直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

百度的大模型

回答

百度的大模型是文心一言,其链接为:https://wenxin.baidu.com 。目前,在国内大模型中,除了百度的文心一言,还有其他一些重要的大模型,如抖音的云雀大模型(https://www.doubao.com )、智谱 AI 的 GLM 大模型(https://chatglm.cn )、中科院的紫东太初大模型(https://xihe.mindspore.cn/modelzoo/taichu/introduce )、百川智能的百川大模型(https://www.baichuan-ai.com )等。此外,OpenAI 的 GPT-4 是最先进和广泛使用的大型语言模型之一,除了 OpenAI 的 GPT 系列,还有 Anthropic 公司的 Claude 3 、谷歌的 Gemini 、阿里巴巴的通义大模型等在特定领域和任务上也表现出色。如果想了解国内的大模型效果,可以参考第三方基准评测报告:2023 年度中文大模型基准测评报告.pdf 。需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
现在国内语言生成式AI有多少个在做的,比如说百度的文心一言和阿里的通义
目前国内在做语言生成式 AI 的有不少,例如百度的文心一言、阿里的通义千问、讯飞的讯飞星火、智谱华章的智谱清言、字节跳动的豆包、腾讯的元宝、昆仑万维的天工 AI 等。 此外,还有一些在特定时间上线的大模型,如 8 月正式上线的包括北京的百度(文心一言)、抖音(云雀大模型)、智谱 AI(GLM 大模型)、中科院(紫东太初大模型)、百川智能(百川大模型),上海的商汤(日日新大模型)、MiniMax(ABAB 大模型)、上海人工智能实验室(书生通用大模型)。 需要注意的是,不同的大模型具有各自的特点和功能,在使用和应用场景上可能存在差异。
2024-11-06
类似百度飞桨AI studio的pign't平台有哪些?
以下是一些类似于百度飞桨 AI studio 的平台: 1. Coze:是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,能拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,可将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者按需打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,能访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大场景和数据优势,提供深入环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别,您可根据自身需求选择适合的平台进一步探索和应用。
2024-10-15
如何编排coze 能实现百度网盘自动下载
Coze是一个AI Bot开发平台,它允许用户创建工作流来自动化各种任务。然而,根据我的知识截止日期,Coze本身并没有直接提供百度网盘自动下载的功能。不过,你可以尝试以下方法来实现类似的自动化: 1. 使用API:如果百度网盘提供了API接口,你可以在Coze中创建一个工作流,通过API来实现自动下载功能。 2. Webhooks:如果Coze支持Webhooks,你可以设置一个外部服务来监听百度网盘的更新,当有新的文件或更新时,通过Webhook触发Coze的工作流。 3. 定时任务:在Coze中设置定时任务,定期检查百度网盘的特定文件夹或链接,如果发现新的文件或更新,执行下载操作。 4. 第三方集成:如果Coze支持与第三方服务集成,你可以寻找提供百度网盘自动下载服务的第三方工具,并通过Coze与这些工具集成。 5. 编写脚本:如果Coze允许执行自定义脚本,你可以编写一个脚本来实现与百度网盘的交互,并在Coze中运行这个脚本。 6. 利用数据库:如果Coze支持数据库操作,你可以将百度网盘中的文件信息存储在数据库中,然后通过Coze的工作流来管理这些信息,并触发下载。 7. 使用命令行工具:如果百度网盘有命令行工具可用,你可以在Coze中创建一个工作流,通过命令行调用这些工具来实现下载。 请注意,自动化下载百度网盘的文件可能受到百度网盘的服务条款限制,你需要确保遵守所有相关的法律和条款。此外,自动化下载可能涉及到账号安全问题,确保你的账号信息安全,避免使用不安全的自动化方法。 由于Coze的具体功能和百度网盘的API可能会随时间变化,建议查看Coze的最新文档和百度网盘的官方API文档,以获取最新信息和可能的解决方案。如果需要具体的编程指导或自动化方案设计,可能需要咨询专业的开发者或Coze的技术支持。
2024-05-26
百度有推出数字员工吗?怎样可以根据小冰框架开发数字员工?
百度有推出数字员工,叫做度晓晓。度晓晓是百度公司推出的一款数字人,它可以与用户进行自然语言对话,回答用户的问题,提供信息和服务。度晓晓的特点是它具有高度的智能化和个性化,它可以根据用户的需求和喜好,提供个性化的服务和建议。 如果你想根据小冰框架开发数字员工,可以考虑以下步骤: 1. 了解小冰框架:小冰框架是一个开放的人工智能框架,它提供了一系列的工具和接口,用于开发和部署人工智能应用。你需要了解小冰框架的基本概念和功能,以便更好地使用它。 2. 准备开发环境:你需要准备一个开发环境,包括一台计算机和相关的软件工具。你可以选择使用小冰框架提供的开发工具,也可以使用其他的开发工具。 3. 开发数字员工:你需要使用小冰框架提供的工具和接口,开发一个数字员工。你需要定义数字员工的行为和功能,以及它与用户的交互方式。 4. 部署和测试:你需要将开发好的数字员工部署到服务器上,并进行测试和调试。你需要确保数字员工能够正常工作,并满足你的需求。 5. 优化和改进:你需要根据用户的反馈和需求,对数字员工进行优化和改进。你需要不断提高数字员工的性能和质量,以满足用户的需求。 总的来说,根据小冰框架开发数字员工需要一定的技术和时间投入,但它可以为你提供一个强大的工具,帮助你开发出更加智能和个性化的数字员工。
2024-05-06
如何用langchian加载本地模型
要使用 Langchain 加载本地模型,您可以按照以下步骤进行: 1. 加载所需的库和模块,例如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型。使用 ollama 前请确保服务已经开启并下载好模型。 2. 从订阅源获取内容,通过特定函数从指定的 RSS 订阅 URL 提取内容,若需接收多个 URL 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。 3. 为文档内容生成向量,使用文本向量模型 bgem3。从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 在整个过程中,还需要了解以下相关知识: 1. RAG(Retrieval Augmented Generation):大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成。RAG 应用包括文档加载(从多种来源加载文档,LangChain 提供 100 多种文档加载器)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. Ollama:支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,提供模型库,用户可下载不同模型,还支持自定义模型、提供 REST API 用于运行和管理模型及与其他应用程序集成,社区贡献丰富。安装完后确保后台服务已启动,可通过 ollama list 确认,通过 ollama 命令下载模型。
2024-11-23
大模型微调的目的和意义,会产生什么效果
大模型微调具有重要的目的、意义和效果,具体如下: 目的和意义: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中会有更好的表现,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本。通过专门化模型可使用更小的模型,且只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和成本。 适应特定领域需求:通用大模型在特定领域如法律或医学中的表现可能不理想,微调能优化模型在该领域的表现,使其更具专业性。 经济高效:从头开始训练具备自然语言处理能力的大模型需要大量时间和资源,小公司负担不起,微调可在现有模型基础上更经济、高效地适应新应用领域,节省成本并加快模型部署和应用速度。 效果: 优化模型参数:在特定领域的数据上训练模型,调整所有层的参数。 增强特定领域表现:使模型在特定领域的任务中表现更佳。 目前业界比较流行的微调方案是 PEFT(ParameterEfficient Fine Tuning),OpenAI 官方微调教程可参考:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-11-23
图片生成图片的AI模型有哪些
目前比较成熟的图片生成图片(图生图)的 AI 模型主要有: 1. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,可将图片转换为非凡肖像,有 500 多种风格供选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果出色。 此外,一些受欢迎的文生图工具也可用于图生图,例如: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量的图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面设计而广受欢迎,在创意设计人群中尤其流行。 在 WaytoAGI 网站(https://www.waytoagi.com/category/104),可以查看更多文生图工具。 关于图生图的操作方式:在相关工具的首页有对话生图对话框,输入文字描述即可生成图片,不满意可通过对话让其修改。例如在吐司网站,图生图时能调整尺寸、生成数量等参数,高清修复会消耗较多算力建议先出小图。Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成的图片效果受多种因素影响。国外模型对中式水墨风等特定风格的适配可能存在不足,可通过训练 Lora 模型改善。
2024-11-23
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21