Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你是用什么底层模型驱动?

Answer

目前常见的 AI 模型驱动情况如下:

  • 谷歌的 Bard 由各种基础模型驱动,最近是名为 PaLM 2 的模型。
  • Anthropic 发布了 Claude 2,Claude 最显著的特点是有一个非常大的上下文窗口。
  • OpenAI 制作了 GPT-3.5 和 GPT-4,它们驱动了 ChatGPT 和微软的 Bing(在 Edge 浏览器上访问)。
  • ComfyUI Playground2.5 是一个根据文本提示生成图像的模型,它是一个使用两个固定的、预训练的文本编码器(OpenCLIP-ViT/G 和 CLIP-ViT/L)的潜在扩散模型,遵循与 Stable Diffusion XL 相同的架构(底层框架是 SDXL)。
Content generated by AI large model, please carefully verify (powered by aily)

References

如何使用 AI 来做事:一份带有观点的指南

谷歌一直在测试自己的人工智能供消费者使用,他们称之为Bard,但是由各种基础模型驱动,最近是一个名叫PaLM 2的模型。对于开发出LLM技术的公司来说,他们非常令人失望,尽管昨天宣布的改进表明他们仍在研究基础技术,所以有希望。它已经获得了运行有限代码和解释图像的能力,但我目前通常会避免它。最后一家公司Anthropic发布了Claude 2。Claude最值得注意的是有一个非常大的上下文窗口-本质上是LLM的记忆。Claude几乎可以保存一整本书或许多PDF。与其他大型语言模型相比,它不太可能恶意行事,这意味着,在实际上,它倾向于对你做一些事情进行责骂。现在,来看看一些用途:

ComfyUI Playground2.5

Playground2.5模型地址https://civitai.com/models/325263/playground-ais-playground-v25-1024pxhttps://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic/tree/main该模型根据文本提示生成图像。它是一个使用两个固定的、预训练的文本编码器(OpenCLIP-ViT/G和CLIP-ViT/L)的潜在扩散模型。它遵循与Stable Diffusion XL相同的架构(底层框架是SDXL)。另外这个模型的风格化比较强,所以注意一下,CGF的权重不要给太高默认使用EDMDPMSolverMultistepScheduler调度程序,以获得更清晰的细节。这是DPM++ 2M Karras调度程序的EDM表达。对于这个调度程序,guidance_scale=3.0是一个很好的默认值。EDMEulerScheduler调度程序。这是Euler调度程序的EDM表达。对于这个调度程序,guidance_scale=5.0是一个很好的默认值

如何使用 AI 来做事:一份带有观点的指南

当我们现在谈论人工智能时,我们通常谈论的是大型语言模型或简称为LLMs。大多数AI应用程序都由LLM驱动,其中只有几个基础模型,由少数几个组织创建。每家公司都通过聊天机器人直接访问他们的模型:OpenAI制作了GPT-3.5和GPT-4,它们驱动了[ChatGPT](https://chat.openai.com/)和微软的[Bing](https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx&sydconv=1)(在Edge浏览器上访问)。Google在[Bard](https://bard.google.com/)的标签品牌下有各种模型。Anthropic制造了Claude和[Claude 2](https://claude.ai/)。还有其他我不会讨论的LLMs。第一个是[Pi](https://pi.ai/talk),一个由Inflection构建的聊天机器人。Pi针对对话进行了优化,真的、真的想成为你的朋友(真的,试试看我在说什么)。它不喜欢做除了聊天之外的任何事情,尝试让它为你工作是一种令人沮丧的事情。我们也不会涵盖任何人都可以使用和修改的各种开源模型。它们通常对今天的普通用户来说不是很容易使用或有用,但是有真正的希望。未来的指南可能会包括它们。因此,这是一份快速参考图表,总结了LLM的现状:

Others are asking
不同厂家的AI产品是底层算法不一样吗?比如ChatGPT和豆包
不同厂家的 AI 产品底层算法通常是不一样的。 以常见的 ChatGPT 和豆包为例,ChatGPT 是由 OpenAI 开发的,其底层算法具有独特的特点和优势。而豆包是由字节跳动开发的,也有其自身的算法设计和优化。 在当前的 AI 领域,大多数 AI 应用程序都由大型语言模型(LLMs)驱动,其中只有几个基础模型,由少数几个组织创建。例如 OpenAI 制作了 GPT3.5 和 GPT4,Google 有 Bard 等。 从相关的访问量数据来看,不同的 AI 产品在市场上的表现也有所不同。比如在某些月份,ChatGPT 的访问量较高,而豆包的访问量也在不断变化。但这并不能直接反映其底层算法的差异,只是从侧面反映了它们在用户中的受欢迎程度和使用情况。
2025-01-17
ChatGPT的底层原理是什么
ChatGPT 的底层原理主要包括以下几个方面: 1. 数据获取与训练:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。 2. 神经网络结构:由非常简单的元素组成,尽管数量庞大。基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。 3. 生成文本方式:通过自回归生成,即把自己生成的下一个词和之前的上文组合成新的上文,再生成下一个词,不断重复生成任意长的下文。 4. 训练目的:不是记忆,而是学习以单字接龙的方式训练模型,学习提问和回答的通用规律,实现泛化,以便在遇到没记忆过的提问时,能利用所学规律生成用户想要的回答。 5. 与搜索引擎的区别:搜索引擎无法给出没被数据库记忆的信息,而ChatGPT作为生成模型,可以创造不存在的文本。 其结果表明人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”,ChatGPT已经隐含地发现了它。同时,当人类生成语言时,许多方面的工作与ChatGPT似乎相当相似。此外,GPT的核心是单字接龙,在翻译等场合应用时,先直译再改写能使Transform机制更好地起作用。
2024-12-03
ai的底层逻辑是什么
AI 的底层逻辑包括以下几个方面: 1. 决策方面:AI 在越来越多的场景落地,成为企业管理和决策的重要工具。然而,AI 的决策过程并非真正的“理解”,而是基于复杂计算和模式匹配,其本质存在局限性,是个“黑盒”,输出结果可见但决策过程难以理解,这种不透明性给企业决策带来风险。 2. 大模型方面:大模型依靠概率计算逐字接龙工作,参数规模的增加使其实现量变到质变的突破,从而“涌现”出智能。大模型的知识是通过预训练预先学习和存储的,但在没有外部帮助时,其知识信息可能不完备和滞后。 3. 神经网络方面:计算机科学家以人脑神经元细胞结构为灵感,利用概览模型在计算机上实现对人脑结构的模仿,但大模型内部如同人类大脑一样是混沌系统,即使是开发者也无法解释其微观细节。
2024-11-13
ai的底层逻辑
AI 的底层逻辑主要涉及以下几个方面: 1. 大模型的底层原理: 大语言模型依靠概率计算逐字接龙的方式工作,平时看到的逐字输出并非特效,而是其真实的工作方式。 大模型参数规模的增加,如从 GPT1 的 1.5 亿到 GPT3.5 的 1750 亿,实现了量变到质变的突破,从而“涌现”出智能。这种“涌现”结构在人类的进化和个体学习成长中也存在。 预训练是大模型获取知识的方式,其需要大量时间和算力资源。在没有外部帮助的情况下,大模型的知识信息可能不完备且滞后。 GPT 是生成式预训练转换器模型(Generative Pretrained Transformer),生成式指大模型根据已有输入不断计算生成下一个字词,直至计算出概率最大时结束输出。 2. 必须理解的核心概念: LLM 是 Large language model 的缩写,即大语言模型。 Prompt 是提示词,即输入给大模型的文本内容,其质量会显著影响回答质量。 Token 是大模型语言体系中的最小单元,不同厂商对中文的切分方法不同,通常 1Token≈12 个汉字,大模型的收费和输入输出长度限制以 token 为单位。 上下文指对话聊天内容的前后信息,其长度和窗口会影响大模型回答质量。
2024-11-06
如果想学习ai,作为ai产品经理,需要ai底层的算法掌握到什么程度
作为 AI 产品经理,对 AI 底层算法的掌握程度需要达到以下几个方面: 1. 理解产品核心技术:了解基本的机器学习算法原理,以便做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能够准确判断某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品未来的发展趋势。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关算法知识,提升数据分析能力。 同时,如果希望在 AI 领域继续精进,还需要了解以下基础内容: AI 背景知识: 基础理论:清楚人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等的基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-05
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
音频驱动视频人物口型
以下是关于音频驱动视频人物口型的相关信息: PixVerse V3 : 本次更新内容丰富,包括已有能力升级,提供更精准的提示词理解能力和更惊艳的视频动态效果。 支持多种视频比例,如 16:9、9:16、3:4、4:3、1:1。 Style风格化功能重新回归升级,支持动漫、现实、粘土和 3D 四种风格选择,同时支持文生视频和图生视频的风格化。 全新上线了 Lipsync 功能,在生成的视频基础上,允许用户输入文案或上传音频文件,PixVerse 会自动根据文案或音频文件内容,对视频中的人物口型进行适配。 还有 Effect 功能,提供 8 个创意效果,包括变身僵尸、巫师帽、怪兽入侵等万圣节主题模板,一键实现创意构思。并且 Extend 功能支持将生成的视频再延长 5 8 秒,且支持控制延长部分的内容。 字节跳动开源的 LatentSync : 是精准唇形同步工具,能够自动根据音频调整角色嘴型,实现精准口型同步,无需复杂中间步骤。 提出“时间对齐”技术,解决画面跳动或不一致问题,效果显著。 具有开箱即用的特点,预训练模型加持,操作简单,支持高度定制化训练。 GitHub 链接:https://github.com/bytedance/LatentSync 论文链接:https://arxiv.org/pdf/2412.09262
2025-02-16
如果想用几张照片,驱动自己的数字人视频,有哪个平台可以搞
以下是一些可以用照片驱动生成数字人视频的平台及使用方法: 1. HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法: 点击网址注册后,进入数字人制作,选择Photo Avatar上传自己的照片。 上传后效果如图所示,My Avatar处显示上传的照片。 点开大图后,点击Create with AI Studio,进入数字人制作。 写上视频文案并选择配音音色,也可以自行上传音频。 最后点击Submit,就可以得到一段数字人视频。 2. DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法: 点击上面的网址,点击右上角的Create vedio。 选择人物形象,你可以点击ADD添加你的照片,或者使用DID给出的人物形象。 配音时,你可以选择提供文字选择音色,或者直接上传一段音频。 最后,点击Generate vedio就可以生成一段视频。 打开自己生成的视频,可以下载或者直接分享给朋友。 3. KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很AI。 使用方法: 点击上面的网址,注册后获得120免费k币,这里选择“照片数字人口播”的功能。 点击开始创作,选择自定义照片。 配音时,你可以选择提供文字选择音色,或者直接上传一段音频。 打开绿幕按钮,点击背景,可以添加背景图。 最后,点击生成视频。 4. 出门问问Mobvoi:提供了照片数字人的工作流及语音合成(TTS)API,可参考相关效果展示及工作流作者、创意策划等信息。 5. 剪映数字人“个性化”: 尽管剪映有很多公模数字人,但私模数字人更受欢迎。 使用方法: 第一步打开谷歌浏览器,点击链接https://github.com/facefusion/facefusioncolab 并点击open colab就进到程序主要运行界面,在右上角点击“代码执行程序”选择“全部运行”就行,无需安装,无需付费。点击红框对应的URL就会打开操作界面。 第二步,点击“source”上传自己的照片和“target”上传之前的剪映数字人视频,保持默认参数,点击“START”就能生成。 第三步:等着自己专属的数字人视频出炉。
2025-02-07
音频驱动视频
以下是关于音频驱动视频的相关信息: INFP:字节二元交互的新型音频驱动头部动画生成技术 用户输入一段对话音频,可以自动驱动两个数字人头像自然对话,不需要手动区分对话。AI 可以动态地在说话和聆听状态之间交替,实现自然的口型同步和头部与面部表情动作。它适应多种画风图像,支持歌唱、采访、对话(可以实现多 Agent 实时对话)等场景环境。 地址:https://grisoon.github.io/INFP/ LTX Studio:Face Expression 控制角色表情 LTX Studio 的新功能 Face Expression 可轻松完全控制角色的面部表情。可以从预设情绪中快速选择,在几秒钟内调整角色的表情,也可以使用自定义控件微调眼睛、嘴巴或眉毛等特定特征,打造所需的确切情感。 【TecCreative】帮助手册中的相关内容 音频驱动多场景数字人:支持音频和场景数字人一键合成,快速生成数字人口播视频。操作指引:上传音频链接——选择数字人角色和场景——选择输出类型——点击开始生成。音频文件支持 MP3 和 WAV 格式,文件大小上限 5M。 谷歌 Generating audio for video 为了生成更高质量的音频,并增加引导模型生成特定声音的能力,在训练过程中添加了更多信息,包括人工智能生成的注释,其中包含声音的详细描述和口语对话誊本。通过对视频、音频和附加注释进行训练,技术可以学会将特定音频事件与各种视觉场景联系起来,同时对注释或文本中提供的信息做出响应。
2025-01-24
从评审导师的角度优化“人工智能驱动企业供应链效率影响研究——基于专精特新中小企业的实证数据”这个工商学术研究生学位论文题目
作为评审导师,以下是对这个论文题目的一些优化建议: “人工智能对专精特新中小企业供应链效率的驱动作用及影响研究——基于实证数据分析” 这样的表述更加清晰地突出了人工智能的驱动作用,并且明确了是基于实证数据进行的分析。您觉得如何?
2025-01-08
AI驱动的自动化任务在PC端
以下是为您介绍的两个与 AI 驱动的自动化任务在 PC 端相关的产品: 1. Design Buddy:这是一个 Figma 插件,作为协作伙伴发挥作用,能对 UI 设计提供深入反馈。它涵盖布局、颜色、排版、可访问性等方面的结构化评论,并为每个类别分配客观评分,有助于识别 UI 设计中常被忽视的缺陷,减少未来修订需求。 2. AI Employe:这是一个开源、由 GPT4 视觉驱动的工具,用于自动化浏览器环境中的复杂任务。用户可通过在浏览器中概述和演示任务来创建工作流程,它能自动执行类人智能任务,如理解电子邮件、收据和发票,并将数据从电子邮件传输到 CRM/ERP 系统,只记录浏览器更改,不捕获屏幕、麦克风或摄像头,还能从图表、复杂表格和基于图像的 OCR 提供独特见解。
2024-12-26
请分点介绍数据驱动建模的特点。有图片就更好了
很抱歉,目前没有关于数据驱动建模特点的图片及相关详细内容。但一般来说,数据驱动建模具有以下几个特点: 1. 基于大量数据:依赖丰富的数据来构建模型,数据量越大,模型可能越准确。 2. 自动发现模式:能够自动从数据中挖掘和发现潜在的模式和规律。 3. 适应性强:可以根据新的数据进行调整和优化,以适应不断变化的情况。 4. 客观性:结果主要由数据决定,减少了主观因素的影响。 5. 预测能力:能够对未知的数据进行预测和推断。
2024-09-10
怎么用大模型构建一个属于我自己的助手
以下是用大模型构建属于自己的助手的几种方法: 1. 在网站上构建: 创建百炼应用获取大模型推理 API 服务: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认,也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 2. 微信助手构建: 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 搭建,作为知识库问答系统,将大模型接入用于回答问题,若不接入微信,搭建完成即可使用其问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 3. 基于 COW 框架构建: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 基于张梦飞同学的更适合小白的使用教程:。 实现功能包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保操作符合法律法规要求。 禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-17
怎么用大模型构建一个属于我自己的助手
以下是用大模型构建属于自己的助手的几种方法: 1. 在网站上构建: 创建百炼应用获取大模型推理 API 服务: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认,也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 2. 微信助手构建: 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 搭建,作为知识库问答系统,将大模型接入用于回答问题,若不接入微信,搭建完成即可使用其问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 3. 基于 COW 框架构建: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 基于张梦飞同学的更适合小白的使用教程:。 实现功能包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保操作符合法律法规要求。 禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-17
语文教学如何使用大模型
在语文教学中使用大模型,可以参考以下方面: 1. 提示词设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更随机、多样化或具创造性的产出。对于质量保障等任务,可设置低参数值;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确答案时调低参数值,想要更多样化答案时调高。一般改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,减少响应中单词的重复。 2. 了解大模型: 大模型通俗来讲是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 训练和使用大模型可类比上学参加工作:找学校(需要大量 GPU 计算)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 Token 是模型处理和生成的文本单位,在将输入进行分词时会形成词汇表。 需要注意的是,在实际应用中,可能需要根据具体的教学需求和场景进行调整和实验,以找到最适合的设置和方法。
2025-02-17
如何利用大模型写教案
利用大模型写教案可以参考以下要点: 1. 输入的重要性:要输出优质的教案,首先要有高质量的输入。例如,写商业分析相关的教案,如果没有读过相关权威书籍,输入的信息缺乏信息量和核心概念,大模型给出的结果可能就很平庸。所以,脑海中先要有相关的知识概念,这来自于广泛的阅读和学习。 2. 对大模型的理解:大模型通过输入大量语料获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可以类比为上学参加工作,包括找学校(需要大量计算资源)、确定教材(大量数据)、找老师(合适的算法)、就业指导(微调)、搬砖(推导)等步骤。 3. 与大模型的交互: 提示词工程并非必须学习,不断尝试与大模型交互是最佳方法。 交互时不需要遵循固定规则,重点是是否达成目的,未达成可锲而不舍地尝试或更换模型。 用 Markdown 格式清晰表达问题,它具有结构清晰、能格式化强调关键部分、适用性广等优点,有助于大模型更好地理解用户意图。
2025-02-17
大模型评测
以下是关于大模型评测的相关信息: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval:构造中文大模型的知识评估基准: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb:SuperCLUE 琅琊榜 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 此外,还有小七姐对文心一言 4.0、智谱清言、KimiChat 的小样本测评,测评机制包括: 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照。 能力考量:复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:第一轮是复杂提示词理解和执行,包括 Markdown+英文 title 提示词测试、Markdown+中文 title 提示词测试、中文 title+自然段落提示词测试;第二轮是推理能力(CoT 表现);第三轮是文本生成能力(写作要求执行);第四轮是提示词设计能力(让模型设计提示词);第五轮是长文本归纳总结能力(论文阅读)。 测试大模型质量好坏时,常用的问题包括检索和归纳、推理性、有日期相关历史事件等。以下是几个专业做模型测评的网站:
2025-02-17
ai大模型
AI 大模型是一个复杂但重要的概念。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多而称深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。
2025-02-17