyUI 带来更多图像玩法,Coze 的工作流和 ComfyUI 的图像流代表了 Agent 内部两个子领域领先水平,但大多数同学专注一个领域精进,只要从擅长阵地多迈出一步,就能更好把控 Agent 中各种节点的设计和运用。 有用 Agent 产品开发:目前仍没有 Killer App 出现和 Agent 产品落地,原因一是 Agent 不靠谱,二是 Agent 开发者不靠谱。Agent 能力受 Tools 能力影响,如订机票需携程的 API 接入能力,要让模型更准确选择 Tools 及生成 api args,将非通识业务知识设计好让 Agent 直接用是当前接近“人工”智能且高性价比的方式。 【智谱 AutoGLM】:经过深度测试,AutoGLM 让开发者看到了 AI Agent 真正落地的希望。它解决了之前开发类似功能时的 API 对接难、多模态识别差、操作不精准等问题,借助 RPA 思路通过模拟人类操作实现跨应用控制。其场景理解能力出色,能根据用户意图选择合适应用场景,但仍存在语音识别偏差、复杂界面操作稳定性差、只支持安卓等问题。智谱团队选择几个高频场景深耕细作,证明了产品价值,未来发展空间大。
2025-03-12
core案例拆解教程
以下为为您提供的几个案例拆解教程: Coze 应用实战指南 吐槽心灵鸡汤 核心功能说明:一个允许用户输入心灵鸡汤类内容,AI 生成对应的反心灵鸡汤,并展示在前端页面的应用。 核心操作流程拆解: 1. 用户在页面输入指定文本。 2. 用户在页面点击【开喝】按钮。 3. Coze 后台调用工作流生成对应内容。 4. 工作流生成的内容展示在前端界面内。 核心前端设计拆解: 1. 用户界面提供一个元素 A(Coze 中称作组件),让用户输入内容。 2. 用户界面提供一个按钮 A,让用户点击后调用工作流。 3. 用户界面提供一个元素 B,向用户展示工作流的结果。 核心业务逻辑拆解: 1. 读取元素 A 的用户输入。 2. 将用户输入传递给 AI 大模型。 3. AI 大模型按照提示词设定生成指定内容。 4. 在元素 B 展示 AI 大模型生成的内容。基于上述业务逻辑,只需要设计一个简单的工作流即可,该工作流由【开始】节点(用户输入)、【大模型】节点(AI 生成内容)、【结束】节点构成(内容输出)。 Pika 新功能“Pikadditions” 厕所开门见猴 原视频:人物推开厕所门→空马桶镜头。 角色图片:一张猴子坐在马桶上的图片。 提示词:“When the door opens in the video,we see a monkey with reading glasses sitting in the toilet reading a book.” 拆解逻辑: 1. 时间触发:When the door opens→绑定视频动态事件(门开合过程)。 2. 空间绑定:sitting in the toilet→将猴子坐标锁定在马桶实体上。 3. 行为设计:reading a book→赋予角色符合场景逻辑的行为(厕所常见活动)。 4. 细节强化:with reading glasses→用视觉符号增强角色合理性(模仿人类行为)。 首尾帧循环视频制作 宇航员案例 1. MJ 生成宇航员近照。 2. 截取头盔中反射的宇航员作为第 3 步垫图和 sref 使用。 3. 生成与头盔中宇航员接近的半身像。 4. 打开即梦,选择使用尾帧。重点:一般情况可以不选择运镜控制,但这张图需要选择变焦推进,控制镜头推进到头盔里,不然 AI 会自己选择更容易实现的后拉运镜。 5. 得到。 6. 同样的做法得到尾帧回到首帧的视频,再用剪映拼接一下两段视频即可得到在他人与自己中无限轮回(有时候起始或结束有停顿,保证整条视频衔接流畅可以掐掉)。
2025-03-12