Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI Agent和Agentic Workflow的区别

Answer

AI Agent 和 Agentic Workflow 存在以下区别:

AI Agent

  • 基本框架:由“LLM + 规划 + 记忆 + 工具使用”构成,大模型 LLM 充当“大脑”。
  • 规划方面:包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,能对过去行动进行自我批评和反思,从错误中学习并改进未来步骤。
  • 记忆方面:用于存储和调用相关信息。

Agentic Workflow

  • 驱动角色工作流变革:使用多智能体协作的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。
  • 涉及人机协同关系:生成式 AI 的人机协同分为嵌入式、副驾驶、智能代理 3 种产品设计模式,在不同模式下,人与 AI 的协作流程有所差异。
  • 重塑获取信息的方式:如搜索引擎和基于大模型的聊天机器人在获取信息上目标一致,ChatGPT 的出现被认为将对传统搜索引擎带来颠覆。
  • 包含多种设计模式:如反思、工具使用、规划、多智能体协同等。反思是让 Agent 审视和修正自己生成的输出;工具使用指 LLM 生成代码、调用 API 等工具进行操作;规划是让 Agent 分解复杂任务并按计划执行;多智能体协同是多个 Agent 扮演不同角色合作完成任务。
Content generated by AI large model, please carefully verify (powered by aily)

References

Inhai: Agentic Workflow:AI 重塑了我的工作流

如果大家使用Kimi Chat来查询某个问题,你会发现它会在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。这其实是大模型利用「网页搜索」工具的一个典型例子,同时你也会看到PPT中介绍了非常多的不同领域类型的工具,它其实是为大模型在获取、处理、呈现信息上做额外的补充。PlanningAgent通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。比如下图中:Agent会先识别男孩的姿势,并可能找到一个姿势提取模型来识别姿势,在接下来要找到一个姿势图像模型来合成一个新的女孩图像,然后再使用图像理解文本的模型,并在最后使用语音合成输出,完成这个流程任务。Multiagent Collaboration吴恩达通过开源项目ChatDev进行举例,你可以让一个大语言模型扮演不同的角色,比如让一个Agent扮演公司CEO、产品经理、设计师、代码工程师或测试人员,这些Agent会相互协作,根据需求共同开发一个应用或者复杂程序。AI Agent基本框架OpenAI的研究主管Lilian Weng曾经写过一篇博客叫做《LLM Powered Autonomous Agents》,其中就很好的介绍了Agent的设计框架,她提出了“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型LLM扮演了Agent的“大脑”。Planning(规划)主要包括子目标分解、反思与改进。将大型任务分解为较小可管理的子目标处理复杂的任务。而反思和改进指可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。Memory(记忆)

Inhai: Agentic Workflow:AI 重塑了我的工作流

AI与人的协同关系生成式AI的人机协同分为3种产品设计模式:Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理),在这3种模式下,人与AI的协作流程也是有所差异。Embedding模式:人类完成大多数工作。Copilot模式:人类和AI协同工作。Agents模式:AI完成大多数工作。Agentic Workflow驱动角色工作流变革使用Multiagent Collaboration的方法,让不同角色的Agent按照根据任务要求自主规划选择工具、流程进行协作完成一件任务。我作为一个产品经理角色,我的诉求很简单,需要完成某一个产品功能设计,这个时候通过Agents拆解成多个独立的任务,然后遵循不同的工作流,最后给我生成一份在大体上符合我期望的输出结果,我再修修改改就能够达到可用的阶段了。所以,我从原子能力层重新思考,面对这个快速变化的时代,我该如何去重塑我自己的工作流,以不变应万变呢?我抽象化拆解了大模型的一些底层能力,例如:翻译、识别、提取、格式化等等,其实所有的一些都会围绕几个词“输入”、“处理”、“输出”、“反馈”。“输入”、“处理”、“输出”、“反馈”构建了我最底层的信息处理逻辑,我把它比作四个齿轮,齿轮之间通过不同的衔接工具逐步推动运转,从需求作为输入、结果作为输出,围绕着信息加速,不断驱动我向前。重塑获取信息的方式搜索引擎作为互联网基础设施,同时也是互联网的入口,对于用户而言,从解决问题出发,搜索引擎和基于大模型的聊天机器人的目标从根本上是一致的。自2022年底ChatGPT发布,其通过问答形式被认为将对传统搜索引擎带来颠覆。

Inhai: Agentic Workflow:AI 重塑了我的工作流

原创:来自inhai银海公众号“抄就完了”,欢迎关注!从“人工工作流”到“Agentic工作流”"Reshape your workflow with AI."在Agentic Workflow的这件事情上,我先完成了自己的工作流重塑。近期在「特工宇宙」分享了一场关于Agentic Workflow主题的内容,现在同步分享给大家一些关于个人在使用AI Agent Workflow上的思考、AI-Native应用「Pailido|AI拍立得」创建的初衷和实现流程,在个人工作流重塑上分享了一些体悟。本次分享大纲整体围绕着AI Agent和Agentic Workflow从“认识、定义、应用、偏见、实践以及延伸”进行展开,正式拉开「仰望星空,脚踏实地」的序幕。在今年的4月初,吴恩达老师在美国红杉做了一场演讲,介绍了4种主要的Agentic Workflow设计模式。Reflection(反思):让Agent审视和修正自己生成的输出。Tool Use(工具):LLM生成代码、调用API等工具进行操作。Planning(规划):让Agent分解复杂任务并按计划执行。Multiagent Collaboration(多智能体协同):多个Agent扮演不同角色合作完成任务。Reflection反思在根本上其实是一个博弈的过程:如果你让大模型写一段代码,它会立刻给你反馈。这时你可以将它输出的代码片段再输入回去,让大模型仔细检查代码的准确性和结构规范性,并给出评论。然后,你可以将这些反馈结果再次输入给大模型,它可能会输出一个比第一版更好的代码,如果有两个Agent:一个负责Coding,另一个负责Code Review,效果会更佳。Tool Use

Others are asking
AI Agent
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态) 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体) 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈 Responser Agent、Daily Agent、Background Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间) 此外,唐小引等人预测 AI Agent 仍需 5 年以上才能实用,一旦突破,将有极快进化速度。Andrej Karpathy 认为 2025 2035 是 Agent 十年,技术与任务领域需突破。Operator 类比“人形机器人”,突破需多模态及长期任务支持。
2025-03-19
吴恩达总结了四种AI Agent的设计模式: 1.反思模式(Reflection): 2.工具使用模式: 3.规划模式: 4.多智能体协作模式:
吴恩达总结了以下四种 AI Agent 的设计模式: 1. 反思模式(Reflection):让 Agent 审视和修正自己生成的输出。例如,在编写代码时,可让大模型检查代码的准确性和结构规范性,并不断优化。 2. 工具使用模式(Tool Use):通过使用外部工具和资源,如 LLM 生成代码、调用 API 等进行实际操作。 3. 规划模式(Planning):让 Agent 分解复杂任务并按计划执行。 4. 多智能体协作模式(Multiagent Collaboration):多个 Agent 扮演不同角色合作完成任务。 如果您想更深入了解这些设计模式,可以参考以下文章:https://waytoagi.feishu.cn/wiki/SPNqwJkmQiyVfGkS8zocMSZcnYd
2025-03-19
ai agent
AI 智能体在多个领域有着广泛的应用和发展: 1. 在品牌卖点提炼中,AI 智能体可以发挥作用。它在逻辑推理、数据分析、内容理解和输出方面有独特优势,但在应用前需明确其能力边界,比如它对公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、依赖的核心渠道、核心购买人群、曾使用的营销手段、在新渠道的期望结果等了解程度接近于 0。因此,更适合将其作为引导型的灵感提问助手,在寻找卖点时提供更多思考维度。 2. 相关报道如宝玉日报 3 月 13 日提到,DeepResearch 与 Claude Sonnet 3.7 正在用强化学习推动智能体时代,LLM 智能体不再依赖提示词,具备自主规划与行动能力。 3. 在企业自动化方面,生成式 AI 应用有搜索、合成和生成等核心用例。Menlo Ventures 投资的公司在这些类别中有早期突破性代表,借助新型构建块,下一波智能体正在拓展 AI 能力边界,实现端到端流程自动化。在深入探讨中,将概述 Menlo 对新兴市场的论点,包括定义智能体、追溯技术栈的架构演化过程以及探讨范式转变的影响。
2025-03-19
我想用AI agent自動將文字故事生成出影片,需要經由哪些步驟、用哪些工具、達成哪種效果?
将文字故事生成影片通常需要以下步骤、工具和可能达成的效果: 步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析文字故事内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据故事内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将文字故事转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 工具与网址: 1. Stable Diffusion:一种 AI 图像生成模型,可以基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney:另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 效果:通过合理运用上述步骤和工具,可以生成具有一定创意和质量的影片,但具体效果可能会受到原始文字故事质量、工具使用熟练程度以及个人创意等因素的影响。需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-19
ai agent和workfolw的差异
AI Agent 和 Workflow 的主要差异如下: 任务编排方式:AutoGPT 的任务由大模型自动编排,而 Workflow 中的子任务是人为编排的。 带来的优化: 流程中可加入人类 Knowhow,弥补模型知识的不足。 专家测试试跑,减少生产环境中的无效反思,提升 Agent 的表现。 引入图的概念,灵活组织节点,连接各类工具,包括套工具、套其他 Agent、写代码用硬逻辑处理、接大模型进行判断等,极大地提高了灵活性和可控性,提升了 Agent 能力的上限。 解决的问题:Agentic Workflow 可以从提升效率、提高质量、节省时间的角度思考,通过将复杂任务分解为小步骤,融入更多人类参与的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 涉及的概念: 记忆:分为短期记忆和长期记忆,短期记忆将上下文学习视为利用模型的短期记忆学习,长期记忆提供长期存储和召回信息的能力。 工具:学会调用外部不同类型 API 获取模型缺少的额外信息、代码执行能力、访问专有信息源等。 动作:大模型根据问句、上下文规划、各类工具决策出最终执行的动作。 人机协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种模式,不同模式下人与 AI 的协作流程有所差异。 Embedding 模式:人类完成大多数工作。 Copilot 模式:人类和 AI 协同工作。 Agents 模式:AI 完成大多数工作。 工作流变革:使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。 信息处理逻辑:抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,围绕“输入”“处理”“输出”“反馈”构建最底层的信息处理逻辑。 对获取信息方式的重塑:搜索引擎和基于大模型的聊天机器人在解决问题方面目标一致,ChatGPT 的发布被认为将对传统搜索引擎带来颠覆。
2025-03-18
一句话阐述ai agent的原理。
AI Agent 的原理主要包括以下几个方面: 1. 其核心通常是大型语言模型(LLM)或大模型。 2. 为 LLM 增加了工具、记忆、行动、规划这四个能力。 工具:如长期记忆,相当于给大模型一个数据库工具来记录重要信息。 记忆:提供长期记忆能力。 行动:将目标进行每一步的拆解,并输出不同的固定格式 action 指令给工具。 规划:在大模型的 prompt 层做逻辑处理,如目标拆解。 3. 目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 4. 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 多重层次:从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。 分布式智能:智能通过多个相互关联的 Agent 共同实现,提高系统的灵活性和鲁棒性。 5. AI Agent 包括 Chain(步骤,可接受输入变量并产生输出变量)、Router(通过判定让 Agent 走向不同的 Chain)、Tool(工具调用)等概念。同时,还需要 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本等)等不同类型的 Agent 协同工作。
2025-03-18
agent和workflow的区别
智能体(Agent)和工作流(Workflow)的区别主要体现在以下几个方面: 1. 定义和功能: 智能体是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 2. 运行方式: 智能体可以长期独立运行,是全自动的系统,能使用各种工具完成复杂任务。 工作流中的子任务是人为编排的,属于手动编排。 3. 组成和特点: 工作流中的每个组块可以看成是一个函数,包括传统函数、调用第三方服务的函数和基于 LLM 的函数。由这三类函数组合而成的工作流被称为超函数,它不同于传统函数,形式上是用自然语言编写的程序,功能上可以模拟人的高阶思维。 智能体在架构上与工作流有所区分,其更强调自主性和动态性。 在实际应用中,工作流的灵活性和可控性能够将智能体能力的天花板往上顶一大截,例如可以在流程中加入人类 Knowhow、进行专家测试试跑、引入图的概念灵活组织节点等。评价一个 Agent 平台好不好用,可以从基座模型的 function calling 能力、workflow 的灵活性以及平台创作者的 workflow 编写水平等方面考量。
2025-03-12
comfyui workflow
ComfyUI 的工作流主要包括以下内容: 低显存运行工作流:目的是让 FLUX 模型能在较低显存情况下运行。分阶段处理思路为,先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存使用,最后使用 SD 放大提升图片质量。工作流流程包括初始图像生成(Flux)阶段的 UNETLoader 加载 flux1dev.sft 模型、DualCLIPLoader 加载 t5xxl 和 clip_l 模型、VAELoader 加载 fluxae.sft 等步骤,以及图像放大和细化(SDXL)阶段的 CheckpointLoaderSimple 加载 SDXL 模型、UpscaleModelLoader 加载 RealESRGAN_x4.pth 用于放大等步骤。 工作流相关网站: Openart.ai:流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元套餐后每月有 5000 积分。 ComfyWorkflows 网站:支持在线运行工作流,实际下载量和访问量略少于 openart。 Flowt.ai:https://flowt.ai/community 提示词自动生成 ComfyUI 工作流:英伟达整了个花活,通过画图提示词自动生成匹配的 ComfyUI 工作流,命名为 ComfyGen(comfy 生成器),目前仅支持文生图模型。英伟达称其可以生成高质量的图并泛化到其他领域,做了对比测试,效果基本一致甚至更符合人类对提示词的判断和理解,与 C 站上人类写的提示词对比效果略胜一筹,但项目未开源。
2025-01-09
关于workflow有什么著名的论文
以下是一些关于 workflow 的著名论文或相关内容: 1. 5 月 9 日艾木分享的《Workflow》,其中包含关于 workflow 的理论探讨、对 AGI 的正确理解与思考、如何客观看待大语言模型的基础表现、人工智能在编程领域的应用及挑战、从提示词工程到 flow 工程:AI 在代码生成领域的研究与应用、人工智能在开源项目测试集中的表现与工作流的重要性、关于 workflow 的介绍与案例演示等内容。 2. 艾木的《如何用 Coze 制作一个信息检索 Bot(含 Workflow 的基础用法)》,提到 Coze 的 Workflow 为制作 Agents/Bots 提供很大的灵活性和便捷性,对 Workflow 中的函数进行了分类,并提出了超函数(Hyperfuction)的概念。 3. 2024 年 8 月 20 日的更新中,有《[AI Agent 产品经理血泪史(二)欲知方圆,则必规矩【Workflow 篇】》,聚焦于工作流(Workflow)在 AI 智能体中的重要性,回顾了集成平台的演变,探讨了工作流在自动化和手动编排中的应用以及如何提升灵活性以应对不断变化的需求。 4. 还有《[张梦飞:【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程》和《[ComfyUI 工作流:黑猴子悟空换脸报错解决大法》等相关内容。
2024-12-18
workflow使用指南
使用工作流的指南如下: 1. 创建工作流。 2. 配置工作流: 通过拖拽的方式将节点添加到画布内,并按照任务执行顺序连接节点。 工作流提供了基础节点供使用,还可以添加插件节点来执行特定任务。具体操作如下: 在左侧面板中选择要使用的节点。 将节点拖拽到画布中,并与其他节点相连接。 配置节点的输入输出参数。 3. 测试并发布工作流。 4. 在 Bot 内使用工作流: 前往当前团队的 Bots 页面,选择进入指定 Bot。 在 Bots 编排页面的工作流区域,单击右侧的加号图标。 在添加工作流对话框,在“我创建的”页面选择自建的工作流。 在 Bot 的人设与回复逻辑区域,引用工作流的名称来调用工作流。
2024-09-23
How Al Agentic workflows could drive more Al progress than even the next generation of foundation models
以下是关于您提出的“ How Al Agentic workflows could drive more Al progress than even the next generation of foundation models ”问题的相关信息: 吴恩达认为人工智能代理工作流程将在今年推动人工智能的巨大进步,甚至可能超过下一代基础模型。构建代理的设计模式框架包括反思、工具使用、规划和多代理协作。反思是指 LLMs 审视自身工作并提出改进方法;工具使用是指赋予 LLMs 如网络搜索、代码执行等工具以帮助其收集信息、采取行动或处理数据;规划是指 LLMs 制定并执行多步骤计划以实现目标;多代理协作则涉及多个 AI 代理共同工作,通过分工、讨论和辩论来提出比单个代理更好的解决方案。这些设计模式为构建高效的 AI 代理提供了指导,并将在下周进一步详细阐述并提供相关阅读建议。 此外,在医疗保健领域,为了产生真正的改变,AI 需要像我们一样学习。必须让这些专家 AI 接触到顶级从业人员的多样化视角,以避免复制危险的偏见。鉴于人工智能依赖的神经网络基础,这些专家 AI 可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。 在 AI 进化方面,CNN 的结构基于两类细胞的级联模型,主要用于模式识别任务,在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步。
2024-09-02
agentic workflow 是什么?
Agentic Workflow 是指通过学会调用外部不同类型的 API 来获取模型中缺少的额外信息、代码执行能力、访问专有信息源等。它将一个复杂的任务分解成较小的步骤,融入更多人类参与到流程中的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,在不同模式下,人与 AI 的协作流程有所差异。 Agentic Workflow 可以使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如,作为产品经理,可通过 Agents 将任务拆解为多个独立任务,遵循不同工作流生成大体符合期望的输出结果,再进行修改。 吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色相互协作开发应用或复杂程序。AI Agent 基本框架包括“Agent = LLM + 规划 + 记忆 + 工具使用”,其中 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期记忆和长期记忆,工具用于处理各种任务。
2024-08-30
AI编程的课程有吗
以下是为您提供的 AI 编程相关课程: 1. Build on Trae AI 编程挑战: 从 0 开始,用 AI 助手陪您突破编程瓶颈,让每个人都能轻松掌握编程技能,一起打造属于自己的作品。 全勤奖:参与作业提交即可获得社区精心准备的奖品。 课程安排: 2 月 18 日 20:00 开始,AI 编程大咖对谈,,分享人 Super 黄 Eric,无作业要求。 2 月 19 日 20:00 开始,AI 编程训练营环境准备,分享人 super 黄。 2 月 20 日 20:00 开始。 2 月 21 日 20:00 开始。 2 月 22 日 20:00 开始。 课程预约: 历史课程、共学作业提交。 2. 3 月 22 日 AIPO 校园创投活动 AI 编程闪电秀: 由 AI 开源社区联合组织。 3 月 13 日和 19 日,晚 8 点从 0 到 1 线上共学,文科生也可以用 Trae 做应用。 3 月 22 日,下午 50+所高校线下项目路演。 3 月 24 日,晚 8 点全国精选高校项目线上展示。 双重认证加持: 参与线上课程,获得 WaytoAGI x Trae AI 编程结业证书。 参与线下路演,角逐最佳创业者/投资人证书。 报名链接:https://waytoagi.feishu.cn/share/base/form/shrcnodT7ssTzaUNHzY7beyR2tf 欢迎各个高校同学进群交流,获取《AI 编程第一课》全套十节课图文视频资料。 3 月 13 日直播回放: 3. 第三节|AI 编程从入门到精通 Build on Trae 2025 年 2 月 22 日: 智能章节: AI 活动交流:报名、时间、内容及工具使用探讨。 AI 编程课程 10 节内容介绍及相关技术讲解。 AI 编程活动介绍与演示安排,含比赛规则及奖品。
2025-03-19
推荐能生成静态网页的AI
以下是为您推荐的能生成静态网页的 AI 工具: 1. 即时设计:https://js.design/ 这是一款可在线使用的「专业 UI 设计工具」,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 5. Genspark:https://www.genspark.ai/s 主要特点是可以根据用户的搜索内容快速生成对应的内容页面。Genspark 是一个 AI 智能体引擎,能够基于用户的查询实时生成自定义页面,称为 Sparkpages。 6. Galileo AI:https://xiaohu.ai/c/ai23cc23/galileoaiuihtmlfigma 可根据文字或图片生成完整 UI 设计,并导出 HTML 和 Figma 文件。 7. UIGENT1:基于 Qwen2.5Coder7B 微调,能根据提示生成标准 HTML/CSS 代码,擅长基础前端页面,如仪表盘、登录页、注册表单等。详细介绍:https://xiaohu.ai/c/a066c4/uigent1ui 模型下载:https://huggingface.co/smirki/UIGENT1Qwen7b 。 内容由 AI 大模型生成,请仔细甄别。
2025-03-19
有没有能对上传的音乐进行点评的AI
目前有一些 AI 工具可以对上传的音乐进行一定的处理和分析。例如,在某些音乐处理软件中,上传参考音轨后,AI 会参考音频特征进行处理,但需要注意的是,AI 并不能将您的音轨处理到目标音轨的完全相同的音质,缺失的声音细节也难以通过母带处理还原。 此外,有相关的研究和实践,如“我实现了一个人工智能音乐评论家”。同时,Suno 和 Udio 推出了上传音频文件生成音乐的功能,能实现对速度、旋律、配器、合成等方面的控制和处理。
2025-03-19
有没有简单输入故事,就生成结合图片、剧情解说的动画的AI工具
以下为您介绍一些能够简单输入故事,就生成结合图片、剧情解说的动画的 AI 工具: Anifusion: 网址:https://anifusion.ai/ Twitter 账号:https://x.com/anifusion_ai 主要功能: AI 文本生成漫画:输入描述性提示,AI 会生成相应漫画页面或图像。 直观的布局工具:提供预设模板,也可自定义漫画布局。 强大的画布编辑器:可在浏览器中直接优化和完善生成的艺术作品。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型实现不同艺术风格和效果。 商业使用权:用户对创作作品拥有完整商业使用权。 使用案例: 独立漫画创作:让无绘画技能的漫画艺术家实现故事创作。 快速原型设计:帮助专业艺术家快速可视化故事概念和布局。 教育内容:为教师和教育工作者创建视觉内容。 营销材料:企业可制作促销漫画或分镜脚本。 粉丝艺术和同人志:粉丝可创作衍生作品。 优点:非艺术家也能轻松创作漫画,基于浏览器无需安装额外软件,具备快速迭代和原型设计能力,拥有创作的全部商业权利。 此外,ChatGPT 也能在一定程度上参与生成对话内容和剧情。例如,通过 System Prompt 介绍游戏故事背景和小机器人人设,结合游戏关键事件生成故事情节介绍,并以小机器人自述形式呈现。在实际实现过程中,可选择离线生成一次性剧情文案保存到游戏中,但文案固定略显单调;也可实时生成,但每次生成有延迟,可能导致游戏停顿感。因此,可在每局对局开始前为游戏关键节点一次性生成所有文案,既保证每次游戏文案不同,又避免游戏停顿。剧情故事格式由预定义的 json 表达,ChatGPT 只需替换填充内容。实时对话与剧情类似,但需解决小机器人区分聊天和执行指令的问题,挑战在于 ChatGPT 支持生成“多模态”返回信息。
2025-03-19
快速记录语音并转换文字用哪个AI
以下是一些可用于快速记录语音并转换文字的 AI 工具: 1. 海螺 AI 声音克隆:不仅能进行声音克隆,还能嵌入完整的 AI 录视频工作流。具体步骤包括录制初始视频、音频提取(可用剪映或格式工厂将 mp4 转为 mp3)、语音转文字(可上传至通义听悟或飞书妙记)。但可能会遇到语音识别不准的问题,此时可使用 Gemini 2.0 Pro 等工具进行优化校正,校正时需提供足够上下文,如视频初稿、最终文章、工作流操作文档、转录文本等。 2. GET 笔记:语音转文字功能适合快速构思和记录灵感,能自动润色,去掉口癖和冗余部分。 3. 通义听悟:适合处理较长的会议录音等文字内容。它能通过 TTS 技术将音视频中的语音转换成文字,还能识别不同发言人。使用时可登录官网 https://tingwu.aliyun.com/,根据实际情况选择实时记录或上传音视频,并选择录音背景信息,如单人、双人还是多人,以及语言种类等。完成转录后会显示 AI 总结的关键词和全文摘要。
2025-03-19
我想做一个AI机器人,用于自动回复我的抖音新消息,现在有办法能解决吗
目前可以通过 Coze 平台来实现让 AI 机器人自动回复您的抖音新消息。以下是相关信息: 微信的不同功能与 Coze 平台对接情况: 个人微信/微信群:之前 Coze 平台不支持直接对接,但国内版已正式发布 API 接口功能,直接对接成为可能。 微信公众号:Coze 平台支持对接,AI 机器人可自动回复用户消息。 微信服务号:Coze 平台支持对接,能提升服务效率。 微信客服:Coze 平台支持对接,可自动回答用户咨询,提高客服响应速度。 配置 AI 微信聊天机器人的步骤: 登录成功后,找另一个人私聊或者在群中@您,能看到机器人正常回复。 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”进行更改。 此后进行任何更改,都需“返回首页 右上角 点击重启,重启一下服务器”。 然后,在“文件”的【终端】里,输入“nohup python3 app.py&tail f nohup.out 重新扫码登录”。 关于添加插件,可参考。 疑问解答: 放行端口:类似于给房子安装门铃,通过放行特定端口(如 8888 端口)可通过互联网访问宝塔面板,管理和配置服务器上的服务。 Bot ID:是在 Coze 平台上创建的 AI 机器人的唯一标识,用于将微信号与特定机器人关联。 微信账号被封:若因使用机器人被封,可尝试联系客服说明情况。建议使用专门微信号作为机器人账号,并遵守微信使用规范。 服务器:需要一直开着,以保证机器人随时在线响应请求。 不懂编程:完全可以配置,按照教程一步一步操作即可。 配置问题:检查每步是否按教程操作,特别是 API 令牌和 Bot ID 是否正确。无法解决可到 Coze 平台的论坛或微信群求助。
2025-03-19
Agentic Workflow是什么意思
Agentic Workflow 指的是一种在生成式 AI 的人机协同中,通过不同模式(如 Embedding、Copilot、Agent)下的角色协作流程来完成任务的方式。 在 Agent 模式中,AI 完成大多数工作。它使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作。例如,作为产品经理,可将产品功能设计任务拆解为多个独立任务,遵循不同工作流,生成初步结果后再修改。 Agentic Workflow 还通过学会调用外部不同类型 API 来获取模型缺少的额外信息等。其动作的决策需要根据大模型结合问句、上下文规划、各类工具来确定。 从提升效率、提高质量、节省时间的角度思考,Agentic Workflow 可以将复杂任务分解成较小步骤,融入更多人类参与的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。AI Agent 的基本框架包括“LLM +规划+记忆+工具使用”,其中 LLM 扮演“大脑”,规划包括子目标分解、反思与改进,记忆分为短期和长期,工具用于辅助完成任务。
2024-08-30
Agentic Workflow是什么
Agentic Workflow 是一种基于 AI 的工作流管理方式,它可以帮助人们更高效地完成各种任务。以下是关于 Agentic Workflow 的一些介绍: 1. 专家代理:Agentic Workflow 中的专家代理是指具有特定领域和工具专长的 AI 模型,它们能够以步骤化、理性的方式帮助用户达成目标。 2. 工作流程:Agentic Workflow 的工作流程通常包括收集信息、初始化专家代理、持续支持用户直到目标完成等步骤。 3. Tool Use:Tool Use 是指 Agent 通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。 4. Planning:Agent 通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。 5. Multiagent Collaboration:通过学会调用外部不同类型 API 来获取模型(通常在预训练后很难修改)中缺少的额外信息,代码执行能力,访问专有信息源等(例如获取此时此刻的天气、联网网搜索等)。 6. Action(动作):根据上述大模型结合问句(Query)、上下文的规划(Context)、各类工具,最终大模型才能决策出最终需要执行的动作是什么。 7. Productivity(效率):Agentic Workflow 通过将一个复杂的任务分解成较小的步骤,在整个过程中中融入了更多人类参与到流程中的规划与定义。它减少了对 Prompt Engineering 和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,更丰富、更精确。 总的来说,Agentic Workflow 是一种将 AI 技术应用于工作流管理的方式,它可以帮助人们更高效地完成各种任务。
2024-05-29