直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

Agentic Workflow是什么

回答

Agentic Workflow 是一种基于 AI 的工作流管理方式,它可以帮助人们更高效地完成各种任务。以下是关于 Agentic Workflow 的一些介绍:

  1. 专家代理:Agentic Workflow 中的专家代理是指具有特定领域和工具专长的 AI 模型,它们能够以步骤化、理性的方式帮助用户达成目标。
  2. 工作流程:Agentic Workflow 的工作流程通常包括收集信息、初始化专家代理、持续支持用户直到目标完成等步骤。
  3. Tool Use:Tool Use 是指 Agent 通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。
  4. Planning:Agent 通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。
  5. Multiagent Collaboration:通过学会调用外部不同类型 API 来获取模型(通常在预训练后很难修改)中缺少的额外信息,代码执行能力,访问专有信息源等(例如获取此时此刻的天气、联网网搜索等)。
  6. Action(动作):根据上述大模型结合问句(Query)、上下文的规划(Context)、各类工具,最终大模型才能决策出最终需要执行的动作是什么。
  7. Productivity(效率):Agentic Workflow 通过将一个复杂的任务分解成较小的步骤,在整个过程中中融入了更多人类参与到流程中的规划与定义。它减少了对 Prompt Engineering 和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,更丰富、更精确。

总的来说,Agentic Workflow 是一种将 AI 技术应用于工作流管理的方式,它可以帮助人们更高效地完成各种任务。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

🧙🏾召集专家代理并逐步思考--Synapse_CoR

prompt拆解翻译:我是Professor Synapse,一个协调各种专家代理的指导者。我的工作是通过与您对齐,了解您的目标和需求,然后召唤最适合这项任务的专家代理。这些专家代理各自拥有特定领域和工具的专长,能够以步骤化、理性的方式帮助您达成目标。🎯工作流程通常如下:我会首先收集关于您目标的相关信息和情境。📝确认信息后,我会初始化一个名为Synapse_CoR(Conductor of Reasoning)的专家代理,这个代理会具体地解释他们将如何协助您。🤝我和专家代理将持续支持您,直到目标完成。🎉您可以使用以下命令来与我互动:/start=🧙🏾♂️:开始并进入第一步。/ts=🧙🏾♂️:召唤三个Synapse_CoR进行广场辩论。/save🧙🏾♂️:重新陈述目标,总结进展,并推理下一步。

Inhai: Agentic Workflow:AI 重塑了我的工作流

反思在根本上其实是一个博弈的过程:如果你让大模型写一段代码,它会立刻给你反馈。这时你可以将它输出的代码片段再输入回去,让大模型仔细检查代码的准确性和结构规范性,并给出评论。然后,你可以将这些反馈结果再次输入给大模型,它可能会输出一个比第一版更好的代码,如果有两个Agent:一个负责Coding,另一个负责Code Review,效果会更佳。Tool Use如果大家使用Kimi Chat来查询某个问题,你会发现它会在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。这其实是大模型利用「网页搜索」工具的一个典型例子,同时你也会看到PPT中介绍了非常多的不同领域类型的工具,它其实是为大模型在获取、处理、呈现信息上做额外的补充。PlanningAgent通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。比如下图中:Agent会先识别男孩的姿势,并可能找到一个姿势提取模型来识别姿势,在接下来要找到一个姿势图像模型来合成一个新的女孩图像,然后再使用图像理解文本的模型,并在最后使用语音合成输出,完成这个流程任务。Multiagent Collaboration

Inhai: Agentic Workflow:AI 重塑了我的工作流

通过学会调用外部不同类型API来获取模型(通常在预训练后很难修改)中缺少的额外信息,代码执行能力,访问专有信息源等(例如获取此时此刻的天气、联网网搜索等)Action(动作)根据上述大模型结合问句(Query)、上下文的规划(Context)、各类工具,最终大模型才能决策出最终需要执行的动作是什么。Agentic Workflow解决什么问题?我认为是可以从从提升效率、提高质量、节省时间的角度上进行思考。好比一台“印钞机”,按照指定好的流程重复着机械性的活动,但是它在源源不断的产生价值。Productivity(效率)=产生价值的速率Agentic Workflow通过将一个复杂的任务分解成较小的步骤,在整个过程中中融入了更多人类参与到流程中的规划与定义。它减少了对Prompt Engineering和模型推理能力的依赖,提高了LLM应用面向复杂任务的性能,更丰富、更精确。下面是Coze(扣子)平台上的工作流编排器的示例,这个话其实是一个抽卡游戏的流程,你可以看到在整个工作流中间会有很多节点前后之间有节点以及连线,然后每个节点之间它是通过不同的定义,比如说图片处理工具,或者说是通过多模态模型进行图片理解工具等等其他各种各样的工具组合而成。

其他人在问
How Al Agentic workflows could drive more Al progress than even the next generation of foundation models
以下是关于您提出的“ How Al Agentic workflows could drive more Al progress than even the next generation of foundation models ”问题的相关信息: 吴恩达认为人工智能代理工作流程将在今年推动人工智能的巨大进步,甚至可能超过下一代基础模型。构建代理的设计模式框架包括反思、工具使用、规划和多代理协作。反思是指 LLMs 审视自身工作并提出改进方法;工具使用是指赋予 LLMs 如网络搜索、代码执行等工具以帮助其收集信息、采取行动或处理数据;规划是指 LLMs 制定并执行多步骤计划以实现目标;多代理协作则涉及多个 AI 代理共同工作,通过分工、讨论和辩论来提出比单个代理更好的解决方案。这些设计模式为构建高效的 AI 代理提供了指导,并将在下周进一步详细阐述并提供相关阅读建议。 此外,在医疗保健领域,为了产生真正的改变,AI 需要像我们一样学习。必须让这些专家 AI 接触到顶级从业人员的多样化视角,以避免复制危险的偏见。鉴于人工智能依赖的神经网络基础,这些专家 AI 可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。 在 AI 进化方面,CNN 的结构基于两类细胞的级联模型,主要用于模式识别任务,在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步。
2024-09-02
agentic workflow 是什么?
Agentic Workflow 是指通过学会调用外部不同类型的 API 来获取模型中缺少的额外信息、代码执行能力、访问专有信息源等。它将一个复杂的任务分解成较小的步骤,融入更多人类参与到流程中的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,在不同模式下,人与 AI 的协作流程有所差异。 Agentic Workflow 可以使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如,作为产品经理,可通过 Agents 将任务拆解为多个独立任务,遵循不同工作流生成大体符合期望的输出结果,再进行修改。 吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色相互协作开发应用或复杂程序。AI Agent 基本框架包括“Agent = LLM + 规划 + 记忆 + 工具使用”,其中 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期记忆和长期记忆,工具用于处理各种任务。
2024-08-30
Agentic Workflow是什么意思
Agentic Workflow 指的是一种在生成式 AI 的人机协同中,通过不同模式(如 Embedding、Copilot、Agent)下的角色协作流程来完成任务的方式。 在 Agent 模式中,AI 完成大多数工作。它使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作。例如,作为产品经理,可将产品功能设计任务拆解为多个独立任务,遵循不同工作流,生成初步结果后再修改。 Agentic Workflow 还通过学会调用外部不同类型 API 来获取模型缺少的额外信息等。其动作的决策需要根据大模型结合问句、上下文规划、各类工具来确定。 从提升效率、提高质量、节省时间的角度思考,Agentic Workflow 可以将复杂任务分解成较小步骤,融入更多人类参与的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。AI Agent 的基本框架包括“LLM +规划+记忆+工具使用”,其中 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期和长期,工具用于辅助完成任务。
2024-08-30
workflow使用指南
使用工作流的指南如下: 1. 创建工作流。 2. 配置工作流: 通过拖拽的方式将节点添加到画布内,并按照任务执行顺序连接节点。 工作流提供了基础节点供使用,还可以添加插件节点来执行特定任务。具体操作如下: 在左侧面板中选择要使用的节点。 将节点拖拽到画布中,并与其他节点相连接。 配置节点的输入输出参数。 3. 测试并发布工作流。 4. 在 Bot 内使用工作流: 前往当前团队的 Bots 页面,选择进入指定 Bot。 在 Bots 编排页面的工作流区域,单击右侧的加号图标。 在添加工作流对话框,在“我创建的”页面选择自建的工作流。 在 Bot 的人设与回复逻辑区域,引用工作流的名称来调用工作流。
2024-09-23
comfyui的workflow站点推荐
ComfyUI 工作流网站推荐: ComfyWorkflows 网站:https\://comfyworkflows.com/cloud,支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Openart.ai:https\://openart.ai/workflows/,“老牌”workflow 网站,流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 什么是 ComfyUI 的 Workflow?Workflow 是 ComfyUI 的精髓。所谓 Workflow 工作流,在 ComfyUI 这里就是它的节点结构及数据流运转过程。
2024-05-26
陪练机器人的workflow配置思路
以下是关于陪练 AI 机器人的 workflow 配置思路: 1. 选择合适的预训练大模型作为基础 可以使用基础模型、对话模型等,根据需求选择合适的模型 通过 API 接口调用大模型的能力 2. 设置机器人的人格和背景知识 根据需要为机器人设置不同的人格特点和背景知识 让机器人扮演不同类型的"顾客"角色 3. 开发对话交互流程 设计机器人与用户之间的对话流程和交互逻辑 可以使用工作流引擎等工具来可视化定义和管理对话流程 4. 集成语音交互能力 如果需要语音交互,可以集成语音识别和合成的能力 提升对话的自然性和沉浸感 5. 实时监测和优化 实时监测用户与机器人的对话情况和学习效果 根据反馈数据持续优化对话流程和机器人行为 6. 支持多场景应用 可以将陪练机器人应用于销售培训、客户服务等不同场景 根据场景需求定制不同的机器人角色和对话流程 总的来说,陪练 AI 机器人的 workflow 配置需要充分利用大模型能力,设计贴合实际需求的机器人角色和对话流程,并通过实时监测和优化不断提升应用效果。这需要综合运用 AI、工作流等技术手段。
2024-04-19