Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何找一个AI解决生活中的小问题

Answer

以下是为您提供的关于如何找一个 AI 解决生活中的小问题的相关指导:

首先,“人工智能测量”能从大量非结构化数据中挑选出“小信号”,但对于如何利用其结果尚不明确,不过有可能找到正式关系,也许是数量关系,也许通过描述计算过程的程序来表示。

在实际操作中,对于复杂的情况,挑战在于不追踪整个可能性图的情况下确定行动。常见方法包括为不同状态或结果分配分数,追求分数最高的路径,或者在自动定理证明中“从初始命题向下”和“从最终定理向上”工作,以及建立“引理”并添加新规则。

搭建 AI 工作流来解决问题时,针对每个小步骤思考是否有 AI 工具可用,如果想不到可以参考他人的做法。要注意灵活选择最优解,不为了用 AI 而用 AI,通过局部最优解达到全局最优解,目的是提高工作效率而非增加工作的含 AI 量。

总之,寻找 AI 解决生活中的小问题需要综合考虑多种方法和思路,灵活运用现有资源和工具。

Content generated by AI large model, please carefully verify (powered by aily)

References

沃尔夫勒姆:人工智能能解决科学问题吗?

[title]沃尔夫勒姆:人工智能能解决科学问题吗?[heading1] 超越“精确科学”[content]One thing that’s particularly notable about “AI measurements” is how they can potentially pick out “small signals” from large volumes of unstructured data.We’re used to having methods like statistics to do similar things on structured,numerical data.But it’s a different story to ask from billions of webpages whether,say,kids who like science typically prefer cats or dogs.“人工智能测量”特别值得注意的一件事是它们如何从大量非结构化数据中挑选出“小信号”。我们习惯于使用统计等方法对结构化的数字数据执行类似的操作。但从数十亿个网页中询问喜欢科学的孩子通常喜欢猫还是狗,那就是另一回事了。But given an “AI measurement” what can we expect to do with it?None of this is very clear yet,but it seems at least possible that we can start to find formal relationships.Perhaps it will be a quantitative relationship involving numbers; perhaps it will be better represented by a program that describes a computational process by which one measurement leads to others.但有了“人工智能测量”,我们能用它做什么呢?这一切还不是很清楚,但看起来至少我们可以开始寻找正式的关系。也许是一种涉及数字的数量关系;也许用一个程序来更好地表示它,该程序描述了一个计算过程,通过该过程,一个测量结果可以得出其他测量结果。

沃尔夫勒姆:人工智能能解决科学问题吗?

在上面这个非常简单的例子中,我们很容易能够显式地生成整个多路图。但在大多数实际示例中,该图会太大。因此,挑战通常是在不追踪整个可能性图的情况下弄清楚要采取什么行动。一种常见的方法是尝试找到一种方法来为不同的可能状态或结果分配分数,并仅追求分数最高的路径。在自动定理证明中,“从初始命题向下”和“从最终定理向上”工作也很常见,试图找出路径在中间的交汇处。还有另一个重要的想法:如果建立了“引理”,即存在从X到Y的路径,则可以将X→ Y添加为规则集合中的新规则。So how might AI help?As a first approach,we could consider taking something like our string multiway system above,and training what amounts to a language-model AI to generate sequences of tokens that represent paths(or what in a mathematical setting would be proofs).The idea is to feed the AI a collection of valid sequences,and then to present it with the beginning and end of a new sequence,and ask it to fill in the middle.那么人工智能可以提供什么帮助呢?作为第一种方法,我们可以考虑采用类似于上面的字符串多路系统的东西,并训练相当于语言模型人工智能的东西来生成代表路径的标记序列(或者在数学设置中将是证明)。这个想法是向人工智能提供一组有效的序列,然后向它呈现一个新序列的开头和结尾,并要求它填充中间部分。

夙愿:AI 工作流,赋能我的十倍增长

针对每个小步骤,想想有没有AI工具可以帮上忙,如果你想不到的话,别自己闷头去想,去找一下别人是怎么做的?我们遇到的大多数问题,别人都遇到过并很好地解决了,所以你只需要找到别人是怎么解决这个问题的就可以了。注意,要灵活选择最优解,不要为了AI而AI。通过局部最优解,来达到全局最优解。我们的目的是提高工作效率,而不是提高工作的含AI量。

Others are asking
小白怎么入门学习AI
对于小白入门学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。
2025-04-08
推荐一些写影视解说稿的AI
以下是为您推荐的一些可用于写影视解说稿的 AI 工具: 1. Luna、季梦、可玲等,可辅助写视频提示词,能根据上传的图片生成合理的运镜及提示词,还可写分镜脚本。 2. GPT 可用于写视频提示词和分镜脚本。 3. 对于一整部电影的解说,AI 可以进行剧情详解、提取标签和做爆点分析,帮助新手节省写稿精力,提高影视解说大号的效率。
2025-04-07
怎么成为ai产品经理
要成为 AI 产品经理,可以参考以下几个方面: 1. 入门级: 可以通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 学会使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:深入研究某一技术领域。 商业化研究路径:了解市场需求和商业运营。 能够根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 拥有成功落地应用的案例,并产生商业化价值。 同时,AI 产品经理需要懂得技术框架,不一定要了解技术细节,但要对技术边界有认知,最好能知道一些优化手段和新技术的发展。而且,产品经理要始终关注场景、痛点和价值。 例如,Kelton 作为一名 AI 产品经理,深耕 NLP 方向 2 年,作为 Owner 从 0 1 打造过两款 AIGC 产品,也完成过 LLM 评测体系的从零搭建。技术出身的他还曾在云计算、元宇宙领域有过 2 年的经验。
2025-04-07
AI头像
以下是关于 AI 头像的相关信息: 摊位列表中包含多种与 AI 相关的摊位,其中有提供 AI 肖像及写真、AI 如意写真等头像相关服务的摊位,摊位区域为 D,摊位编号有 46、49 等。 在元:AI 玄学初体验中,提到了在摊位上可以生成玄学头像,生成速度较快,生成的图像令人满意,且是根据个人的喜用神生成的专属转运头像。 AI 绘画的应用场景广泛,其中包括 AI 定制萌娃头像。
2025-04-07
今日头条辅助创作ai
今日头条在 AI 辅助创作方面有以下应用: 1. 内部产品集成:在抖音、今日头条、西瓜视频等内容平台推出了一系列 AI 助手功能,如抖音创作助手(辅助剪辑和文案)、智能评论回复助手、头条 AI 写作等。这些功能大多基于其大模型“豆包”,着眼于垂直内容创作场景。例如,剪映 App 里集成的 AI 可以帮用户自动剪辑视频,通过识别原始素材并按照模版生成成片,节省大量人力。 2. 辅助写作的正确方式: 用 AI 来头脑风暴:在开始写作之前,可以让 AI 提供选题建议或内容方向。 用 AI 来查找资料:AI 能够快速为您汇总某个主题的相关信息,节省查阅资料的时间。 用 AI 来优化表达:写完初稿后,可让 AI 检查语法、改善表达。 用 AI 来拓展思路:在某个点上卡壳时,询问 AI 的意见以开拓新的思路。 需要注意的是,写作不仅仅是为了产出内容,更是一种思考的过程。不应过度依赖 AI 写作,而应专注于提升自身的写作技巧和思考深度。对于想做 IP 账号的人来说,个人特色、文字风格、思考角度和个人见解才是吸引读者的关键。
2025-04-07
法律AI
以下是关于法律 AI 的相关内容: 在法律领域,AI 具有多方面的应用和作用: 法律意见书撰写: AI 能够根据案件背景、证据材料及适用法律法规,自动撰写初步的法律意见书,包含对案件事实的梳理、法律分析和结论部分。例如: 1. 针对商业秘密泄露案件,分析法律责任和赔偿范围,为客户提供应对策略。 2. 为计划上市的公司提供关于公司治理结构的法律意见书,包括股东权益保护和董事会职责,确保符合相关法规要求。 3. 就消费者权益保护案件提供法律意见,分析商家赔偿责任和消费者维权途径,为客户制定应对措施。 4. 为公司股权转让交易起草股权转让协议,规定转让方和受让方的信息、股权转让的份额、价格、支付方式和时间表等。 5. 起草初创公司股权转让协议,明确创始股东向新投资者转让股权的条件等。 6. 为上市公司股份转让交易起草协议,包括股份描述、转让价格、支付安排等。 7. 起草家族企业股权内部转让协议,涵盖股权分配、价格确定方式等。 诉讼策略制定: AI 可基于相关法律条款和案例法,提供诉讼策略,包括对权利的分析、侵权行为评估、证据搜集建议等。例如: 1. 为专利侵权案件制定诉讼策略,分析专利有效性、侵权行为等。 2. 针对劳动合同纠纷案件,分析员工权益和雇主责任,提出诉讼策略。 3. 在知识产权许可诉讼中,分析许可协议条款和双方权利义务,提出诉讼策略。 模拟法庭: AI 能模拟法庭审理过程,分析双方论点、证据和法律依据,预测判决结果,并给出优化法庭陈述和证据呈现的建议。 使用技巧和注意事项: 1. 进行数据分析时,将环节分开处理以优化性能和便于发现修正问题。 2. 针对复杂问题,采用逐步深化和细化的方式提问。 3. 为 AI 系统提供大量数据和示例、高质量的参考材料、详细的流程和知识。 4. 在 Prompt 中使用法律术语引导 AI 回答方向。 5. 对 AI 的回答进行交叉验证,结合自身专业知识筛选判断,确保符合法律伦理、立法目的和实务。
2025-04-07
AI如何解决我做excel数据统计问题
以下是一些利用 AI 解决 Excel 数据统计问题的方法: 1. 可以让 AI 辅助编写苹果“自动操作”脚本,实现多选多个.doc 和.docx 文件后,操作打开 Microsoft Word 等待 6 秒获取字符数,然后打开 Excel 并建立表格统计每个文件名对应的字符数。 2. 利用 AI 帮您写 Excel 宏函数,适用于几乎所有主流 AI。 3. 对于数据分析,推荐使用 Claude 网页版或 ChatGPT,可上传 CSV 进行可视化分析。 4. 可以使用自然语言向 Chat Excel 提出要求,让其处理 Excel 数据。例如,先让它帮您把一个单元格内的内容合并重复,或者对整个表格所有单元格去重复。 5. 对于编程统计每位同学在“夸、问、评、答”里发表评论的次数等问题,可向 GPT4 用文字提需求直接获取代码,或让其修改已有代码、解 bug 等。
2025-03-29
即梦生成有文字的海报,文字经常无法看清,是什么原因,怎么解决
即梦生成有文字的海报时文字经常无法看清,可能有以下原因及解决办法: 原因:提示词不够准确或详细。 解决办法:优化提示词,更清晰准确地描述文字的要求,如字体、大小、颜色、位置等。 原因:生成模型的限制。 解决办法:多尝试几次生成,或者调整提示词细节抽卡,以获得更理想的效果。 原因:图片中的元素过于复杂,影响了文字的清晰度。 解决办法:利用即梦中的消除笔工具去除影响文字清晰度的部分。 即梦图片 2.1 模型已支持在图片中生成中文字体,操作步骤如下: 第一步:打开即梦官网 https://jimeng.jianying.com/ ; 第二步:点击进入图片生成页面; 第三步:生图模型选择图片 2.1 模型。 即梦生图 2.1 版本带来了革命性的变革,能智能理解创意需求,一键生成融合图片内容与中英文文本的海报。应用场景广泛,如 LOGO 设计、表情包生成、节日与节气海报制作等。 在使用即梦进行艺术字海报设计时,若出现细节错误或刻章不准确的情况,可利用消除笔工具修正,同时多抽卡以得到更理想的设计。
2025-03-26
专门解决ai需求的问答
以下是关于专门解决 AI 需求的问答的相关内容: 关于我是谁: 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互完成互动对话、信息获取、协助创作等任务。 使用方法: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在知识库首页),加入后直接@机器人。 2. 在 WaytoAGI.com 的网站首页直接输入问题即可得到回答。 做问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,无法准确理解语义。 3. 需要用更先进的 RAG 技术解决。 4. 在群中提供快速检索信息的便捷方式。 AI 商用级问答场景中让回答更准确: 要优化幻觉问题和提高准确性,需了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优。RAG(检索增强生成)由检索器和生成器组成,检索器从外部知识中找到相关信息,生成器利用这些信息制作精确连贯的答案,通过检索模式为大语言模型生成提供更多信息,使答案更符合要求。 向量:可把向量想象成空间中的点位,每个词或短语对应一个点,系统通过比较点的距离快速找到语义接近的词语或信息。 Agentic AI 中的问答: 对于最简单的常识性问答,可在 CursorChat 中输入问题得到答案,其相对细节的优势是可在同一界面调用 OpenAI、Anthropic 及本机私有 AI 进行问答。此外,Cursor 作为编辑器,可方便收集沉淀问答结果为复用文档,在进行文本相关任务时还有奇妙用法,如翻译中文博客。
2025-03-26
DeepSeek R1卡顿如何解决
以下是解决 DeepSeek R1 卡顿的方法: 1. 拥有扣子专业版账号:如果您还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型: 访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze 打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。 添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体:点击创建,先完成一个智能体的创建。 4. 创建工作流: 创建一个对话流,命名为 r1_with_net。 开始节点,直接使用默认的。 大模型分析关键词设置:模型选择豆包通用模型lite,输入直接使用开始节点的 USER_INPUT 作为大模型的输入,系统提示词为“你是关键词提炼专家”,用户提示词为“根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索”。 bingWebSearch搜索:插件选择 BingWebSearch,参数使用上一个节点大模型分析输出的关键词作为 query 的参数,结果中 data 下的 webPages 是网页搜索结果,将在下一个节点使用。 大模型R1 参考搜索结果回答:在输入区域开启“对话历史”,模型选择韦恩 AI 专用 DeepSeek,输入包括搜索结果和开始节点的 USER_INPUT,开启对话历史并设置 10 轮。 结束节点设置:输出变量选择大模型R1 参考搜索结果回答的输出,回答内容里直接输出:{{output}}。 测试并发布工作流:输入测试问题,测试完成后直接发布工作流。 此外,您还可以通过以下途径获取更多相关信息: 1. 2 月 14 日 8 点直播进行中:火山引擎解决方案专家带大家在 Coze 搭建满血版 R1 bot,飞书会议直播结束,回放看: 2. 学习文档: 3. 模板更新了:
2025-03-20
怎么解决ai写论文时参考文献是虚构的
以下是关于解决 AI 写论文时参考文献虚构问题的一些信息: Agrawal 等人在 2023 年的研究(https://arxiv.org/abs/2305.18248)专门探讨了 LLM 生成中虚构参考文献的情况,包括捏造的书籍、文章和论文标题。他们试验了两种基于一致性的方法来检查幻觉:直接查询与间接查询。这两种方法都在温度参数 T>0 的情况下多次运行检查并验证一致性。 其中,直接查询要求模型判断生成的参考是否存在,间接查询则询问生成的参考的辅助细节,例如作者是谁。实验表明,间接查询方法效果更好,模型规模越大,识别虚假参考文献的能力越强。 此外,Claude 官方提示词工程最佳实践中也提到了处理幻觉的相关内容,但未给出具体针对参考文献虚构问题的解决办法。 在 ChatGPT 给 DALL·E 3 优化提示词的元提示中,主要强调了一些提示词的规范和原则,未直接涉及解决参考文献虚构的问题。
2025-03-19
coze 报错Pro call plugin too high 怎么解决
对于您提到的“coze 报错 Pro call plugin too high”的问题,可能是配置文件没有配置正确。建议您按照相关教程逐步检查配置文件。同时,即使是官方插件也可能存在不稳定的情况,您需要自己尝试找到适合当前场景的插件。另外,还需注意节点的命名、调用次数、引用情况、运行耗时和成功率等方面,以优化工作流的运行。
2025-03-19
学习ai对普通人的生活有什么意义
学习 AI 对普通人的生活具有多方面的重要意义: 1. 提供更高效的个人助理服务:人工智能模型将很快能作为自主的个人助理,代表您执行特定任务,如帮助协调医疗护理。 2. 促进教育方式的变革:人工智能工具在教育领域有创新的应用空间,如通过交流互动辅助学习,但需要正确引导使用,避免过度依赖。 3. 助力艺术创作:在艺术领域,人们可以与计算机合作作画,发挥自身的创造力。 4. 提高工作效率:普通人可以通过合适的软件和学习内容,运用 AI 来提升工作效率。 5. 带来科技便利与幸福:AI 是未来的必然方向,简单试用能让普通人更快受益,使生活因科技而更加便利和幸福。 然而,在推广 AI 的过程中也面临一些挑战,如需要降低计算成本以使其更加普及,避免其成为有限资源导致战争或成为富人的工具。同时,要正确引导使用,避免其带来负面影响。
2025-03-05
我想要生成一张妇女节的海报,表达女性在职场中,生活中的各种力量
很抱歉,目前没有相关的生成海报的具体内容。但对于生成表达女性在职场和生活中各种力量的妇女节海报,您可以考虑以下思路: 1. 画面主体:可以是一位自信微笑的女性,身着职业装,手中拿着工作文件,背景是温馨的家庭场景。 2. 色彩搭配:使用温暖而有力的色彩,如粉色、紫色等,来展现女性的温柔与力量。 3. 文字表述:在海报上添加一些激励人心的话语,如“女性力量,无可限量”“职场与生活,女性皆能绽放”等。 如果您需要借助 AI 工具来生成海报,一些常见的 AI 绘画工具如 DALL·E2、StableDiffusion 等可以帮助您。您可以输入详细的提示词,如“一位充满自信的职业女性在温馨家庭中微笑的场景,用于妇女节海报”,来获取初步的图像创意。
2025-03-05
我想要生成一张海报图,主题是妇女节,突出阿胶产品在日常生活中的使用,该怎么提问
如果您想要生成一张以妇女节为主题、突出阿胶产品在日常生活中使用的海报图,您可以这样提问: “请为我生成一张以妇女节为背景,画面中有女性愉快地使用阿胶产品的场景,比如食用阿胶糕、用阿胶制作美容面膜等,整体色调温馨,突出阿胶产品对女性健康和美丽的重要性的海报图。”
2025-03-04
日常生活怎样利用AI
日常生活中可以通过以下方式利用 AI: 信息收集与整理:早晚速读朋友圈的文章,学习如何有效地收集、整理和检索信息,打造个人知识库。 编程与脚本编写:编写小代码、小脚本。 数据处理:转换数据并呈现,从图像和图形中提取数据。 语言相关:翻译、改换风格,总结视频内容,分新闻、观点、访谈、论文翻译来进行提炼。 工具使用:用通义听悟整理录音笔记,用 React 实现选中即解释,本机跑大语言模型工具,选词翻译、解读、拓展等。 社交与交流:与各种 AI 机器人聊天,比较多个大语言模型的回答。 AI 在各行业的应用场景广泛,包括: 医疗保健:医学影像分析辅助诊断疾病、加速药物研发、提供个性化医疗方案、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人服务等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 对于个人而言,利用 AI 的选择包括: AI 转型:行业加 AI,如喜茶在新零售门店管理、营销销售、客户服务中应用 AI,金蝶拓展新的 AI 业务。 生活应用:在 WaytoAGI 学习 Agent 知识后搭建 bot 提高工作或学习效率,应用 AI 养成自驱自律习惯,用 AI 辅助教育培养下一代。
2025-02-21
小白怎样学习ai工具 熟练运用于工作生活
以下是为小白提供的学习 AI 工具并运用于工作生活的建议: 一、从菜鸟到达人的进阶之路 可以参考元子的进化史: 1. Day 1:懵懵懂懂,只会说“你好,帮我写个报告”。 2. Day 7:学会表达,比如“帮我写一份周报,重点说明项目进度”。 3. Day 14:熟练掌握,例如“我需要一份项目总结,包含数据分析和改进建议”。 4. Day 30:把常规 AI 工具都试过一遍,并选定自己要持续玩的方向,比如 AI Agent。 5. Day 60:组队参加 AI Agent 比赛并有幸得奖。 这里推荐一个社区小伙伴的 100 天 AI 之路,每天都有记载,大家可以感受一下进境: 元子的心得: 1. 不要怕问“笨”问题,但要多直接问 AI。 2. 解决一个小问题也是进步,不积跬步,无以至千里。 3. 多试多练才是王道,来社区共学,一群人走得更远。 4. 融入生活和工作才能持久,学完就用才是王道,不要纯靠意志力。 二、工作中的 AI 小帮手 1. 需要快速生成报告,AI 来帮忙。 2. 需要快速整理数据,AI 来处理。 3. 需要快速翻译文件,AI 来翻译。 4. 需要快速优化文案,AI 来优化。 三、参与制作 AI 动画短片的经验分享 在参与设计 AI 动画短片时,比如负责“刺猬菠萝”角色的图片和视频制作,即使没有相关经验,在他人指导下也能逐渐掌握基本技巧,并通过 MJ 和 RunWayAI 工具提高效率。 为了做好这件事,可以: 1. 利用 WaytoAGI 社群中的入门资料,快速了解动画制作的基本流程和技术。 2. 积极参与团队讨论,向有经验的大佬请教,多多参与「共创活动」,不仅能快速学习,还能收获伙伴。 四、AI 与生活 对于超出自己理解范围的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。在面向父母的“AI 布道”活动中会发现,AI 工具虽强大,但与普通人之间存在一定距离。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。 如果想要跟元子交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-02-18
我现在在储能领域工作 ,我现在 可以用AI做什么支持我的工作和生活
在储能领域工作,您可以通过以下方式利用 AI 支持工作和生活: 工作方面: 优化储能系统的设计和运行:利用 AI 分析数据,优化设备参数模型搭建,提高储能系统的效率和稳定性。 物流和配送规划:借助 AI 优化储能设备的运输路线和配送计划,降低运输成本。 知识沉淀和体系文档优化:利用 AI 辅助整理和优化储能相关的技术手册、工艺问题分析等文档。 生产计划和排产:通过 AI 制定更合理的生产计划和排产方案。 生活方面: 教育学习:利用 AI 实现个性化学习,获取储能领域的专业知识。 创意启发:例如在艺术创作方面,像作画,可以将自己的构思与 AI 生成的创意相结合。 需要注意的是,在使用 AI 时要正确引导和合理运用,避免过度依赖。
2025-02-14
ai如何思考你提出的问题
AI 思考问题的方式多种多样,以下为您介绍一些常见的方法和案例: 1. 利用思维模型:例如通过“AI+六顶思考帽”的方法,依次运用白帽(搜集信息)、红帽(探索直觉和感受)、黄帽(探索可能的积极面)等思维方式,全面且深入地思考问题。比如在个人 IP 定位的案例中,先让用户提供职业、兴趣爱好等信息,再探索其感受和直觉,最后分析潜在好处。 2. 引用节点和参照:在生成内容时,可以使用“引用节点”的技巧,让 AI 根据特定的参照(如之前的产出、新增的参考文案等)输出具备更高关联度的内容。例如在生成“延伸思考”的问题时,严格参照未来世界观和各个驱动力的解析。 3. 对比不同模型和功能:可以用同一段提示词对比不同模型的输出,择优深挖。还可以在满意的内容节点上添加“文本编辑器显示”,对文本进行精加工。 4. 正确引导孩子使用:对于孩子使用 AI,若方法不当,如提封闭性问题让孩子迅速得到答案,可能有负面效果;但改成开放性问题或让 AI 帮助提更多拓展思考的问题,能激发好奇心。在辅助写作文时,让孩子与 AI 共同完成并提交聊天记录,关注孩子对作文的点评批改等,能避免孩子偷懒。
2025-04-01
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
AI内容带来的问题
AIGC 带来了一系列问题: 1. 法律风险:我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与相关规定形成共同监管形势。AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险,相关法律在著作权归属、数据隐私等方面尚需更多明确规定,且 AIGC 的滥用可能导致虚假信息传播、侵犯隐私等问题,需要加强监管和伦理约束。 2. 内生风险:包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。 3. 数据隐私风险:AIGC 工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。 4. 知识产权风险:应用风险涉及作品侵权、不当竞争等问题。 在知识产权方面,AI 技术的发展对现有的知识产权法律体系提出挑战。例如,在内容生成方面,对版权法的挑战主要体现在输入端的训练数据合法性问题和输出端的 AI 生成内容的版权属性问题。广州互联网法院的相关判决为 AI 企业在版权保护方面提供了指导思路。AI 生成式技术服务提供者在提供服务时应尽合理的注意义务。 AIGC 指利用 GenAI 创建的内容,GenAI 是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新的数据或内容的 AI 应用,虽强大但在数据处理中存在多重潜在合规风险。目前典型的 GenAI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。国内主要依据相关法律法规共同监管 AIGC 行业。
2025-03-28
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答,现在请你告诉我如何操作
以下是捏制一个满足您需求的 AI Agent 的操作步骤: 1. 规划: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 AI Agent 相关概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 常见的 AI Agent 类型包括: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 Background Agent 每隔一段时间运行一次(默认 3 分钟),分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-03-23
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答
以下是为您提供的关于捏制 AI Agent 的相关知识: 一、手捏 AI Agent 的思路 在 Coze 中创建工作流驱动的 AI Agent,简单情况可分为 3 个步骤: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 二、AI Agent 的概念 AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 同时,需要三个 Agent: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 三、Agent 的“明斯基时刻” 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 其特点包括: 1. 多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 2. 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。 3. 分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。 同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能: 专家 Agent:拥有特定领域知识和技能的 Agent,负责处理复杂的任务和解决特定问题。 管理 Agent:协调和控制其他 Agent 的活动,确保整体系统协调一致地运行。 学习 Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。
2025-03-23