Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai 医学 文献

Answer

以下是为您提供的关于 AI 医学文献的相关信息:

在医疗保健方面,AGI 会带来重大变革。医疗诊断将更精准快速,能综合海量医学文献、患者症状和检查结果给出诊断和治疗方案。在一些问诊场景中,ChatGPT 的表现甚至超过真人医生。未来患者可能先与 AI 健康助手交流,AI 能降低医疗咨询门槛,缓解医生短缺问题。在医学成像诊断上,AI 已显示出高水平,AGI 会进一步提升能力,减少漏诊误诊。治疗方面,AGI 可定制优化方案,参与手术规划和操作。远程医疗也会因 AGI 更实用,精神健康领域 AGI 可能充当心理疗愈师角色,但也存在对其治疗效果和隐私的顾虑,需要医疗监管机构制定标准。

在蛋白质结构预测和合成方面,ChatGPT 引发的范式转移涉及该领域,过去两周有大量突破。用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质,如 AlphaFold 等多个系统在蛋白质结构预测方面表现出色,还有新的 AI 系统能创造自然界中不存在的蛋白质,以及用于识别个体细胞中蛋白质模式等的新工具。相关文献参考:https://www.sciencedaily.com/releases/2023/05/230504121014.htm 、https://www.wevolver.com/article/pesto-a-new-ai-tool-for-predicting-protein-interactions 、https://www.sciencedirect.com/science/article/pii/S0958166923000514 。

如果您有一篇医学课题需要 AI 帮您给出修改意见,可以考虑使用以下工具:

  1. Scite.ai:是为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。[https://scite.ai/]
  2. Scholarcy:是科研神器,能提取结构化数据,生成文章概要等。[https://www.scholarcy.com/]
  3. ChatGPT:强大的自然语言处理模型,可提供修改意见。[https://chat.openai.com/]

这些工具可从不同角度审视和改进您的医学课题,您可根据具体需求选择合适的工具尝试。但请注意内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

[趋势研究]Deep Research - AGI 实现后未来 20 年人类社会的变革

医疗保健将因AGI而大变样。首先,医疗诊断会更加精准快速。AGI能够综合海量医学文献、患者症状和检查结果,给出可能的诊断和治疗方案。研究表明,在一些问诊场景下,ChatGPT给出的答案质量和共情度甚至超过真人医生。未来,患者在出现不适时,或许会先与AI健康助手交流,AI依据数据库即时反馈可能的健康问题和建议,就像“家庭医生”随时候命。这能大幅降低医疗咨询门槛,缓解医生短缺问题。同时,在医学成像诊断(如读片)上,AI已显示出媲美专家甚至超越的水平。AGI将进一步提升这一能力,发现早期病变或罕见病的蛛丝马迹,减少漏诊误诊。治疗方面,AGI可以根据病人具体情况定制优化治疗方案,甚至参与手术规划和机器人手术操作,让手术更安全。远程医疗也会因AGI更实用:偏远地区的患者可以通过AI获得权威医疗意见,而AI协助人类医生进行远程手术。精神健康领域,AGI可能充当心理疗愈师的角色。已经有初步的AI聊天机器人用于心理辅导,而更高级的AGI可以进行细腻的情绪识别和对话,为抑郁、焦虑患者提供陪伴开导。当然,人们也担心缺少人类情感温度的AI治疗是否有效,对AI隐私的顾虑等等。这需要医疗监管机构制定标准,确保AI行医行为在可控范围内,并与人类医护形成良好配合,而不是彼此抵触。

医疗:蛋白质结构预测和蛋白质合成

chatgpt引发的范式转移涉及各个行业,过去两周在蛋白质结构预测和合成又有大量突破。用于生成漂亮图片的AI也可以帮助科学家研究并设计新的蛋白质。这意味着能够以更快速度开发药物用于治疗癌症、制造胰岛素、治疗多发性硬化症和管理自身免疫性疾病等。过去两周在蛋白质结构预测和蛋白质合成方面ai的重大进展:1、AlphaFold是一种在蛋白质结构预测方面表现出色的AI系统,由DeepMind开发,其预测准确度超过其他系统,为科学家和药物开发提供了巨大帮助。2、Meta的蛋白质结构预测ai模型:ESMFold,截至目前已经进行了7亿次预测3、多伦多大学研究人员开发了一种新的AI系统,利用类似stable diffusion,midjourney的生成扩散技术创造出自然界中不存在的蛋白质。4、华盛顿大学的David Baker教授的团队开发了基于DALL-E的人工智能系统RF Diffusion,用于根据科学家的需求生成合适的蛋白质结构。5、洛桑联邦理工学院的科学家们开发了一种基于神经网络的新工具PeSTo,可以预测蛋白质如何与其他物质相互作用,速度快、且通用性强。6、在surrey大学开发了一种人工智能系统,用于识别个体细胞中的蛋白质模式,这一进展可以用于理解肿瘤的差异并开发药物。7、肯特大学的研究团队使用名为talin的蛋白质制成凝胶,该凝胶具有吸收冲击的能力,他们的目标是将talin蛋白质制成防弹材料。文献参考https://www.sciencedaily.com/releases/2023/05/230504121014.htmhttps://www.wevolver.com/article/pesto-a-new-ai-tool-for-predicting-protein-interactionshttps://www.sciencedirect.com/science/article/pii/S0958166923000514

问:医学课题需要 AI 给出修改意见

原问题:我有一篇医学课题需要AI帮我给出修改意见,请推荐一个专业的ai工具如果您正在寻找一个专业的AI工具来帮助您修改医学课题,可以考虑使用以下工具:1.Scite.ai:Scite.ai是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。[https://scite.ai/](https://scite.ai/)2.Scholarcy:Scholarcy是一款科研神器,主要是为做科研、学术、写论文的人准备的。Scholarcy可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。[https://www.scholarcy.com/](https://www.scholarcy.com/)3.ChatGPT:ChatGPT是一个强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。[https://chat.openai.com/](https://chat.openai.com/)这些工具可以帮助您从不同的角度审视和改进您的医学课题,提供专业的修改意见和建议。您可以根据自己的具体需求选择合适的工具进行尝试。内容由AI大模型生成,请仔细甄别。

Others are asking
AI市场分析
以下是关于 AI 市场分析的相关内容: 中小企业利用人工智能(AI)进行转型中的目标市场分析: 首先,使用 AI 工具进行市场细分。通过详细分析市场数据,准确地识别和细分目标客户群体。选择能够处理复杂数据集并提供深入洞察的 AI 工具,如机器学习模型、数据分析软件等。收集广泛的市场数据,包括消费者行为、购买历史、社会媒体互动等,然后利用 AI 工具对这些数据进行分析。基于 AI 分析结果,将市场细分为不同的客户群体,每个群体具有独特的需求和行为特征。 其次,基于 AI 分析结果,定制化营销策略。根据目标市场细分的结果,制定更加个性化和有效的营销策略。针对每个细分市场群体的特征,制定特定的营销策略,如定制化的广告内容、促销活动和沟通方式。执行这些定制化的营销策略,并根据市场反馈和销售数据进行调整。持续监测营销活动的效果,如参与度、转化率等,以评估策略的有效性。定期更新市场数据,确保营销策略基于最新的市场洞察。 使用 AI 完成阿里巴巴营销技巧和产品页面优化: 市场分析:利用 AI 分析工具来研究市场趋势、消费者行为和竞争对手情况。 关键词优化:AI 可以分析和推荐高流量、高转化的关键词,帮助卖家优化产品标题和描述,提高搜索排名和可见度。 产品页面设计:AI 设计工具可以根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 内容生成:AI 文案工具可以撰写有说服力的产品描述和营销文案,提高转化率。 图像识别和优化:AI 图像识别技术可以帮助选择或生成高质量的产品图片,这些图片能够更好地吸引顾客并展示产品特点。 价格策略:AI 可以分析不同价格点对销量的影响,帮助卖家制定有竞争力的价格策略。 客户反馈分析:AI 可以分析客户评价和反馈,帮助卖家了解客户需求,优化产品和服务。 个性化推荐:AI 可以根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 聊天机器人:AI 驱动的聊天机器人可以提供 24/7 的客户服务,解答疑问,提高客户满意度。 营销活动分析:AI 可以分析不同营销活动的效果,帮助卖家了解哪些活动更能吸引顾客并产生销售。 库存管理:AI 可以帮助预测需求,优化库存管理,减少积压和缺货情况。 支付和交易优化:AI 可以分析不同的支付方式对交易成功率的影响,优化支付流程。 社交媒体营销:AI 可以帮助卖家在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 直播和视频营销:AI 可以分析观众行为,帮助卖家优化直播和视频内容,提高观众参与度和转化率。 AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会: AI 创业市场: 行业大佬观点不一,有人认为是比移动互联网更大的红利,也有人对泡沫问题存在讨论。 小参数大模型开始盛行,对开发者是利好。 2024 下半年会有一批有代表性的 AI 应用跑出来。个人看好 agent 智能体在社交和游戏中的应用。 相关播客观点:站在 AI 很重要的角度,AI 创业没有蓝海,都是红海;先考虑市场有多少肉,再考虑有多少狼抢。
2025-02-27
基础搭建的知识库效果很差,模型答案的幻觉很严重,我应该怎么改进?(Deepseek调用api接入本地faiss的rag库)
以下是一些改进基础搭建的知识库效果、减轻模型答案幻觉问题的建议: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对您的场景,后者的性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果可能最优。 4. 对文档名称进行处理:人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,虽然重命名文件对结果的提升效果不明显,但勾选该选项后,回答的无关信息可能减少,效果有所提升。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务。 在大模型中,向量可想象成空间中的点位,每个词或短语对应一个点。系统通过查看词在虚拟空间中点的位置,寻找直线距离最近的点来检索语义上接近的词语或信息。理解向量后,当收到一个对话时,RAG 的完整工作流程为:检索器从外部知识中检索相关信息,生成器利用这些信息生成答案。 要优化幻觉问题和提高准确性,需要了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,以达到最佳效果。
2025-02-27
我做一个小白,请帮我规划一个学习路径,让我快速掌握AI工具使用
以下是为您规划的快速掌握 AI 工具使用的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,学习生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有以下几点建议: 1. 多看教程,多实践:通过学习教程和反复实践,可以快速掌握 AI 工具的使用方法。 2. 积极参与社群交流:加入相关社群,向有经验的朋友请教,可以获得很多宝贵的经验和建议。 3. 保持好奇心和探索精神:AI 技术发展迅速,不断学习和探索新技术,可以让您在这个领域中保持竞争力。 希望以上学习路径和建议对您有所帮助!
2025-02-27
如何从入门到精通AI
以下是从入门到精通 AI 的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-27
什么AI可以帮忙做PPT
以下是一些可以帮忙做 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等,网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 5. WPS AI:能快速生成 PPT,并支持修改主题配色、字体和添加动画等操作。 此外,在教学场景中,Claude 和 Gamma.app 结合使用也能帮助学生做好组会准备,如快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。
2025-02-27
如何通过langchain实现上传 一个客户需求文档,生成一个产品规格书doc格式的文档
要通过 LangChain 实现上传客户需求文档并生成产品规格书(doc 格式),可以按照以下步骤进行: 1. 上传文档:用户可以上传包含知识的文档,支持 txt、pdf、docx 等格式,LangChain ChatChat 会将文档转换为 Markdown 格式。 2. 文本切割:为便于分析和处理,将长文本切割为小块(chunk)。 3. 文本向量化:将切割的 chunk 通过 embedding 技术,转换为算法可以处理的向量,存入向量数据库。 4. 问句向量化:用户提问后,同样将用户的问句向量化。 5. 语义检索匹配:将用户的问句与向量数据库中的 chunk 匹配,匹配出与问句向量最相似的 top k 个。 6. 提交 prompt 至 LLM:将匹配出的文本和问句,一起添加到配置好的 prompt 模板中,提交给 LLM。 7. 生成回答:LLM 生成回答,返回给用户。
2025-02-27
如何高效率的用AI搜索学术文献资料
以下是关于如何高效率用 AI 搜索学术文献资料的方法: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具来搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取收集资料中的关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的课题大纲。 5. 撰写文献综述:借助 AI 工具撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。 同时,为您介绍一些相关的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。 另外,开搜 AI 搜索是一款免费无广告、直达结果的搜索工具,它可以帮助在校学生快速搜集专业领域的学术资料,智能总结关键信息,助力撰写论文和报告,同时支持查看来源出处,参考价值高。对于教育教师群体,能获取丰富的教学资源,自动生成教案和课题研究报告,提高教学内容的准备效率。职场办公人群可利用其高效查找工作所需信息,简化文案撰写、PPT 制作和工作汇报的准备工作。也能为学术研究人员提供深入的行业分析,通过 AI 技术整合和总结大量数据,形成有深度的研究报告。链接:https://kaisouai.com/
2025-02-27
我想通过在sciencedirect上输入关键词后,让AI帮助我整理该词条下文献的内容,输出当今的研究现状、现存问题、解决方法
目前在 ScienceDirect 上,还没有直接通过输入关键词让 AI 为您整理文献内容并输出研究现状、现存问题及解决方法的成熟功能。但您可以利用一些 AI 工具,如文献分析类的软件,先将从 ScienceDirect 下载的文献导入其中,然后让其协助您进行分析和总结。不过,在使用任何工具时,都需要您自己对结果进行评估和筛选,以确保准确性和可靠性。
2025-02-25
文献总结
利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:利用 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。 学术场景中数据处理方面,以智谱 GLM 系列模型为代表的大模型技术正革新学术研究方式。面对海量论文资料,其能快速总结论文内容、进行精准翻译,通用性强,可适应不同学科和复杂文本,提炼核心观点,降低知识获取难度。在处理论文时,海量文献通常以多种格式存储,需转换为可供模型解析的文本格式,可借助平台工具完成文件内容提取。还可将文件内容自动化提取结合大模型进行批量分析或任务处理,适用于文档总结、信息提取等场景。 对抗性提示的参考文献包括: 1. 2. 3. 4. 5. 6. 7. 8. 请注意,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-02-25
如何正确的向deepseek提问来辅助我写一篇文献
以下是向 DeepSeek 提问来辅助写文献的正确方法: 1. 借助 AI 分析好的文章: 找出您最喜欢的文章,投喂给 DeepSeek R1(适合大多数有推理模型的 AI)。 第一次询问:请从写作角度分析这篇文章。 第二次询问:请再从读者角度分析这篇文章。 第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 2. 让 AI 对您写的文章进行点评: 表述为“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。” 3. 根据文章内容对作者进行心理侧写: 表述为“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 此外,还有用 DeepSeek 扮演一本书的作者辅助阅读书籍的案例,比如在读项飚的《跨越边界的社区》时,让 DeepSeek 解释作者为什么这么写,它会从时代背景的张力、浙江村的实践智慧、方法论上的颠覆等层面进行剖析。
2025-02-20
通过AI辅助文献写作应该怎么做
利用 AI 辅助文献写作可以按照以下步骤进行: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:利用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:使用 AI 工具辅助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,参考 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,运用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各个部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,应保持批判性思维,确保研究质量和学术诚信。 在论文写作领域,常用的 AI 工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,帮助精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 使用这些工具时,应结合自身写作风格和需求选择合适的辅助工具。 对于孩子使用 AI 辅助写作,若担心其削弱思考力,应正确引导。比如将任务设置为让孩子提交与 AI 共同完成作文的聊天记录,要求孩子对 AI 作文进行点评批改、让 AI 迭代出更好的文章,重点关注孩子在对话记录中能否清晰指出 AI 作文的优缺点及修改方法。
2025-02-20
哪个AI查文献靠谱
以下是一些在查文献方面较为靠谱的 AI 工具和平台: 专利审查方面: 1. 专利检索与分类: Google Patents:使用 AI 技术帮助用户检索和分析专利文献。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地检索和分类专利文献,提高检索的准确性和效率。 2. 专利分析和评估: TurboPatent:使用 AI 技术进行专利文档的自动审查和分析,评估专利的授权可能性和潜在风险。 PatentBot:AI 驱动的平台,可以自动分析专利文本,评估专利的技术范围和创新性。 3. 自动化专利申请: Specifio:利用 AI 技术自动生成专利申请文件,包括专利说明书和权利要求书,提高专利申请的效率。 PatentPal:使用 AI 技术自动生成和编辑专利申请文件,减少人工工作量。 4. 专利图像和图表分析: Aulive:利用 AI 技术分析专利中的图像和图表,自动识别技术内容和创新点。 AIpowered image recognition tools:用于专利文献中的图像识别和分析,提高图像处理的效率和准确性。 5. 专利趋势分析和预测: Innography:利用 AI 技术分析专利数据,提供技术趋势分析和竞争情报。 PatSnap:AI 驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。 论文写作方面: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 使用这些平台时,通常需要以下步骤: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献或输入检索关键词:如在专利审查平台上传待审查的专利文献,在论文写作平台输入相关主题关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成等功能,在论文写作平台选择相应的辅助功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果等。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件或完善论文内容。 需要注意的是,这些内容由 AI 大模型生成,请仔细甄别。
2025-02-16
目前通过AI工具的结合是否可以根据已调研完成的病例数据输出一份医学报告
目前,通过 AI 工具的结合,在一定程度上可以根据已调研完成的病例数据输出医学报告。例如 GPT4V 在医学图像理解方面显示出了有效性,能够为各种医学图像生成完整的放射学报告。在一些案例中,如腹部 X 射线图像和右膝的 MRI 图像,GPT4V 能正确识别研究并提供准确诊断。但也存在一些错误,比如在手部/腕部 X 射线图像中错过远侧桡骨骨折,在胸部 CT 中错误识别结节位置和产生测量误差。尽管生成的报告能保持高质量格式,可作为模板减轻医学专业人士起草报告的工作负担,但由医学专业人士评估生成的报告以确保其正确性和准确性仍是至关重要的。
2025-02-20
能分析医学化验单的AI有哪些?
以下是一些能够分析医学化验单的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,能简化学术工作。 2. Scholarcy:一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-02-17
有什么好的医学AI软件
以下是一些好的医学 AI 软件: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,能简化学术工作。 2. Scholarcy:一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供医学课题的修改意见。 此外,还有一些与医学相关的 AI 应用: 1. 微医 APP:AI 医疗健康管理平台,利用 AI 技术分析用户的健康数据,为用户提供个性化的健康管理方案。 2. 彩云天气专业版:AI 天气预报定制服务,根据用户需求提供个性化天气预报服务。 在 AI 公司的产品方面,也有一些与医学相关或具有创新性的: 1. MedARC:一种新颖、开放和协作的医学 AI 研究方法。 2. DeepFloyd:最新最先进的开源文本图像模型,生成的图像具有高度真实感。 内容由 AI 大模型生成,请仔细甄别。
2025-02-12
我要查找医学论文文献,用哪种AI最合适?
如果您要查找医学论文文献,以下几种 AI 工具可能较为合适: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,能增强对科学文献的洞察,提供引用声明搜索、自定义仪表板和参考检查等工具,简化学术工作。 2. Scholarcy:一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 此外,在论文写作领域,还有以下常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可帮助精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-11
现在国内可用的医学大模型有哪些
目前国内可用的医学大模型有以下这些: 1. 8 月正式上线的部分大模型: 北京企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 目前不能进行自然语言交流的:昇思(可以对文本进行是否由 AI 生成的检测,类似论文查重,准确度不错)、书生 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 特色功能:昇思——生图,MiniMax——语音合成 阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中。据悉,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。 2. LLM 开源中文大语言模型及数据集集合中的医学大模型: XrayGLM,首个会看胸部 X 光片的中文多模态医学大模型: 地址:https://github.com/WangRongsheng/XrayGLM MeChat,中文心理健康支持对话大模型: 地址:https://github.com/qiuhuachuan/smile MedicalGPT 地址:https://github.com/shibing624/MedicalGPT 此外,大模型在医疗行业的应用主要涵盖疾病的诊断与预测、药物研发以及个性化医疗等方向,例如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin 等案例充分展示了其在医疗领域的巨大潜力,目前很多医疗研究机构都在进行医疗大模型的开发研究。
2025-01-06
AI医学
AI 在医学领域有以下应用场景: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:加速药物研发过程,如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 在招聘方面,AI 产品经理负责基于通用人工智能技术(AGI)的智慧医疗诊断产品的规划、研发、发布上市的全过程管理。任职要求包括本科及以上学历,计算机、信息技术、工程、检验、生物科学、细胞生物学等相关专业优先;具备 3 年以上产品管理经验,有医疗领域产品管理经验者、有极致产品案例者优先;在产品创新、研发、迭代改进及商业化方面有丰富的项目管理经验;对客户需求具有高度敏感度,熟悉竞品分析、定价策略。 当前,我们正处于一个革命的起点,AI 正在工业化生物制药和医疗保健,被应用于从药物设计和诊断到医疗保健交付和后勤功能的各个方面。
2024-12-17