Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

百度的大模型

Answer

百度的大模型是文心一言,其链接为:https://wenxin.baidu.com 。目前,在国内大模型中,除了百度的文心一言,还有其他一些重要的大模型,如抖音的云雀大模型(https://www.doubao.com )、智谱 AI 的 GLM 大模型(https://chatglm.cn )、中科院的紫东太初大模型(https://xihe.mindspore.cn/modelzoo/taichu/introduce )、百川智能的百川大模型(https://www.baichuan-ai.com )等。此外,OpenAI 的 GPT-4 是最先进和广泛使用的大型语言模型之一,除了 OpenAI 的 GPT 系列,还有 Anthropic 公司的 Claude 3 、谷歌的 Gemini 、阿里巴巴的通义大模型等在特定领域和任务上也表现出色。如果想了解国内的大模型效果,可以参考第三方基准评测报告:2023 年度中文大模型基准测评报告.pdf 。需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
有没有能够解析百度网盘里的视频,给学习视频整理出完整清晰的笔记的ai免费软件
目前尚未有专门针对解析百度网盘里的视频,并为学习视频整理出完整清晰笔记的免费 AI 软件。但您可以尝试使用一些相关的工具和方法来实现类似的功能。例如,您可以使用语音转文字工具将视频中的讲解转换为文字,然后再利用文本处理软件进行整理和分析。另外,一些笔记软件也具备一定的辅助功能,帮助您更好地整理和归纳信息。
2024-12-04
现在国内语言生成式AI有多少个在做的,比如说百度的文心一言和阿里的通义
目前国内在做语言生成式 AI 的有不少,例如百度的文心一言、阿里的通义千问、讯飞的讯飞星火、智谱华章的智谱清言、字节跳动的豆包、腾讯的元宝、昆仑万维的天工 AI 等。 此外,还有一些在特定时间上线的大模型,如 8 月正式上线的包括北京的百度(文心一言)、抖音(云雀大模型)、智谱 AI(GLM 大模型)、中科院(紫东太初大模型)、百川智能(百川大模型),上海的商汤(日日新大模型)、MiniMax(ABAB 大模型)、上海人工智能实验室(书生通用大模型)。 需要注意的是,不同的大模型具有各自的特点和功能,在使用和应用场景上可能存在差异。
2024-11-06
类似百度飞桨AI studio的pign't平台有哪些?
以下是一些类似于百度飞桨 AI studio 的平台: 1. Coze:是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,能拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,可将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者按需打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,能访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大场景和数据优势,提供深入环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别,您可根据自身需求选择适合的平台进一步探索和应用。
2024-10-15
如何编排coze 能实现百度网盘自动下载
Coze是一个AI Bot开发平台,它允许用户创建工作流来自动化各种任务。然而,根据我的知识截止日期,Coze本身并没有直接提供百度网盘自动下载的功能。不过,你可以尝试以下方法来实现类似的自动化: 1. 使用API:如果百度网盘提供了API接口,你可以在Coze中创建一个工作流,通过API来实现自动下载功能。 2. Webhooks:如果Coze支持Webhooks,你可以设置一个外部服务来监听百度网盘的更新,当有新的文件或更新时,通过Webhook触发Coze的工作流。 3. 定时任务:在Coze中设置定时任务,定期检查百度网盘的特定文件夹或链接,如果发现新的文件或更新,执行下载操作。 4. 第三方集成:如果Coze支持与第三方服务集成,你可以寻找提供百度网盘自动下载服务的第三方工具,并通过Coze与这些工具集成。 5. 编写脚本:如果Coze允许执行自定义脚本,你可以编写一个脚本来实现与百度网盘的交互,并在Coze中运行这个脚本。 6. 利用数据库:如果Coze支持数据库操作,你可以将百度网盘中的文件信息存储在数据库中,然后通过Coze的工作流来管理这些信息,并触发下载。 7. 使用命令行工具:如果百度网盘有命令行工具可用,你可以在Coze中创建一个工作流,通过命令行调用这些工具来实现下载。 请注意,自动化下载百度网盘的文件可能受到百度网盘的服务条款限制,你需要确保遵守所有相关的法律和条款。此外,自动化下载可能涉及到账号安全问题,确保你的账号信息安全,避免使用不安全的自动化方法。 由于Coze的具体功能和百度网盘的API可能会随时间变化,建议查看Coze的最新文档和百度网盘的官方API文档,以获取最新信息和可能的解决方案。如果需要具体的编程指导或自动化方案设计,可能需要咨询专业的开发者或Coze的技术支持。
2024-05-26
百度有推出数字员工吗?怎样可以根据小冰框架开发数字员工?
百度有推出数字员工,叫做度晓晓。度晓晓是百度公司推出的一款数字人,它可以与用户进行自然语言对话,回答用户的问题,提供信息和服务。度晓晓的特点是它具有高度的智能化和个性化,它可以根据用户的需求和喜好,提供个性化的服务和建议。 如果你想根据小冰框架开发数字员工,可以考虑以下步骤: 1. 了解小冰框架:小冰框架是一个开放的人工智能框架,它提供了一系列的工具和接口,用于开发和部署人工智能应用。你需要了解小冰框架的基本概念和功能,以便更好地使用它。 2. 准备开发环境:你需要准备一个开发环境,包括一台计算机和相关的软件工具。你可以选择使用小冰框架提供的开发工具,也可以使用其他的开发工具。 3. 开发数字员工:你需要使用小冰框架提供的工具和接口,开发一个数字员工。你需要定义数字员工的行为和功能,以及它与用户的交互方式。 4. 部署和测试:你需要将开发好的数字员工部署到服务器上,并进行测试和调试。你需要确保数字员工能够正常工作,并满足你的需求。 5. 优化和改进:你需要根据用户的反馈和需求,对数字员工进行优化和改进。你需要不断提高数字员工的性能和质量,以满足用户的需求。 总的来说,根据小冰框架开发数字员工需要一定的技术和时间投入,但它可以为你提供一个强大的工具,帮助你开发出更加智能和个性化的数字员工。
2024-05-06
开源模型和闭源模型
开源模型和闭源模型的情况如下: 专有模型(闭源模型):如 OpenAI、Google 等公司的模型,需访问其官方网站或平台(如 ChatGPT、Gemini AI Studio)使用。 开源模型: 可使用推理服务提供商(如 Together AI)在线体验和调用。 可使用本地应用程序(如 LM Studio)在个人电脑上运行和部署较小的开源模型。 例如 DeepSeek、Llama 等开源模型。 Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进性能,超越目前所有开源模型和国内闭源模型,在代码和数学性能等方面显著提高。 金融量化领域的大模型正趋向闭源,几个巨头的核心模型如 OpenAI 最新一代的 GPT4、Google 的 Bard 以及未来的 Gemini 短时间内不会公开。Meta 的 LLaMA 目前开源,但未来可能改变。OpenAI 未来可能开源上一代模型。
2025-02-17
大模型的基本原理
大模型的基本原理如下: 1. 模仿人类大脑结构,表现出人的特征,应对大模型回答不及预期的解决之道与人与人交流沟通的技巧相似。 2. GPT 全称是生成式预训练转换器模型(Generative Pretrained Transformer): 生成式(Generative):大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从提示词“How”开始,依次推理计算出“are”“you”等,直到计算出下一个词是的概率最大时结束输出。 3. 通俗来讲,大模型通过输入大量语料来让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作: 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:用合适算法讲述“书本”内容,让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后进行推导(infer),如进行翻译、问答等。 4. 在 LLM 中,Token 被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时会对其进行数字化,形成词汇表。 5. 相关技术名词及关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签自主发现规律,强化学习从反馈里学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型,生成只是大语言模型的一个处理任务。 6. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,基于自注意力机制处理序列数据,不依赖 RNN 或 CNN。
2025-02-17
千帆大模型开发平台
百度智能云的千帆大模型平台在解决大模型的调用、开发和应用开发方面表现出色。它支持调用文心大模型全系列模型,并提供全面的工具链,支持定制化的模型开发。在应用开发上,通过 AppBuilder 提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用中产生的数据经过评估和对齐进一步反馈到模型中,形成良性循环,持续优化模型性能。 2024 年上半年,百度智能云在 MaaS 市场和 AI 大模型解决方案市场中均获得第一名,市占率分别为 32.4%和 17%。MaaS 业务主要依托百度智能云千帆大模型平台提供服务,AI 大模型解决方案方面沉淀了八大行业解决方案。在 2024 百度世界大会上,百度智能云千帆大模型平台发布了工作流 Agent 能力,有助于企业更稳定、高效地实现多任务分解和执行。
2025-02-17
你是用什么模型来回答问题的?
我使用多种模型和相关知识来回答您的问题,包括但不限于以下内容: 2023 年度中文大模型基准测评报告中提到的 GPT4Turbo 和 gpt3.5turbo 等模型,并对其在准确性、相关性等方面的表现进行了评估。 智谱·AI 开源模型列表中的 WebGLM10B、WebGLM2B、MathGLM2B、MathGLM500M、MathGLM100M、MathGLM10M、MathGLMLarge 等模型,介绍了它们的特点和相关链接。 OpenAI 官方指南中提到的一些战术,如指示模型使用参考文本回答,包括提供参考文本和使用参考文本中的引文来回答等策略。 但具体回答您的问题所依据的模型和知识来源会根据问题的性质和需求而定。
2025-02-17
大语言模型幻觉的本质是什么
大语言模型幻觉的本质主要包括以下方面: 1. 大语言模型的底层原理是基于数学概率的文字预测,类似于文字接龙,这导致其存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。 2. 样本存在错误,即如果大语言模型学习的“教材”中有错误,那么它也容易给出错误的回答。 3. 大语言模型技术的本质导致其输出结果具有不可预测性,且静态的训练数据导致其掌握的知识存在截止日期,无法即时掌握最新信息。 4. 大语言模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。
2025-02-16
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16