Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

How Al Agentic workflows could drive more Al progress than even the next generation of foundation models

Answer

以下是关于您提出的“ How Al Agentic workflows could drive more Al progress than even the next generation of foundation models ”问题的相关信息:

吴恩达认为人工智能代理工作流程将在今年推动人工智能的巨大进步,甚至可能超过下一代基础模型。构建代理的设计模式框架包括反思、工具使用、规划和多代理协作。反思是指 LLMs 审视自身工作并提出改进方法;工具使用是指赋予 LLMs 如网络搜索、代码执行等工具以帮助其收集信息、采取行动或处理数据;规划是指 LLMs 制定并执行多步骤计划以实现目标;多代理协作则涉及多个 AI 代理共同工作,通过分工、讨论和辩论来提出比单个代理更好的解决方案。这些设计模式为构建高效的 AI 代理提供了指导,并将在下周进一步详细阐述并提供相关阅读建议。

此外,在医疗保健领域,为了产生真正的改变,AI 需要像我们一样学习。必须让这些专家 AI 接触到顶级从业人员的多样化视角,以避免复制危险的偏见。鉴于人工智能依赖的神经网络基础,这些专家 AI 可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。

在 AI 进化方面,CNN 的结构基于两类细胞的级联模型,主要用于模式识别任务,在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步。

Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC Weekly #64

吴恩达认为人工智能代理工作流程将在今年推动人工智能的巨大进步——甚至可能超过下一代基础模型。这是一个重要的趋势,我呼吁所有从事人工智能工作的人都关注它。构建代理的设计模式框架包括反思、工具使用、规划和多代理协作。反思是指LLMs审视自身工作并提出改进方法;工具使用是指赋予LLMs如网络搜索、代码执行等工具以帮助其收集信息、采取行动或处理数据;规划是指LLMs制定并执行多步骤计划以实现目标;多代理协作则涉及多个AI代理共同工作,通过分工、讨论和辩论来提出比单个代理更好的解决方案。这些设计模式为构建高效的AI代理提供了指导,并将在下周进一步详细阐述并提供相关阅读建议。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

必须让这些专家AI接触到顶级从业人员的多样化视角,以避免复制危险的偏见。但AI的黑盒性远不如大众想象中的那么强;我们今天依赖的人类决策,正如我以前[指出的](https://www.nytimes.com/2018/01/25/opinion/artificial-intelligence-black-box.html),可以说更加不透明。我们不能因为对传播人类偏见的恐惧而限制我们探索AI如何帮助我们民主化我们的人类专家知识的意愿,而这些专家是不幸地无法扩展的。鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

CNN的结构是基于这两类细胞的级联模型,主要用于模式识别任务。它在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步!

Others are asking
which ai can analyze source code
目前没有特定的 AI 工具可以直接为您分析源代码。不过,一些相关的技术和工具可能会有所帮助,例如基于深度学习的代码分析模型,但它们的应用可能具有一定的局限性和特定的使用场景。
2025-01-22
comfui 出现SUPIR_Upscale怎么办
当 ComfyUi 出现 SUPIR_Upscale 时,以下是相关信息: 通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码。此方法比传统的 VAE 解码和编码快很多,并且质量损失很小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readmeovfile 。潜在表示是神经网络处理图像时生成的压缩版本,包含图像主要特征信息,处理潜在表示更快且资源消耗更少。 具体流程包括:生成潜在表示(生成低分辨率图像)、放大潜在表示、生成高分辨率图像(将放大的潜在图像反馈到稳定扩散 UNet 中进行低噪声扩散处理从而修复成高分辨率图像)。此节点用于一种工作流程,初始图像以较低分辨率生成,潜在图像被放大,然后将放大的潜在图像反馈到稳定扩散 unet 中进行低噪声扩散处理(高分辨率修复)。 UNet 是一种特别的神经网络结构,常用于图像处理,尤其是图像分割。其工作方式包括编码部分(逐步缩小图像提取重要特征)、解码部分(逐步放大图像把提取的特征重新组合成高分辨率的图像)、跳跃连接(在缩小和放大过程中保留细节信息使最终生成的图像更清晰),这种结构能在放大图像时保持细节和准确性。 ComfyUI 老照片修复 Flux Controlnet Upscale 中,关于 flux unet 的 weight_dtype: Flux 模型主要用于图像处理,特别是上采样。这类任务通常需要较高精度来保留图像细节。 fp8 格式包括 fp8_e4m3fn(4 位指数,3 位尾数,通常提供更好的精度)和 fp8_e5m2(5 位指数,2 位尾数,提供更大的数值范围但精度较低)。 图像处理通常更依赖于精确的小数值表示,现代 GPU 通常对 fp8_e4m3fn 格式有更好的优化支持。在没有特殊需求的情况下,图像处理模型通常倾向于选择提供更高精度的格式,对于 Flux 模型,特别是在进行图像上采样任务时,fp8_e4m3fn 可能是更好的选择,因为更高的精度有利于保留图像细节和纹理,图像处理通常不需要特别大的数值范围,fp8_e4m3fn 的精度优势更为重要,这种格式在现代 GPU 上可能有更好的性能表现。
2025-01-21
comfui SUPIR_Upscale怎么办
ComfyUi 的 SUPIR_Upscale 是一种通过神经网络对潜在空间进行放大的技术。以下是相关详细信息: 原理:通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码。此方法比传统的 VAE 解码和编码快很多,并且质量损失很小。 流程: 生成潜在表示:图像被模型压缩成潜在表示,生成一个低分辨率的图像。 放大潜在表示:利用神经网络对潜在表示进行放大。 生成高分辨率图像:将放大的潜在图像反馈到稳定扩散 UNet 中,进行低噪声扩散处理,从而修复成高分辨率图像。 相关节点:此节点旨在用于一种工作流程中,其中初始图像以较低分辨率生成,潜在图像被放大,然后将放大的潜在图像反馈到稳定扩散 unet 中进行低噪声扩散处理(高分辨率修复)。 UNet 结构:UNet 是一种特别的神经网络结构,通常用于图像处理,尤其是图像分割。其工作方式包括编码部分逐步缩小图像提取重要特征,解码部分逐步放大图像并重新组合特征,以及通过跳跃连接在缩小和放大过程中保留细节信息,使最终生成的图像更清晰。 ComfyUI 老照片修复 Flux Controlnet Upscale 方面: 以前有高清放大的工作流,被用于淘宝老照片修复。现在新模型结合工作流,只需十几个基础节点就能实现更好效果。 参数调节:一般先确认放大倍数,再根据图片调整 controlNet 强度。 ControlnetUpscaler 放大模型:Flux.1dev ControlNet 是 Jasper 研究团队为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,通过特定代码加载管道,加载控制图像并进行图像处理。其训练方式采用合成复杂数据退化方案,结合图像噪声、模糊和 JPEG 压缩等多种方式对真实图像进行人工退化。 Flux Ultimator 细节增强:能增加小细节,让图像尽可能逼真,放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用效果好,结合时需将强度降低小于 0.5。 T5 Clip:若图片质量细节不够,选择 fp16 的版本。 图像的传递:controlNet 这里传递的应该是上传的原始图片,因为这个是 controlNet 而不是潜空间图像。 关于 flux unet 的 weight_dtype: Flux 模型主要用于图像处理,特别是上采样(upscaling),这类任务通常需要较高的精度来保留图像细节。 fp8 格式包括 fp8_e4m3fn(4 位指数,3 位尾数,通常提供更好的精度)和 fp8_e5m2(5 位指数,2 位尾数,提供更大的数值范围但精度较低)。 图像处理通常更依赖于精确的小数值表示,而不是极大或极小数值的表示能力,现代 GPU 通常对 fp8_e4m3fn 格式有更好的优化支持。 在没有特殊需求的情况下,对于 Flux 模型进行图像上采样任务时,fp8_e4m3fn 可能是更好的选择,因为其更高的精度有利于保留图像细节和纹理,且图像处理通常不需要特别大的数值范围,这种格式在现代 GPU 上可能有更好的性能表现。 插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readmeovfile 潜在表示(latent representation)是神经网络处理图像时生成的压缩版本,它包含了图像的主要特征信息。相比于直接处理高分辨率图像,处理潜在表示更快且资源消耗更少。
2025-01-21
1. laptop 2. artificial intelligence 3. generative 4. log in 5. AI-driven 6. bluetooth headset 7. video call 8. platform Write some interesting sentences with these words
以下是为您生成的包含这些关键词的有趣句子: 当我使用配备强大 GPU 的 AI 笔记本电脑,如戴尔 Precision 移动工作站,通过蓝牙耳机关闭了周围的噪音,登录到专门的 AI 驱动平台,与远方的朋友进行视频通话,探讨生成式人工智能的奇妙之处,感觉真是太棒了! 在微星 Creator/Workstation 系列的 AI 笔记本上,我利用预装的深度学习框架,如 NVIDIA CUDA 和 cuDNN,进行着生成式模型的训练,同时通过蓝牙连接着蓝牙耳机,享受着不受干扰的创作过程,然后登录到特定的平台分享我的成果,这一切都由 AI 驱动,借助高速的网络实现了如同面对面的视频通话交流。 联想 ThinkPad P 系列的 AI 笔记本,拥有出色的散热和续航,让我能长时间专注于生成式项目的开发。我戴上蓝牙耳机,登录 AI 平台,与团队进行视频通话,共同推动项目前进,这一切都离不开 AI 驱动的强大力量。
2025-01-20
RuntimeError: All input tensors need to be on the same GPU, but found some tensors to not be on a GPU
以下是对您所遇到的报错“RuntimeError: All input tensors need to be on the same GPU, but found some tensors to not be on a GPU”的一些可能的解决方案: 1. 检查您的代码和模型设置,确保所有输入张量都被正确地分配到同一个 GPU 上。 2. 对于与显存相关的问题,如爆显存的情况,在训练时可以尝试调小批量大小,在推理时可以使用强制切片。 3. 调大虚拟内存,可能有助于解决一些与内存相关的报错。 同时,在处理与 AI 相关的报错时,还可能会遇到其他类似的问题,例如: 1. 页面文件太小,无法完成操作。解决方法是增大系统虚拟内存大小。 2. 出现“torch.cuda.OutOfMemoryError: CUDA out of memory”报错,通常是爆显存了。 3. 遇到“DataLoader workerexited unexpectedly”报错,可把虚拟内存再调大一点。 4. “CUDA error: CUBLAS_STATUS_NOT_INITIALIZED when calling 'cublasCreate'”报错,一般也是爆显存。 5. “'HParams' object has no attribute 'xxx'”报错,可能是无法找到音色,一般是配置文件和模型没对应,打开配置文件拉到最下面查看是否有训练的音色。 6. “The expand size of the tensor at nonsingleton dimension 0”报错,可把 dataset/44k 下的内容全部删除,重新走一遍预处理流程。 7. “Given groups=1, weight of size to have 256 channels, but got 768 channels instead”报错,可能是 vec256 的模型用了 vec768 的配置文件,反之亦然,请参考旧模型兼容,确认配置文件和模型维度对应。 8. “配置文件中的编码器与模型维度不匹配”报错,可能是在修改配置文件中的“speech_encoder”时修改错了,检查配置文件中的“ssl_dim”一项,如果这项是 256,那您需要确认配置文件和模型维度的对应关系。
2025-01-17
我想生成一个al数字人 你帮我生成一些指令 我命令al出一些内容
以下是一些生成 AI 数字人的指令建议: 1. 即使是简单的提示,如“请为我生成一个 AI 数字人”,也能获得可用的结果。但如果提示更精确,例如指定数字人的风格、面向的受众、详细程度等,效果可能会更好。比如,可以要求生成一个风格非常逼真、面向年轻人、描述详细的 AI 数字人。 2. 明确您希望数字人的特征,比如外貌、性格、动作等。例如,如果您要说“请为我生成一个外貌酷似某位明星、性格开朗、动作优雅的 AI 数字人”。 3. 您还可以指定数字人的应用场景,比如用于新闻报道、娱乐节目等。 4. 如果希望数字人有特定的语言表达风格,比如像专业主持人那样,或者更像日常交流,也需要明确指示。 5. 对于数字人的字幕生成,可以点击文本智能字幕识别字幕,点击开始识别,软件会自动将文字智能分段并形成字幕。完成后点击右上角的“导出”按钮,导出视频以作备用。如果希望数字人换成特定的面孔,需要使用另一个工具来进行换脸。
2025-01-12
agentic workflow 是什么?
Agentic Workflow 是指通过学会调用外部不同类型的 API 来获取模型中缺少的额外信息、代码执行能力、访问专有信息源等。它将一个复杂的任务分解成较小的步骤,融入更多人类参与到流程中的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,在不同模式下,人与 AI 的协作流程有所差异。 Agentic Workflow 可以使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如,作为产品经理,可通过 Agents 将任务拆解为多个独立任务,遵循不同工作流生成大体符合期望的输出结果,再进行修改。 吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色相互协作开发应用或复杂程序。AI Agent 基本框架包括“Agent = LLM + 规划 + 记忆 + 工具使用”,其中 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期记忆和长期记忆,工具用于处理各种任务。
2024-08-30
Agentic Workflow是什么意思
Agentic Workflow 指的是一种在生成式 AI 的人机协同中,通过不同模式(如 Embedding、Copilot、Agent)下的角色协作流程来完成任务的方式。 在 Agent 模式中,AI 完成大多数工作。它使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作。例如,作为产品经理,可将产品功能设计任务拆解为多个独立任务,遵循不同工作流,生成初步结果后再修改。 Agentic Workflow 还通过学会调用外部不同类型 API 来获取模型缺少的额外信息等。其动作的决策需要根据大模型结合问句、上下文规划、各类工具来确定。 从提升效率、提高质量、节省时间的角度思考,Agentic Workflow 可以将复杂任务分解成较小步骤,融入更多人类参与的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。AI Agent 的基本框架包括“LLM +规划+记忆+工具使用”,其中 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期和长期,工具用于辅助完成任务。
2024-08-30
Agentic Workflow是什么
Agentic Workflow 是一种基于 AI 的工作流管理方式,它可以帮助人们更高效地完成各种任务。以下是关于 Agentic Workflow 的一些介绍: 1. 专家代理:Agentic Workflow 中的专家代理是指具有特定领域和工具专长的 AI 模型,它们能够以步骤化、理性的方式帮助用户达成目标。 2. 工作流程:Agentic Workflow 的工作流程通常包括收集信息、初始化专家代理、持续支持用户直到目标完成等步骤。 3. Tool Use:Tool Use 是指 Agent 通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。 4. Planning:Agent 通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。 5. Multiagent Collaboration:通过学会调用外部不同类型 API 来获取模型(通常在预训练后很难修改)中缺少的额外信息,代码执行能力,访问专有信息源等(例如获取此时此刻的天气、联网网搜索等)。 6. Action(动作):根据上述大模型结合问句(Query)、上下文的规划(Context)、各类工具,最终大模型才能决策出最终需要执行的动作是什么。 7. Productivity(效率):Agentic Workflow 通过将一个复杂的任务分解成较小的步骤,在整个过程中中融入了更多人类参与到流程中的规划与定义。它减少了对 Prompt Engineering 和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,更丰富、更精确。 总的来说,Agentic Workflow 是一种将 AI 技术应用于工作流管理的方式,它可以帮助人们更高效地完成各种任务。
2024-05-29
I am new to Ai, I want to learn about, however I don’t know how to start to create a tailor AI that can suit for my background and can help me to increase my work productivity. Can you show me how I can learn ai from beginning step by step?
以下是为您提供的从零基础开始学习 AI 并创建适合您背景、能提高工作效率的定制 AI 的逐步指南: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 技术应用 如果您对生成式人工智能还不甚了解,当务之急是迅速掌握其基本概念和潜在影响。您无需成为技术专家,深入每个技术细节,重点应放在理解这项技术如何革新我们的工作方式,如何重塑行业格局。这种宏观的理解将帮助您在变革中找准定位,抓住机遇。 深入了解市场上现有的人工智能产品和工具,并积极尝试将它们应用到实际工作中。这种实践性的学习不仅能帮助您快速适应新技术,还能让您洞察到 AI 在实际工作中的优势和局限性。通过亲身体验,您将更好地理解如何将 AI 工具与您的专业知识和创造力相结合,从而在工作中创造更大的价值。 7. 精准控制生成式人工智能 当您深入了解了人工智能的背景并实际运用了这些产品后,您将迈入一个新的阶段:学习如何精准控制生成式人工智能,使之成为您工作的得力助手,显著提升您的工作效率和产出质量。在这个阶段,您将重点学习提示词技术。这项技能将帮助您编写更加清晰、精确的指令,从而更好地引导 AI 工具产生您所需要的结果。掌握了这项技能,您就能够更加灵活地运用 AI 工具,使其真正成为您工作中的得力助手。 8. 探索构建智能体(AI Agents) 您可以探索如何构建智能体(AI Agents)。这些智能体有潜力彻底革新您的工作方式。试想一下,拥有多个虚拟伙伴和助手与您共同工作的场景。每个智能体都可以被赋予特定的角色和任务,它们可以协同工作,大大提高您的工作效率和创新能力。 在实际应用中,为您提供几条准则: 如果您不确定如何为您的 AI 网站设计徽标,可以使用 AI 徽标生成器。网上有许多不同的 AI 徽标生成器可供选择,例如 Logomaster.ai、Free Logo Design、Logo AI、Looka logo maker(原名 Logojoy)、Brandmark、DesignEvo、Tailor Brands、Designhill 等。 为您的 AI 网站新徽标起草设计概要,包括项目名称、客户、日期、目的、目标受众和品牌属性等方面。 希望以上内容对您有所帮助,祝您在学习 AI 的道路上取得成功!
2024-12-27
what does waytoAGI do and how it helps its users
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台,具有以下特点和作用: 提供全面的 AI 学习路径,涵盖基础概念到实际应用的各个方面,帮助用户有效获取知识、提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 品牌 VI 融合独特设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性。 在飞书 5000 人大群里内置智能机器人「waytoAGI 知识库智能问答」,基于飞书 aily 搭建。用户在飞书群里发起话题时即可,它能实现自动问答、知识搜索、文档引用、互动教学、最新动态更新、社区互动、资源共享、多语言支持等功能。例如自动回答用户关于 AGI 知识库内涉及的问题,对多文档进行总结、提炼,在内置的「waytoAGI」知识库中搜索特定信息和数据,快速返回相关内容等。
2024-12-27
how to generate PPT
以下是几种使用 AI 工具生成 PPT 的方法: 1. 闪击 网址:国内网站,不需要魔法。地址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 选择模版 输入大纲和要点:由于闪击的语法和准备的大纲内容有一些偏差,可以参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650 ,将之前准备的大纲转换成适配闪击的语法。 生成 PPT:点击文本转 PPT,并在提示框中选择确定。 在线编辑 导出:导出有一些限制,PPT 需要会员才能导出。 2. Process ON 网址:https://www.processon.com/ 输入大纲和要点: 确定操作方式,目前该工具提供两种方式: 导入大纲和要点: 手动复制,相对比较耗时间。 导入方式: 复制最终大纲的内容,到本地的 txt 文件后,将后缀改为.md。如果看不见后缀,可以自行搜索开启后缀。 打开 Xmind 软件,将 md 文件导入 Xmind 文件中。 Process ON 导入 Xmind 文件。以导入方式新建思维导图,选择准备好的 Xmind 文件,导入成功。 输入主题自动生成大纲和要求:新增思维导图,输入主题,点击 AI 帮我创作,生成结束。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版,再点击下载。如果喜欢用 Process ON 的小伙伴,没有会员,可以某宝买个一天会员。 3. 爱设计 网址:国内网站,不需要魔法。输入地址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 进行注册和登录。 输入大纲和要点:确定操作方式,目前该工具提供两种方式: 导入大纲和要点: 选择文档秒变 PPT 选择导入本地大纲。 输入主题自动生成大纲和要求:输入主题,点击开始生成,自动产生大纲。 选择模版并生成 PPT:点击生成 PPT,应用模版,生成中,生成后,点击编辑 4. MindShow 网址:国内网站,不需要魔法。地址:https://www.mindshow.fun//home 输入大纲和要点:确定操作方式,目前该工具同样提供两种方式: 导入大纲和要点:请准备好的大纲进行导入。 输入主题自动生成大纲和要求:输入主题,AI 生成大纲,扩写部分章节,扩写后的内容。 选择模版并生成 PPT 导出
2024-11-29
how to learn agi for a nomal human
对于普通人学习 AGI,以下是一些建议: 1. 万能公式法:问 AI“一个(xxx 职业)需要具备哪些知识?”,AI 给出知识框架后,针对每一个小点深入询问,辅助深度思考。 2. 优质信息源:像没有技术背景的普通人,可在「即刻」App 的“”等免费圈子获取前沿信息,必要时再去 Twitter 和相关官网溯源。 3. 信息爆炸做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念:阅读「」熟悉术语和基础概念,包括人工智能的主要分支及联系,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如图像、音乐、视频等,并掌握提示词技巧。 4. 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品创作作品,并在知识库分享。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。 此外,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并带着人类进步。我们可以通过构建系统深入探索专家 AI 的内部工作机制,创造学习的飞轮,未来专家 AI 可能成为下一代专家的教师。
2024-11-25
how to build an AI chatbox
以下是关于如何搭建 AI 聊天框的一些指导: 1. 纯 GPT 大模型能力的微信聊天机器人搭建 配置腾讯云轻量应用服务器。 假设要对接的微信号名称叫安仔机器人,更新最终版的配置参数(GROUP_NAME_WHITE_LIST 参数记得根据要交互的群组进行具体修改),查看无误后点击保存,创建编排模板。 切换到容器编排界面,基于创建的模板进行 COW 服务部署,点击添加后等待部署成功。 2. 利用大型语言模型打造聊天机器人 ChatGPT 是具有交互式聊天界面的 Web 应用,可利用大型语言模型构建自定义聊天机器人,如为餐厅扮演 AI 客户服务代理或 AI 点餐员等角色。 设置 OpenAI Python 包,定义两个辅助函数:getCompletion 函数和 generateResponse 函数。通过这两个函数与 AIGPT 模型进行交互并生成对话。 3. Cursor Chat 概述 Cursor Chat 允许在编辑器中使用强大的语言模型在代码库中提问或解决问题。 语言模型要给出好答案需要知道与代码库相关的特定事物即上下文,Cursor 具有多项内置功能提供上下文,如自动包含整个代码库中的上下文、搜索 Web、索引文档和用户指定的代码块引用等。 默认情况下,Cursor Chat 位于 AI 窗格,可通过按 Ctrl/⌘ + L 切换,打开时按 Enter 提交查询。
2024-10-19
how to us AI to reply whatsapp leads
以下是关于如何使用 AI 回复 WhatsApp 消息的相关内容: 1. 您可以参考张梦飞的【保姆级】一步一图,手把手教您把 AI 接入微信的方法。登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复。若想为这个 AI 赋予提示词,可以返回“目录 4 里的第 17 步”进行更改。此后进行任何更改,都需要“返回首页右上角点击重启,重启一下服务器”,然后在“文件”的【终端】里,直接输入“nohup python3 app.py & tail f nohup.out”重新扫码登录即可。添加插件的部分,讲解得非常清晰。 2. 关于 AI Agent:它是基于大型语言模型(LLM)和其他技术实现的智能实体,核心功能在于自主理解、规划决策、执行复杂任务。包括以下概念: Chain:通常一个 AI Agent 可能由多个 Chain 组成,一个 Chain 视作一个步骤,可接受输入变量并产生输出变量,大部分的 Chain 是大语言模型完成的 LLM Chain。 Router:可以使用一些判定(甚至可用 LLM 来判定),让 Agent 走向不同的 Chain,例如:如果这是一个图片,则 a;否则 b。 Tool:Agent 上可以进行的一次工具调用,例如对互联网的一次搜索,对数据库的一次检索。 总结下来需要三个 Agent: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2024-10-08