直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

动物医学和ai的结合发展前景

回答

动物医学与 AI 的结合具有广阔的发展前景。

在新工业革命的背景下,生物技术与人工智能的融合正在改变世界。过去十年,我们见证了生物科技和技术交叉领域的多个趋势成为现实。计算能力的提升促使生物科学领域出现类似摩尔定律的规律,机器学习和人工智能正在改变生物制药和医疗保健的多个方面,不仅能“读取”还能“写入”生物信息,如 CRISPR 技术。同时,护理服务也在快速解构,包括医院的解构以及护理模式向基于价值或结果的转变。

如今,我们正处于革命的起点,AI 正在使生物制药和医疗保健产业化,应用于药物设计、诊断、医疗服务交付和后台运营等方方面面。例如,机器能够学习只有经过徒弟式培训才能掌握的技能,便于复制,能像启动基于云的服务器一样扩展专业知识,具有即时、廉价和大规模的优势。而且,自动化和机器人技术实现了规模,并进一步实现了真正的生物可再现性,解决了“未工业化”生物学的最大弱点,使生物技术能够大规模扩展。

综上所述,动物医学作为生物医学的一部分,与 AI 的结合有望在疾病诊断、治疗方案制定、药物研发等方面取得重大突破,为动物健康和医疗领域带来巨大的进步和变革。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

新工业革命:生物技术×人工智能

推动这场革命的是一[新一波](https://a16z.com/2017/12/14/second-bio-fund/)的创始人和[初创公司](https://a16z.com/2020/02/04/bio-fund-iii-announcement/),他们融合了技术和生物科技世界——重要的是,这不仅仅是旧有的生物技术世界(或者将生物科技领域中的技术狭义地定义为仅仅是“数字健康”),而是更宽泛、更大、更混合的两个世界。简而言之,受技术启动的生物科学正在[改变世界](https://a16z.com/2019/10/28/biology-eating-world-a16z-manifesto/)。这不仅改变了我们如何诊断、治疗和管理疾病,还改变了我们在医疗系统中获取、支付和提供护理的方式。它现在还进入到制造、食品和其他几个行业。生物正在成为一切的一部分。

新工业革命:生物技术×人工智能

过去十年中,我们已经看到了生物科技和技术交叉点的多个趋势成为现实:得益于计算能力,生物科学领域出现了一种[类似摩尔定律的规律](https://a16z.com/2015/11/18/bio-fund/);机器学习和人工智能[正在改变](https://a16z.com/2017/07/29/when-machine-learning-becomes-ai/)生物制药和医疗保健的多个领域;我们现在不仅可以“读取”生物信息,还可以“写入”生物信息,包括CRISPR技术(即使[仅在十年时间里](https://a16z.com/2020/10/10/16mins-nobel-prize-crispr-gene-editing-jennifer-doudna-emmanuelle-charpentier/))。此外,我们还看到护理服务的快速解构,这是由[“伟大的解锁”](https://a16z.com/2020/08/07/healthcare-the-great-unlock/)推动的,包括医院的解构(分解为分散的社区、虚拟环境等)以及朝着基于价值或结果的护理模式的转变。

新工业革命:生物技术×人工智能

在所有这些领域(以及尚未出现的其他领域),生物制药和医疗保健的工业化都可以取得长足进展。例如,机器可以学习一个人经过徒弟式培训才能做到的事情。我们可以轻松地进行复制,这使我们可以像启动基于云的服务器一样扩展专业知识:立即、廉价(与专家劳动力相比)并具有巨大的规模。而且,这不仅限于计算:自动化和机器人技术同样实现了规模,同时进一步实现了以前不可能实现的真正的生物[可再现性](https://a16z.com/2018/11/12/how-to-engineer-biology/)——从而解决了“未工业化”的生物学的最大弱点。生物技术现在可以大规模地扩展。

其他人在问
如何系统全面地学习AI知识和了解各种AI工具
以下是系统全面学习 AI 知识和了解各种 AI 工具的方法: 对于中学生: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手: 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,了解其主要分支及联系,浏览入门文章。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 入门工具推荐: Kimi 智能助手是 Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。它不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品,能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios:
2024-11-17
小说创作类型的ai
以下是关于小说创作类型的 AI 相关信息: 在写作方面,有多种 AI 产品可供选择。例如,ChatGPT 在领跑,同时像 Sudowrite 和 Verb.ai 这样的产品也出现了,用于更专业化的写作类型,比如小说。 如果您想用 AI 把小说做成视频,具体的制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可以利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。 网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。 网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。 网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址: 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-11-17
有什么竞品分析的AI工具
以下是一些常见的竞品分析的 AI 工具: Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 以下是一些做 PPT 的 AI 产品: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。 以下是一些与思维导图相关的 AI 工具: GitMind:免费跨平台 AI 思维导图软件,支持多种模式,如提问、回答、自动生成等。 ProcessOn:国内思维导图+AIGC 工具,可利用 AI 生成思维导图。 AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 TreeMind:“AI 人工智能”思维导图工具,输入需求由 AI 自动完成思维导图生成。 EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,帮助提升生产力。
2024-11-17
我要用数字人AI做教学讲课
数字人 AI 用于教学讲课具有诸多优势: 1. 突破时空限制:可以让历史人物如牛顿亲自授课《牛顿运动定律》,白居易讲述《长恨歌》背后的故事,学生能与任何历史人物对话交流,不受时空约束。 2. 个性化教学:能根据学生的学习情况、兴趣和偏好提供定制化学习计划和资源,因材施教,提高学习效率和成果,缓解教育资源不平等问题。 3. 提高参与感:数字教师博学多能、善解人意且不受情绪左右,基本可实现一对一辅导,让学生参与感更高。 4. 丰富教学形式:如卡尔的 AI 沃茨的数字人课程,包含 15 节视频课,持续更新并增加最新内容,还有课外社群辅导。课程回顾了 2023 年数字人领域的破圈事件,如 AI 马斯克对谈 AI 乔布斯等。 5. 优化工作流:数字人的出现能在制作个人 IP 短视频、配音、直播、智能客服、虚拟偶像等领域完成赋能。 关于数字人课程的学习: 1. 推荐卡尔的 AI 沃茨的数字人课程,建立了完整的数字人学习体系。 2. 报名方式可通过扫码查看课程详细内容和介绍。 在与 AI 交互方面: 1. 对于提示词工程和学习提示词,有人持反对观点,认为像打字和写作一样,不断尝试和大模型交互是最佳方法。 2. 和大模型交互不一定需要遵循规则,未达成目的可锲而不舍地开新窗口再尝试,或更换模型。 3. 用 Markdown 格式清晰表达问题有助于提高与大模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-11-17
给我推荐几个国内使用频率很高的前几位AI吧,可选择的工具太多导致我选择恐惧症犯了
以下为您推荐一些国内使用频率较高的 AI 工具: 1. 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,但价格相对较高,重度用户年费最高可达几千元,轻度用户有免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,目前免费,每天签到获取灵感值即可,但存在一定局限性,如某些类型图像无法生成等。 2. 其他类别: 百度 Chat:AI 聊天机器人。 360AI 搜索。 AIbot ai 工具集:导航网站。 创客贴 AI:设计工具。 MasterGo:设计工具。 美图设计室:图像编辑。 魔搭社区 阿里达摩院:AI 训练模型。 即时 AI 设计:设计工具。 Boardmix 博思 AI 白板:PPT。 百度飞桨 AI Studio:AI 学习。 字节扣子。 秘塔写作猫:通用写作。 xmind:思维导图。 标小智 LOGO 生成:图像生成。 liblib.art:图像生成。 稿定设计:设计工具。 千帆大模型平台:模型。 DeepSeek:AI 聊天机器人。 墨刀 AI:设计工具。 沉浸式翻译:翻译。 火山方舟:AI 训练模型。 bigjpgAI 图片无损放大:图片增强。 processon:思维导图。 Pika:图生视频。 千库网:资源。 无限画:图像生成。 autoDL 云服务租用。 同花顺问财:金融。
2024-11-17
如何用ai练习日语口语
以下是用 AI 练习日语口语的方法和推荐的工具: 1. 语言学习应用: Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容,通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择日语,按课程指引学习。 Babbel:结合 AI 技术,提供个性化课程和练习,重点在于实际交流所需语言技能。注册账户,选择日语课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合的练习和反馈。注册并选择日语,使用多种练习模式(听力、口语、阅读和写作)学习。 2. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择日语,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择日语,使用应用提供的词汇卡和练习进行学习。 3. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以提高写作的语法和词汇准确性,支持多种语言,包括日语。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 4. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 5. AI 对话助手: ChatGPT:可用来模拟对话练习,帮助提高语言交流能力。在聊天界面选择日语,与 AI 进行对话练习,询问语法、词汇等问题,模拟实际交流场景。 Google Assistant:支持多种语言,包括日语,可以进行日常对话练习和词汇学习。设置日语,通过语音命令或文本输入与助手互动,练习日常用语。
2024-11-17
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限性出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理,还将帮助构建更好的下一代系统,在各领域取得科学进展。 产业方面,人工智能是引领科技和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 总之,智能时代的曙光带来了历史性发展机遇,也带来复杂高风险挑战,但潜在正面影响巨大,未来将实现巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。后来,计算资源更便宜、数据更多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现能有效学习任何数据分布,计算能力和数据量越大,解决难题的能力越强。未来,人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,在各领域取得科学进展。 产业方面,人工智能是引领科技和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,需完善产业标准体系。 总之,智能时代的曙光带来了历史性发展和高风险挑战,但潜在正面影响巨大,未来将带来巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限性出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。它将帮助构建更好的下一代系统,在各领域取得科学进展。 从产业角度,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年在技术创新、产品创造和行业应用方面快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 总的来说,智能时代的曙光带来了历史性发展机遇,也带来复杂高风险挑战,但潜在正面影响巨大,未来将实现巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,在各领域取得科学进展。 产业方面,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。近年来我国人工智能产业快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 总之,智能时代的曙光带来了历史性发展和复杂高风险挑战,但潜在正面影响巨大,未来将带来巨大繁荣。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。后来,随着计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。它还将帮助构建更好的下一代系统,在各领域取得科学进展。 从产业角度,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年在技术创新、产品创造和行业应用方面快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,需完善产业标准体系。 总之,智能时代的曙光带来了历史性的发展机遇,也带来高风险挑战,但潜在的正面影响巨大,未来会非常光明灿烂。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,但因方法局限出现“人工智能寒冬”。后来,随着计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。系统将帮助构建更好下一代系统,并在各领域取得科学进展。 从产业发展现状看,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。近年来我国人工智能产业在多方面快速发展,形成庞大市场规模,伴随新技术迭代呈现出新特点,亟需完善产业标准体系。 技术将人类从石器时代带到农业、工业时代,通往智能时代的道路由计算、能源和人类意志铺就。降低计算成本、普及人工智能至关重要,否则可能导致资源受限和战争。智能时代虽带来复杂高风险挑战,但潜在正面影响巨大,未来将有巨大繁荣,如修复气候、建立太空殖民地、发现物理学等。
2024-09-30
哪个AI比较擅长医学相关领域?
以下是一些在医学相关领域表现出色的 AI: 1. AlphaFold:由 DeepMind 开发,在蛋白质结构预测方面表现出色,其预测准确度超过其他系统,为科学家和药物开发提供了巨大帮助。 2. ESMFold(Meta 的蛋白质结构预测 AI 模型):截至目前已经进行了 7 亿次预测。 3. 多伦多大学研究人员开发的新 AI 系统:利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质。 4. 华盛顿大学 David Baker 教授团队开发的 RF Diffusion:基于 DALLE 的人工智能系统,用于根据科学家的需求生成合适的蛋白质结构。 5. 洛桑联邦理工学院科学家们开发的 PeSTo:基于神经网络的新工具,可以预测蛋白质如何与其他物质相互作用,速度快、且通用性强。 6. Surrey 大学开发的人工智能系统:用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 此外,ChatGPT、Google Bard 等技术在日常工作生活中很有用,也极大加速了医疗健康生物制药的研究,AI 已经在抗癌、抗衰老、早期疾病防治(如提前三年诊断胰腺癌、帮助早期诊断帕金森等)、寻找阿尔兹海默症的治疗方法等方面起着重要作用。例如: 1. 两名高中生与医疗技术公司 Insilico Medicine 及其人工智能平台 PandaOmics 合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要。 2. 由 Integrated Biosciences 领导的一项最新研究通过使用人工智能筛查了超过 800,000 种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质。 3. 亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。 相关文献参考: 1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm 2. https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 3. https://www.sciencedirect.com/science/article/pii/S0958166923000514 4. https://hms.harvard.edu/news/aipredictsfuturepancreaticcancer 5. https://finance.yahoo.com/news/teenagegeniusesaiuncovercancer163541619.html 6. https://www.earth.com/news/artificialintelligenceidentifiesnewantiagingcompounds/ 7. https://medicalxpress.com/news/202305scientistsaidrugalzheimer.html
2024-11-17
我想要了解AI在高校基础医学教学中的应用案例
以下是一些 AI 在高校基础医学教学中的应用案例: 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用特定 prompt ,2 小时帮同学干完 3 篇调研报告。 做调研:用 ChatGPT 做调研。 医疗:健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等研究应用中起重要作用。 此外,为了在医疗保健中产生真正的改变,AI 应像人类一样学习,例如成为顶尖医疗人才需要多年密集信息输入、正规学校教育和学徒实践,AI 也应通过合理的模型训练方式而非仅依靠大量数据来提升。 对于中学生学习 AI ,有以下建议: 从编程语言如 Python 、JavaScript 入手,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT 、Midjourney 等 AI 生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等教育平台。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试解决实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。
2024-11-07
医学文章如何使用AI
以下是关于医学文章如何使用 AI 的相关信息: 如果您需要 AI 为您的医学课题提供修改意见,可以考虑以下专业工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,能简化学术工作。 2. Scholarcy:一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可提供有关医学课题的修改意见。您向它提供文章并提出问题和需求,它会尽力提供帮助。 以下是一些 AI 在医学领域的应用案例: 1. 农业:鉴别香蕉树的疾病。国际热带农业中心的高级科学家萨瓦拉吉先生对近 2 万张各种香蕉植物的图片进行了 AI 训练,印度、拉丁美洲和非洲的农民们可以使用他的应用程序 Tumaini 拍照并得到诊断结果。 2. 医学:DoctorGPT,集成了医学专家的知识,能够准确回答各种医学问题。 3. 医学:中医应用,将人工智能与中医结合,通过观察口腔、舌苔和抓脉,生成选择题让患者作答,最后 AI 会生成药方,目前用于辅助看诊,提高诊疗效率,未来愿景是实现 24 小时独立问诊开药。 为了在医疗保健中让 AI 产生真正的改变,我们应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入开始,通过正规学校教育和学徒实践,从出色实践者那里学习。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定医疗保健或药物设计数据点。预医学生课程从基础开始,设计新疗法的科学家也需多年学习和实践,这种方式能培养处理细微差别决策的直觉。 内容由 AI 大模型生成,请仔细甄别。
2024-10-02
目前医学文献相关的AI工具
以下是一些与医学文献相关的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,能增强对科学文献的洞察,提供引用声明搜索、自定义仪表板和参考检查等工具,简化学术工作。网址:https://scite.ai/ 2. Scholarcy:一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。网址:https://www.scholarcy.com/ 3. ChatGPT:强大的自然语言处理模型,可提供医学课题的修改意见。网址:https://chat.openai.com/ 在论文写作方面,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,帮助精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文的原创性。
2024-09-23
我是名临床医生,请告诉我有哪些临床医生可以应用的医学AI软件
以下是一些临床医生可以应用的医学 AI 软件: 中医应用:将人工智能与中医结合,通过观察口腔、舌苔和抓脉,生成选择题让患者作答,最后 AI 生成药方,目前用于辅助看诊,提高诊疗效率,愿景是未来实现 24 小时独立问诊开药。 农业:鉴别香蕉树的疾病,对近 2 万张各种香蕉植物的图片进行 AI 训练,农民们可以使用应用程序 Tumaini 拍照并得到诊断结果。 DoctorGPT:不仅是一个 AI 模型,还集成了医学专家的知识,能够准确回答各种医学问题。
2024-09-13
AI与医学
AI 在医学领域有广泛的应用,主要包括以下方面: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 当前,我们正处于 AI 工业化生物制药和医疗保健的革命起点,AI 被应用于从药物设计和诊断到医疗保健交付和后勤功能的各个方面。 此外,ChatGPT、Google Bard 等技术极大加速了医疗健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等的研究应用中起着重要作用。例如: 1. AI 提前三年诊断胰腺癌。 2. 两名高中生与医疗技术公司合作,利用 AI 发现了与胶质母细胞瘤相关的三个新靶基因。 3. AI 帮助抗衰老,通过筛查发现高效的药物候选物。 4. 使用 AI 寻找阿尔兹海默症的治疗方法。
2024-08-29
静态动物图片,生成说话视频
以下是一些能够将静态动物图片生成说话视频的技术和相关信息: VividTalk:单张照片和一段音频可生成看似真实的说话视频,支持多种语言和风格,如真实和卡通风格,由南京大学、阿里巴巴、字节跳动和南开大学合作开发。链接:https://x.com/xiaohuggg/status/1732026172509421697?s=20 腾讯 AniPortrait:根据音频和静态人脸图片生成逼真的动态视频,支持多种语言、面部重绘、头部姿势控制,比阿里 EMO 项目先开源。链接:https://github.com/ZejunYang/AniPortrait 、https://arxiv.org/abs/2403.17694 、https://x.com/imxiaohu/status/1772965256220045659?s=20
2024-11-13
哪个ai软件可以让一个人的形象或者动物,自由地走起来
有几个AI工具可以将人或动物的形象制作成动画,让它们自由地行走: 1. GenMo:GenMo是一个基于生成模型的AI动画工具,它可以自动生成各种动画效果,包括人物动作等。用户可以使用GenMo来丰富动画作品,让人物或动物形象动起来。 2. MagicAnimate:MagicAnimate使用视频扩散模型和外观编码器进行时间建模和身份保持,支持长视频动画。用户可以使用这个工具将静态人物图片变成逼真动画,包括行走的动作。 3. Runway Motion Brush:Runway是一个创意工具平台,提供视频编辑、图像生成、人工智能训练等功能。它的Motion Brush动态笔刷工具可以让用户创建动态效果,可能适用于制作行走动画。 这些工具各有特点,用户可以根据自己的需求和喜好选择合适的AI动画软件来制作人物或动物行走的动画。
2024-04-23
有什么可以做动脸/动嘴的动物视频工具吗?
根据您的需求,有几个工具可以用来制作动物视频,其中动物的脸部或嘴巴可以动起来: 1. 剪映:这是一个视频编辑软件,可以用来给动物加上人脸特效。通过这个软件,您可以使用蒙版功能将动物的眼睛和嘴巴与静态图片或视频中的脸部特征对齐,从而实现动脸或动嘴的效果。 2. CrazyTalk:这是一款全球受欢迎的脸部动画软件,使用声音和文本即可生成栩栩如生的脸部动画。CrazyTalk 8 版本包含3D头象建模工具和自动动态引擎,可以轻松制作讲话动态和自然的嘴型同步效果。它支持从照片创建3D或2D头部模型,并通过录音或导入WAV文档自动生成唇形。 您可以根据您的具体需求和技能水平选择适合的工具。如果您是初学者,剪映可能更容易上手;如果您需要更高级的功能和更逼真的效果,CrazyTalk可能是一个更好的选择。
2024-04-20