Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有去了解哪些国内外的Agent产品?详细讲讲其中一个

Answer

国内外有多个 Agent 产品,以下为您详细介绍其中一些:

  1. 扣子(coze.cn):是国内的新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具,可拓展 Bot 的能力边界。
  2. Coze(coze.com):海外版的 Agent 平台。
  3. 百度 AppBuilder:百度推出的相关平台。
  4. 阿里通义千问:具有一定特色和功能。
  5. 智谱 AI:在 AI 领域有一定影响力。

此外,还有以下一些 Agent 构建平台:

  1. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。
  2. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据自身需求打造产品能力。
  3. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。
  4. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。
  5. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。

在 ToC 领域,目前成体系的主要有以下几类产品:

  1. 主打 AI 角色扮演赛道的产品,例如“猫箱”“剧本戏”“名人朋友圈”这类,在 LLM 基础上,在 prompt 上加了些特定角色定义。
  2. 主打 AI 陪伴类的产品,例如“星野”“Talkie”“BubblePal”等,这类产品在 LLM 基础上,在 prompt 上加了些特定角色定义,且会在长短记忆上做出处理,以突出陪伴意义。随着陪伴时间越久,知识库沉淀的个性化记录越丰富,AI 也会越懂您。
  3. 做 AI 搜索工具的产品,例如“秘塔”“360 搜索”等,这类产品多为 RAG,也有会在搜索内容基础上,把内容结构化,整出一个图谱或者脑图。
  4. 单纯的做 AIGC 的产品,例如“可灵”“ai 写作手”“即梦”“md”等,借助 AI 的生成能力做出。
  5. Agent 产品,目前只有头部的厂商在做,比如字节的扣子,支付宝的智能助理,百度的文心智能体,腾讯的元宝。
Content generated by AI large model, please carefully verify (powered by aily)

References

1. 从案例入门

从哪个平台开始国内外有多个Agent平台可以几分钟内完成Agent创建,比如国内版扣子coze.cn、海外版Coze coze.com、百度AppBuilder、阿里通义千问、智谱AI......我们先从扣子coze.cn开始。

问:有哪些好的Agent构建平台

以下是一些Agent构建平台:1.Coze:Coze是一个新一代的一站式AI Bot开发平台,适用于构建基于AI模型的各类问答Bot。它集成了丰富的插件工具,可以极大地拓展Bot的能力边界。2.Mircosoft的Copilot Studio:这个平台的主要功能包括外挂数据、定义流程、调用API和操作,以及将Copilot部署到各种渠道。3.文心智能体:这是百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。4.MindOS的Agent平台:允许用户定义Agent的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。5.斑头雁:这是一个2B基于企业知识库构建专属AI Agent的平台,适用于客服、营销、销售等多种场景。它提供了多种成熟模板,功能强大且开箱即用。6.钉钉AI超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。这使得它在处理高频工作场景如销售、客服、行程安排等方面表现更加出色。以上信息提供了关于6个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。内容由AI大模型生成,请仔细甄别

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

toc领域,目前看到比较成体系的主要有这几类产品:1)一类是主打ai角色扮演赛道的产品例如“猫箱”“剧本戏”“名人朋友圈”这类其实就是在llm基础上,在prompt上加了些特定角色定义2)一类是主打ai陪伴类的产品例如“星野”“Talkie”“BubblePal”等为代表这类产品其实也是在llm基础上,在prompt上加了些特定角色定义。不过不一样的是,这类产品往往会在长短记忆上做出些处理,以突出其陪伴意义。随着陪伴的时间越久,知识库沉淀的个性化记录就越丰富,ai也会越懂你。老实说这类产品我觉得还是很有意义的。3)一类是做ai搜索工具的产品例如“秘塔”“360搜索”等这类产品说白了就是上文提到的rag,没啥别的。不过也有会在搜索内容基础上,把内容结构化,整出一个图谱或者脑图的,这个也还算有意思。4)一类是单纯的做aigc的产品例如“可灵”“ai写作手”“即梦”“md”等这类产品其实就是借助ai的生成能力做出的产品5)还有一类是agent产品这个目前只有头部的厂商在做,比如字节的扣子,支付宝的智能助理,百度的文心智能体,腾讯的元宝。

Others are asking
Coze Agent接入个人微信
Coze 是一个 AI 智能体创作平台,可以根据需求构建多个 AI 机器人并发布到多种社交平台。微信作为多功能社交平台,其不同功能与 Coze 平台的对接情况有所不同。个人微信和微信群是日常常用的聊天工具,但此前 Coze 平台不支持直接对接。不过,Coze 国内版已正式发布 API 接口功能,使得对接个人微信甚至微信群成为可能。作者安仔分享了如何使用 Coze AI 机器人对接微信群,以回复个人或群组小伙伴的信息,解决社群运营问题。此外,如果对学习 Coze 和 AI Agent 有兴趣,可以加入作者的免费 AI Agent 共学群,通过搜索微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学即可。
2025-01-02
多模态agent
以下是关于多模态 agent 的相关信息: 智谱·AI 开源模型列表中的多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。代码链接:、始智社区。 CogVLM17B:强大的开源视觉语言模型(VLM),基于对视觉和语言信息之间融合的理解,在多模态权威学术榜单上综合成绩优异。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于。 Han 中提到的 AppAgent:让 AI 模仿人类在手机上操作 APP,通过其模仿能力不断提升,对于之后模仿数据的反利用也有不错的应用场景,例如互联网或 AI 或涉及到原型+UE 的工作都可以在基于模仿数据的基础上进行反推,进而让设计出的产品原型和 UE 交互更优解。AppAgent 可以通过自主学习和模仿人类的点击和滑动手势,能够在手机上执行各种任务。它是一个基于大语言模型的多模态代理,能够处理和理解多种类型的信息(如文本、图像、触控操作等)。 多智能体(MultiAgent): 定义:由多个自主、独立的智能体(Agent)组成的系统。每个智能体都能够感知环境、进行决策并执行任务,同时它们之间可以进行信息共享、任务协调以及协同行动,以实现整体的目标。 关于 MultiAgent:随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统近期受到广泛关注。目前更常见的框架主要集中在单 Agent 场景下,单 Agent 的核心在于 LLM 与工具的协同配合。同时,越来越多的 Agent 框架开始关注多 Agent 场景,为不同的 Agent 指定不同的角色,并通过协作完成复杂任务。 主要组成部分: 环境(environment):所有 Agent 处于同一个环境中,环境中包含全局状态信息,Agent 与环境之间存在信息的交互与更新。 阶段(stage):为完成复杂任务,现有多 Agent 框架通常采用 SOP 思想,将复杂任务分解为多个子任务。 控制器(controller):可以是 LLM 或预先定义好的规则,主要负责环境在不同 Agent 和阶段之间的切换。 记忆:在单 Agent 中,记忆只包括用户、LLM 回应和工具调用结果等部分。而在多 Agent 框架中,由于 Agent 数量增多,导致消息数量增多,同时每条消息可能需要记录发送方、接收方等字段。
2024-12-28
agent现在是只有coze提供吗?
目前,AI Agent 并非只有 Coze 提供。Coze 具有以下特点: 1. 所有功能免费,无需任何费用,所见即所得。 2. 免费功能还涵盖丰富的主流第三方插件、知识库、数据库、工作流设计、预置 AI Bot、性能监控与优化等,这是其他平台无法比拟的。 3. 非常适合小白,无需编程基础,会使用电脑即可。 4. 国内版可直接对接微信、飞书等主流平台,国外版可对接 Facebook Messenger、Slack、Telegram 等主流平台。 5. 国内版目前只能支持使用“云雀大模型”作为对话引擎,国外版可支持使用“GPT 3.5/GPT 4”大模型作为对话引擎,且 GPT 4 完全免费,但国内无法访问,需要特殊手段。 6. Coze 还有自己的手机端,方便用户通过手机端 APP 分享自己的 AI 应用,提高用户使用体验和产品裂变的可能性。 此外,Coze 是字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,用自然语言和拖拽等方式构建 Agent,目前可以免费使用海量大模型,有丰富的插件生态。记账管家是基于 Coze 平台能力搭建的记账应用,用户可直接告知收入或支出情况,Coze 会自动记账并计算账户余额,且每一笔记账记录不会丢失。
2024-12-26
agent的定义
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分: 1. 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 2. 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包括短期记忆(用于所有的上下文学习)和长期记忆(通过利用外部向量存储和快速检索实现长时间保留和回忆无限信息)。 4. 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 从产品角度思考 Agent 设计时,比如我们的 Agent 可以是一个历史新闻探索向导,其身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可为其设计简短背景故事。写好角色个性需考虑角色背景和身份、性格和语气、角色互动方式、角色技能等方面。 Agent(智能体)是一种能够在环境中自主感知、思考并采取行动的实体。LLM Agent 是指结合大型语言模型(LLM)和自主智能体(Agent)特性的系统,能够利用大型语言模型的自然语言处理能力,理解用户输入,并进行智能决策和行动。其组成部分包括: 1. 规划:是 Agent 的思维模型,负责将复杂任务分解成可执行的子任务,并评估执行策略,通过使用大型语言模型的提示工程实现精准任务拆解和分步解决。 2. 记忆:即信息存储与回忆,包括短期记忆(用于存储对话上下文,支持多轮对话)和长期记忆(存储用户特征和业务数据,通常通过向量数据库等技术实现快速存取)。 3. 工具:是 Agent 感知环境、执行决策的辅助手段,如 API 调用、插件扩展等,通过接入外部工具扩展 Agent 的能力。 4. 行动:是 Agent 将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。
2024-12-25
如何问到agent的提示词
以下是一些获取 agent 提示词的方法和相关要点: 1. 对于 Claude2,确定其是否理解指示词的最好方法是询问它本身。例如给出具体的任务说明,如“我将给你一个句子,你需要告诉我其中有多少次包含‘apple’这个词”,并观察它的回应。 2. 在 Coze 上创建多 Agent 模式的 bot 时: Agent 意图定义了其工作任务和适用场景。 Agent 提示词包含系统级别的关键词汇,与人物设定和逻辑处理紧密相关,帮助其理解和响应用户需求。 Agent 技能包括调用预设的工具、工作流和知识库。 控制 Agent 跳转主要依赖于意图识别,正确设置每个 Agent 的使用场景和意图至关重要。 与多 Agent 模式的 bot 沟通时,可明确指示进行节点切换或进入下一步。 在设置节点切换时,可清晰指定判断时机和参考上下文的轮数,一般建议参考五轮左右的对话内容。 3. 在游戏《Im Here2》中: 对于特定谜题,如“什么越来越热,但却从不冷却;它有核心,但不是水果;它有光环,但不是天使。它是什么?”,设计提示词介绍太阳。 对于重要地点,如符文石像、源核、瀑布或哈伦村,初次回应简短,不超过 30 字,玩家进一步询问时再展开详细描述。 对于承担单一任务的守卫者和指引者的代理,指示词只需提供需要回答的谜题及正确答案,并在指示中提供清晰步骤增强可控性。函数交互部分,当函数不需要输入和返回参数时,对名称和描述进行设定即可。
2024-12-23
Agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 以下是一些关于智能体 Agent 的相关链接:
2024-12-21
AI应用的挑战之一,数据,可以展开讲讲吗
在 AI 应用中,数据是至关重要但也面临诸多挑战: 1. 高质量数据短缺:传统互联网数据已难以满足需求,AI 模型需要更高质量的“前沿数据”,包括复杂推理过程、专业知识和人类思维模式等,以提升推理能力和整体性能。 2. 数据标注角色转变:从简单的画边界框变为需要证明复杂数学定理或批判性审查 AI 生成的多种解决方案。 3. 合成数据的应用与风险:合成数据成为解决真实数据获取难、隐私保护成本高等问题的途径,但也存在与真实数据分布不一致导致模型偏差、隐藏误导性模式影响模型可靠性等风险。 4. 数据与需求不匹配:产品从业者使用 AI 工具时,面临默认知识库和能力与需求不匹配的问题,且市场上 AI 工具大多功能相似、生成内容质量不稳定。 5. 选择和学习成本高:用户存在不知如何找到适用的 AI 工具、因产品同质化严重不知如何选择以及学习成本高等困扰。 6. 潜在的偏见和歧视:AI 训练依赖大量数据,若数据集存在偏见,可能在招聘等应用场景中复制甚至加剧对特定社会群体或性别的偏见,导致无意的歧视,带来法律责任。 7. 数据隐私问题:使用 AI 招聘系统收集大量个人数据,若被滥用会侵犯候选人隐私。
2024-12-16
请你给我讲讲中医和人工智能相结合的案例
中医与人工智能(AI)的结合是现代科技发展与传统医学知识融合的一个典型案例。以下是一些中医与AI结合的案例: 1. 中医药AI大模型共建:清华大学的两个院士团队,博奥晶方和水木分子,合作开发中医药AI大模型,旨在利用AI技术挖掘中医药的原创研发数据,推动中医药现代化和新药研发。 2. 智能中医管理系统:李梢教授团队利用UNIQ系统,结合临床病例数据,发现了胃癌“极早期”阶段,并通过中药干预可能阻断癌变,提升了中医药精准诊疗水平。 3. 中医辅助诊疗系统:通过图像智能识别、计算机视觉和自然语言处理技术,AI可以模拟中医的诊断过程,如通过舌象图像进行胃癌筛查和诊断,以及通过眼睛颜色、形状与疾病之间关系的分析进行临床诊断。 4. 中医教育与传承:AI技术帮助将知名医生的个性化诊断和治疗经验转化为标准化协议,提高了中医传承的效率,促进了中医药人才培养。 5. 中医药数据挖掘:AI技术在分析大规模中药处方数据集和识别药物之间的潜在模式方面发挥着重要作用,有助于优化处方和提高治疗效果。 6. 中药质量控制:利用深度学习和神经智能网络,AI可以智能识别中药材片,提高中药的标准化和质量稳定性。 7. 中医诊疗规则获取与模型设计:通过集成不同来源的诊疗规则,形成以证候要素为核心的集成诊疗规则,并利用图卷积神经网络和知识图谱构建可视化模型。 这些案例展示了AI技术在中医药领域的广泛应用,包括药物研发、疾病诊断、质量控制、数据挖掘和教育传承等。通过AI的帮助,中医药能够更高效地进行知识传承、疾病治疗和新药开发,同时也为中医药的现代化和国际化提供了新的途径。
2024-05-02
国内外最好的来源大模型有哪些 对比介绍一下
以下是国内外一些较好的大模型及其对比介绍: 国外大模型: GPT4 Turbo 总分 90.63 分遥遥领先,在各项能力上表现出色。 国内大模型: 文心一言 4.0(API)总分 79.02 分,过去 1 年有长足进步。 通义千问 2.0(阿里云):在代码、上下文对话基础能力上排名国内第一,各项能力较为均衡,位于国内大模型第一梯队,适合应用于金融、医疗、汽车等垂直专业场景及代码生成与纠错等场景。 AndesGPT(OPPO):在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。 百川智能的 Baichuan213BChat:是中文开源模型的主导力量,在中文上表现优于国外开源模型。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右,但国内外的平均水平差距在缩小。另外,国内开源模型在中文上表现要好于国外开源模型。
2024-12-28
文生视频目前最新最主流好用的有哪些,国内外均可
以下是一些国内外最新且主流好用的文生视频工具: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 3. Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多的文生视频网站可查看:https://www.waytoagi.com/category/38 。 以生成方式划分,当前视频生成可分为文生视频、图生视频与视频生视频。视频生成涉及深度学习技术,如 GANs 和 Video Diffusion,主流生成模型为扩散模型。一些具有代表性的海外项目如: 1. Sora(OpenAI):以扩散 Transformer 模型为核心,能生成长达一分钟的高保真视频,支持多种生成方式,在文本理解方面表现出色,能在单个生成的视频中创建多个镜头,保留角色和视觉风格。 2. Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数,被定位为基础世界模型,可通过单张图像提示生成交互式环境。
2024-12-26
国内外所有虚拟数字人影响力及诞生时间
以下是国内外部分虚拟数字人的相关信息: 报告类: ,发布者为中国网络视听协会、人民日报智慧媒体研究院、中国传媒大学动画与数字艺术学院、元力趋势网,发表日期为 2024 年 1 月 1 日。 ,发布者为上海市人工智能技术协会、零壹智库、增强现实核心技术产业联盟、商汤科技,发表日期为 2024 年 4 月 11 日。 ,发布者为国盛证券,发表日期为 2023 年 11 月 21 日。 ,发布者为中航证券,发表日期为 2023 年 12 月 5 日。 ,发布者为招商证券,发表日期为 2023 年 10 月 29 日。 数字科技有限公司,发表日期为 2021 年 1 月 1 日。 ,发布者为清华大学新闻与传播学院,发表日期为 2023 年 2 月 21 日。 市场竞争类: 井英科技:CreativeFitting 专注打造“AI+人工”的商业短视频创作新模式,从创意发现到脚本创作,再到视频生产,均引入了 AI 辅助创作,大幅降低了优质短视频生产的边际成本,显著提高了生产效率和产能,网站为,成立于 2020 年 4 月 16 日,地点在上海,融资阶段为 A 轮。 铭顺科技:数字人私有化部署方案提供商,网站为,成立于 2022 年 7 月 15 日,地点在长沙,融资阶段为 A 轮。 八点八数字科技:虚拟人全链路服务公司,网站为,成立于 2014 年 9 月 1 日,地点在南京,融资阶段为 PreA 轮。 慧夜科技:虚拟生命 AI 驱动技术服务商,网站为,成立于 2019 年 5 月 30 日,地点在北京,融资阶段为 PreA 轮。 深锶科技:XR 内容创作平台,网站为,成立于 2021 年 12 月 1 日,地点在北京,融资阶段为 PreA 轮。 拟仁智能:AI 虚拟人解决方案提供商,网站为,成立于 2020 年 9 月 1 日,地点在杭州,融资阶段为天使轮。 心识宇宙:人工智能赋能虚拟人大脑,让虚拟人具有思维、意识和人格,网站为,成立于 2022 年 1 月 1 日,地点在杭州,融资阶段为天使轮。 跳悦智能:AI 数字人技术研发商,如虚拟主播带货,网站为,成立于 2021 年 6 月 1 日,地点在北京,融资阶段为天使轮。 延伸阅读类: ,发布者为汉坤,发表日期为 2022 年 6 月 22 日,类别为文章。 ,发布者为浙江省发展和改革委员会,发表日期为 2022 年 12 月 25 日,类别为政策。
2024-12-08
像midjournal这样的国内外AI绘画社区
以下是为您介绍的像 Midjourney 这样的国内外 AI 绘画社区相关内容: Midjourney 是 AI 绘图领域家喻户晓的产品。其优点在于模型强大,能生成高质量图像,且支持充分的个性化设置。但使用过程不太便捷,需要通过 Discord 应用加入其频道或创建自己的频道并邀请 Midjourney 机器人才能生成图片。从学习难度来看,它的学习曲线较陡峭,在用户体验和易用性方面有待改进。 在“学社说明”中提到,大家一起收集和测试 AI 绘画提示词中的核心关键词,让新手规避无效探索,为相关从业人员节省时间。招募有 Midjourney 账号且喜欢 AI 绘画的人员,扫飞书二维码进群。根据关键词做创意,收录不错的作品。 在“AI 线上绘画教程”中提到,工作中需要大量图片时,AI 生图是高效的解决办法。主流的 Midjourney 付费成本高,Stable Diffusion 硬件门槛不低,但有像这样的免费在线 SD 工具网站。本教程旨在让入门玩家在半个小时内自由上手创作绘图。
2024-11-12
类似堆友,吐司这样的国内外AI生图
以下是为您整理的类似堆友、吐司的国内外 AI 生图产品: 国内: 阿里堆友 AI 反应堆:图像生成类产品。 图怪兽:资源类,4 月访问量 48.3 万 Visit,相对 3 月变化 0.299 。 美图秀秀 Meitu:图像编辑类,4 月访问量 47.9 万 Visit,相对 3 月变化 0.061 。 AI 抠图 pixian.ai:图像编辑类,4 月访问量 44 万 Visit,相对 3 月变化 0.176 。 佐糖:图像编辑类,4 月访问量 43.3 万 Visit,相对 3 月变化 0.071 。 我图网:图像生成类,4 月访问量 41.8 万 Visit,相对 3 月变化 0.012 。 文心一格:图像生成类,4 月访问量 41.5 万 Visit,相对 3 月变化 0.086 。 标智客 Ai Logo:图像生成类,4 月访问量 37.8 万 Visit,相对 3 月变化 1 。 可灵:由快手团队开发,主要用于生成高质量的图像和视频,图像质量高,最初采用内测邀请制,现向所有用户开放,价格相对较高,重度用户年费最高可达几千元,临时或轻度使用有免费点数和较便宜包月选项。 通义万相:在中文理解和处理方面表现出色,可从多种艺术和图像风格中选择,生成图像质量高、细节丰富,操作界面简洁直观,用户友好度高,可与阿里其他产品和服务无缝整合,目前免费,每天签到获取灵感值,但存在一定局限性,如某些类型图像因国内监管要求无法生成,处理非中文语言或国际化内容可能不够出色,处理多元文化内容可能存在偏差。 国外:暂无相关具体产品信息。
2024-11-12
国内外大预言模型对比
以下是国内外大语言模型的对比情况: 1. 工具使用能力: 在工具使用的测评中,GPT4 Turbo 取得满分。 国内大模型中智谱清言表现不俗,取得 83.78 的高分,排名国内第一。文心一言 4.0、通义千问 2.0、Yi34BChat、AndesGPT 均有超过 70 分的表现。超过 GPT3.5 的国内模型有 12 个。 开源模型中,Baichuan213BChat、Xverse13B2Caht 表现可圈可点,均超过 GPT3.5 以及众多闭源模型。总体来看,国内大模型在工具使用能力上表现优异,这与国内大模型厂商积极落地应用密不可分。 2. 主观和客观对比: 通过对比模型在主观简答题 OPEN 和客观选择题 OPT 上的不同表现,国内大模型多数擅长做选择题,普遍选择题分数高于简答题分数。文心一言 4.0 和智谱清言表现相对稳定。 GPT4 Turbo 的表现最为稳定。 客观题相对主观题更容易通过题库形式进行训练和提升,同时由于客观题中包含中文特性问题,中文模型有一定优势,应综合来看模型的评测效果。 在本次测评中,国外的代表性大模型如 GPT4 的不同版本、Claude2、Llama2 都有很好的稳定性表现,值得国内大模型进一步分析研究。 3. 总体表现: GPT 4 Turbo 总分 90.63 分遥遥领先,高于其他国内大模型及国外大模型。国内最好模型文心一言 4.0有 4.9 分的差距。 过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。国内外的平均水平差距在缩小,11 月差距在 10 分左右。 国内开源模型在中文上表现好于国外开源模型,如百川智能的 Baichuan213BChat、阿里云的 Qwen72B、Yi 34BCha t 均优于 Llama213BChat。
2024-11-12
模态分解算法的详细代码
很抱歉,目前知识库中没有模态分解算法的详细代码。但您可以通过以下途径获取相关代码: 1. 学术研究网站,如 arXiv 等,许多学者会在上面分享他们的研究成果及代码。 2. 相关的开源代码库,如 GitHub 等,您可以通过搜索关键词找到相关项目。 3. 专业的技术论坛,在那里与其他开发者交流,可能会获得有用的信息和代码示例。
2024-12-30
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
如何使用AI进行中学历史教学,详细些介绍
以下是关于如何使用 AI 进行中学历史教学的一些方法和案例: 1. 利用 GPT 生成“沉浸式”历史片段游戏,让学生扮演特定角色“设身处地”地做决策,例如模拟明朝灭亡时期在南京的场景。 2. 让学生的作业是找出 GPT 生成内容中的错误,以加深对历史知识的理解和批判性思维。 3. 在历史课中,对于制作展示宏观经济学原理理解的信息图表等任务,可以使用 AI 生成的图像。 4. 对于一些需要快速制作以展示学习成果的视频,如科学课中的学习展示,可利用 AI 生成的跳切来节省时间。 同时需要注意,AI 生成的历史模拟内容并非完全准确,可能存在错误和幻觉,但有时幻觉也可能成为一种特点而非缺陷。在使用 AI 辅助教学时,要引导学生正确对待和利用 AI 生成的内容,培养他们的批判性思维和对历史知识的深入理解。
2024-12-20
如何使用AI进行中学历史教学,详细些
以下是一些使用 AI 进行中学历史教学的方法和案例: 1. 利用 GPT 生成“沉浸式”历史片段游戏,让学生扮演特定角色“设身处地”地做决策,例如模拟明朝灭亡时期在南京的情境。 2. 让学生的作业是找出 GPT 生成内容中的错误,以加深对历史知识的理解和批判性思维。 3. 在历史课中,对于制作展示宏观经济学原理理解的信息图表等任务,可接受 AI 生成的图像。 4. 对于不同的历史情境模拟,可参考详细的提示链接,并根据 Claude 或 ChatGPT 进行定制。 需要注意的是,这些模拟并非完全准确,可能存在错误和幻觉,但有时幻觉也可能成为一种特点而非缺陷。同时,在教学中要引导学生正确看待和利用 AI ,培养他们的批判性思维和对知识的深入理解。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤让小白都能成功,并且列出硬件设施。
以下是使用已公布的源代码拥有一个私人 AI 的详细步骤,适合小白操作,并列出所需的硬件设施: 硬件设施: 云服务器 步骤: 1. 利用云服务器,在宝塔面板的终端安装相关命令。可通过以下链接获取详细信息:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令在宝塔面板的终端安装,安装的 dockercompose 文件位于 /root/dify/docker 目录下。 2. 检查运行情况,使用 docker compose ps 命令,如果 nginx 容器无法运行,可能是 80 端口被占用。将终端输出的代码粘贴给 AI ,按照 AI 的方法检查谁占用了端口,并停止占用进程。确保每一步成功后再进行下一步,可将代码复制询问 AI 以确认。 3. 在浏览器地址栏输入公网 IP(可在腾讯云服务器或宝塔面板地址栏查看,去掉后面的:8888),随便填写邮箱密码建立一个知识库,在知识库中选择设置。 4. 选择模型,国内模型通常有免费额度,例如智谱 AI 。点击设置,从智谱 AI 获取钥匙,进入智谱官网用手机号注册,添加 API keys 并复制。查看免费额度(智谱在资源包管理中查看,赠送 500 万一个月)。 5. 回到之前的页面,复制钥匙并保存,随便创建一个应用。 6. 可以先选择智谱 glm4 进行测试,聊两句看是否有回应,然后点击发布。 7. 点击 api 秘钥,创建一个并复制。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20