直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

怎么限制大模型的字数

回答

限制大模型的字数可以通过以下几种方式:

  1. 调整参数:
    • Temperature:参数值越小,模型返回结果越确定;调高参数值,可能返回更随机、多样化或更具创造性的结果。对于质量保障等任务,可设置更低值;对于诗歌生成等创造性任务,可适当调高。
    • Top_p:与 Temperature 一起称为核采样技术,用于控制模型返回结果的真实性。需要准确和事实的答案时,调低参数值;想要更多样化答案时,调高参数值。一般建议改变其中一个参数即可。
    • Max Length:通过调整 Max Length 控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。
  2. 了解 token 限制:
    • 不同模型有不同的 token 限制,例如 Claude-2-100k 模型的上下文上限是 100000 个 token,ChatGPT-16k 模型的上下文上限是 16000 个 token,ChatGPT-4-32k 模型的上下文上限是 32000 个 token。
    • token 限制同时对一次性输入和一次对话的总体上下文长度生效。
  3. 遵循最简化原则设置限制条件:
    • 确保拼写正确,例如“Constraints”(限制)。
    • 常见的限制条件包括:
      • 内容长度限制:确保模型输出不超过用户设定的字数或信息量。
      • 内容类型限制:避免生成不恰当或不相关的内容。
      • 逻辑和一致性限制:增强模型处理逻辑关系的能力。
      • 风格和语调限制:使输出符合特定写作风格或语调。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

大语言模型设置

使用提示词时,您会通过API或直接与大语言模型进行交互。你可以通过配置一些参数以获得不同的提示结果。调整这些设置对于提高响应的可靠性非常重要,你可能需要进行一些实验才能找出适合您的用例的正确设置。以下是使用不同LLM提供程序时会遇到的常见设置:Temperature:简单来说,temperature的参数值越小,模型就会返回越确定的一个结果。如果调高该参数值,大语言模型可能会返回更随机的结果,也就是说这可能会带来更多样化或更具创造性的产出。我们目前也在增加其他可能token的权重。在实际应用方面,对于质量保障(QA)等任务,我们可以设置更低的temperature值,以促使模型基于事实返回更真实和简洁的结果。对于诗歌生成或其他创造性任务,你可以适当调高temperature参数值。Top_p:同样,使用top_p(与temperature一起称为核采样的技术),可以用来控制模型返回结果的真实性。如果你需要准确和事实的答案,就把参数值调低。如果你想要更多样化的答案,就把参数值调高一些。一般建议是改变Temperature和Top P其中一个参数就行,不用两个都调整。Max Length:您可以通过调整max length来控制大模型生成的token数。指定Max Length有助于防止大模型生成冗长或不相关的响应并控制成本。

关于 token 你应该了解……

从官方文档可以看到我们目前使用的模型有哪些,以及每个模型的token限制。除此之外,最直观能感受到各类模型token限制的其实是poe:在这里我们看到的16K、32K、100K就是指token上限。Claude-2-100 k模型的上下文上限是100k Tokens,也就是100000个tokenChatGPT-16 k模型的上下文上限是16k Tokens,也就是16000个tokenChatGPT-4-32 k模型的上下文上限是32k Tokens,也就是32000个token但似乎很多小伙伴不理解这个限制具体影响在哪些方面。所以我替你们问了一下GPT(真不懂你们为什么不自己问/手动狗头)从回答可以看出,这个token限制是同时对下述两者生效的:1、一次性输入2、一次对话的总体上下文长度,值得注意的是这个长度不是达到上限就停止对话,而是遗忘最前面的对话,你可以理解为鱼的记忆只有7秒,第8秒的时候他会忘记第1秒的事,第9秒的时候……(某些同学是不是恍然大悟了)

如何调教 AI,提示词,就应该和打字一样简单!

“-输出改进后的完整Prompt”,这也是属于需要输出的内容,不是这个机器人的目标。3.注意拼写正确Constrains:Constraints:翻译为限制,限制一般包括具体的字数限制。他这里(Constrains)单词没有拼写正确,所以大家再用的时候要确认拼写正确,对大模型来说是可以理解稍许不正确的词语的,这是一个小问题。正确的拼写方法是Constraints。限制条件,要确保你的限制条件清晰和可以被大模型执行。以下是一些常见的限制条件:1.内容长度限制:这是最直观的一种限制,确保模型的输出不会超过用户设定的字数或者信息量。2.内容类型限制:这种限制确保模型不会生成不恰当的或不相关的内容。例如,可以通过预先设定的过滤规则来避免生成不适宜的语言或主题。3.逻辑和一致性限制:为了让模型的输出更加符合逻辑,可以通过增加对模型理解和处理逻辑关系的能力来设定。4.风格和语调限制:在某些情况下,你可能希望模型的输出符合特定的写作风格或语调。没有遵循最简原则Skill:

其他人在问
有哪些可以阅读多字数文本(doc,pdf等格式)的ai
以下是一些可以阅读多字数文本(如 doc、pdf 等格式)的 AI 产品: 1. 沉浸式翻译: 主打在所有网页双语翻译、PDF 文档对照阅读。 可以一键开启网页中 Youtube 视频的双语字幕。 插件安装地址:https://immersivetranslate.com/ 2. Kimi AI: 由月之暗面科技有限公司开发。 最大特点在于超长文本(支持最多 20 万字的输入和输出)的处理和基于文件、链接内容对话的能力。 用户可以上传 TXT、PDF、Word 文档、PPT 幻灯片、Excel 电子表格等格式的文件,Kimi AI 能够阅读并理解相关内容,为用户提供基于文件内容的回复。 此外,以下是一些可以翻译 PDF 的 AI 产品: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13
基于三本认识人工智能的教材,做教材分析,为我写一个引言,从课程标准和背景等方面来写,字数尽量多。
以下是为您生成的基于三本认识人工智能教材的教材分析引言: 在当今科技飞速发展的时代,人工智能已成为引领社会变革的重要力量。课程标准对于培养具备人工智能素养的人才提出了明确要求,旨在使学习者能够深入理解人工智能的原理、应用和发展趋势。 这三本教材为我们探索人工智能的奥秘提供了坚实的基础。首先,《认知神经学科:关于心智的生物学》由 Michael S. Gazzaniga、Richard B. Lvry 和 George R. Mangun 所著,作为世界权威的认知神经科学教材,它系统地涵盖了认知神经科学的各个方面,包括发展历史、细胞机制与认知、神经解剖与发展、研究方法,以及感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。通过这本书,我们能够从生物学的角度深入理解心智的形成和运作机制,为理解人工智能中的认知模型提供了生物学基础。 其次,《神经科学原理》由 Eric R. Kandel 和 James H. Schwartz 编写,让我们系统地了解神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。它强调了神经网络的联结主义,让我们认识到知识并非孤立存在,而是相互关联的,这对于构建人工智能中的知识表示和推理模型具有重要的启示。 最后,《神经生物学:从神经元到脑》由 John G. Nicholls 等著,是神经生物学领域内的世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物学的基本概念、神经系统的功能及细胞和分子机制。将这本书与前两本结合起来阅读,能够更全面地理解人脑的构造和运作,为设计更智能、更接近人类思维的人工智能系统提供宝贵的思路。 综上所述,这三本教材从不同角度为我们揭示了神经科学与人工智能之间的紧密联系,为我们深入学习和研究人工智能提供了丰富的知识和深刻的见解。
2024-10-29
我有一个文档字数可能比较多,我希望ai能基于这个文档内容对我的问题进行回答,目前市面上能实现这一功能比较好的工具有哪些?
目前市面上能实现基于文档内容回答问题这一功能较好的工具包括: 1. 飞书:通过企业搜一搜或者自定义问答,智能伙伴可以基于用户有权限的文档内容回答用户提问。 2. Grammarly:不仅是语法和拼写检查工具,还提供一些排版功能,可改进文档整体风格和流畅性。 3. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 4. Latex:常用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 5. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 6. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 7. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 8. Excel Labs:Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 9. Microsoft 365 Copilot:微软推出的整合 Word、Excel、PowerPoint、Outlook、Teams 等办公软件的 AI 工具,通过聊天形式完成用户需求。 10. Formula Bot:提供数据分析聊天机器人和公式生成器功能,可自然语言交互进行数据分析和生成 Excel 公式。 11. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成相关文本内容、执行情感分析、语言翻译等任务。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 较受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-10-18
kimi 单次输出字数上限是多少?
Kimi 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做得最好的 AI 产品。但在实际输出时,通常会被截断到 1 千字以内。例如在同时询问多个大模型并返回汇总梳理后的结果中,就存在这种输出截断的情况。此外,通过一些不太正经的办法,如情绪勒索,Kimi 能实现一定程度的扩写。 您可以通过以下链接使用 Kimi:点我去下载 。
2024-09-24
我想从人力经济学角度写一篇智能语音识别技术在护士中的应用的文章,请帮我写一篇写作大纲,字数150字。
以下是为您生成的一篇关于智能语音识别技术在护士中应用的写作大纲,约 150 字: 一、引言 介绍智能语音识别技术的发展及在医疗领域的应用背景。 二、智能语音识别技术概述 技术原理、特点及优势。 三、在护士工作中的应用现状 如护理记录、医嘱执行等方面的应用情况。 四、对护士工作效率的影响 包括节省时间、减少错误等。 五、对护士职业发展的影响 技能要求变化、职业晋升机会等。 六、面临的挑战与对策 如技术准确性、隐私保护等问题及解决办法。 七、结论 总结应用前景及未来发展趋势。
2024-09-04
怎么让大模型回答的简单一点,限制字数
要让大模型回答得简单一点并限制字数,可以通过以下几种方式: 1. 调整参数: Temperature:参数值越小,模型返回的结果越确定。对于需要简洁和基于事实的回答,如质量保障(QA)等任务,可设置较低的 temperature 值。 Top_p:调低参数值可获得更准确和事实的答案。一般建议改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:通过调整 max length 来控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 2. 分治法:对于生成内容较多的情况,可采用分治法分段输出,最后自己拼合。 3. 提供清晰简洁的提示:在询问时不要惜字如金,应包含必要的关键信息,但避免过于复杂冗长,让大模型能准确理解需求,从而给出简洁的回答。
2024-08-29
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20
ai能够回复多少内容和它的上下文限制有关吗
AI 能够回复的内容与其上下文限制有关。 首先,上下文在英文中通常翻译为“context”,指的是对话聊天内容前、后的信息。使用时,上下文长度和上下文窗口都会影响 AI 大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 不同的 AI 平台有不同的限制方式。例如,Claude 基于 token 限制上下文,简单理解就是每次和 AI 对话,所有内容字数加起来不能太多,如果超过了,它就会忘记一些内容,甚至直接提示要另起一个对话。ChatGPT 则限制会话轮数,比如在一天之中,和它会话的次数有限制,可能 4 个小时只能说 50 句话。 应对这些限制的策略包括将复杂任务分解为小模块、定期总结关键信息以及在新会话中重新引入重要上下文。
2024-11-15
回复限制和上下文限制是一样的吗
回复限制和上下文限制不是一样的概念。 上下文(英文通常翻译为 context)指对话聊天内容前、后的内容信息。使用时,上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 回复限制通常是指对模型生成回复内容的各种约束条件,例如让模型基于一个固定知识片段去回复内容,为避免模型产生幻觉而对提示词进行优化,将 Constraints 前置以更好地控制模型行为。例如在一些测试中,会出现模型在没有上下文时不回复,按照提供的知识准确回复但透露原文,知识片段大小影响回复,以及有错误知识片段时不回复等情况,这表明模型在处理用户输入时会进行一定程度的推理和验证,生成回复时会考虑多种因素,包括上下文的准确性、问题的合理性以及模型内部的约束机制等。
2024-11-15
上下文窗口和 tokens限制
以下是关于上下文窗口和 tokens 限制的详细解释: Token 方面: Token 是大模型语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型自己的语言,大模型推理生成答案后再翻译为人类能看懂的语言输出。 不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 上下文方面: 上下文指对话聊天内容前、后的内容信息,其长度和窗口都会影响大模型回答的质量。 上下文长度限制了模型一次交互中能够处理的最大 token 数量,上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 目前常见模型的 token 限制: Claude 2 100k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT 16k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT 4 32k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制的影响: 对一次性输入和一次对话的总体上下文长度同时生效。 当达到上限时,不是停止对话,而是遗忘最前面的对话,类似于鱼的短暂记忆。 查看 token 使用量: 对于 GPT,可以打开查看实时生成的 tokens 消耗和对应字符数量。 需注意 GPT3 和 GPT3.5/4 的 token 计算方式不同,且英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。 Token 限制对 Prompt 编写的影响:理解前面的内容后,答案应在您的脑海中有雏形。
2024-11-15
Midjourney生成知名动漫或卡通形象受限制了么?
Midjourney 在生成知名动漫或卡通形象时存在一定的限制。例如,在生成角色方面,最好不要生成过多角色,过多甚至可能指 2 个。做人、做动物的情况还好,但对于有拟人角色需求的情况,可能难以生成满意的结果。比如小龙喷火到小兔子举着的礼物盒这种看似简单的需求,可能无法达到满意效果,可能出现动物不拟人或龙的体型超大等情况。对于像中国龙这种数据样本较少的形象,生成符合要求的图很有挑战性。 在视频生成方面,如果想让角色做出一些较大的动作,比如转头、掉眼泪、抬手或更生动的表情变化,现有的技术还不够成熟,还需要更先进的技术、更丰富的数据和更强大的计算能力。此时的策略是尽量规避制作需要大动作表现的视频,如果实在避免不了,可以尝试制作一些只涉及小动作的场景,然后通过加入台词和场景描述来补充细节和深度,帮助观众更好地理解场景背景和角色心理,以弥补视觉上的不足。
2024-10-29
文字生成视频,时间没有限制且免费的软件有哪些?
以下是一些文字生成视频且时间没有限制且免费的软件: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,这是由 Stability AI 开源的 video model。 3. 剪映海外版 CapCut:每人每天可以免费生成五次,网址:https://www.capcut.com/editortools/aivideogenerator 。 更多相关工具和网站可以查看: 1. 2. AnimateLCMSVDxt:利用了 LCM 技术蒸馏的 SVD 模型,只需要四步就能生成不错的视频,网址:https://huggingface.co/wangfuyun/AnimateLCMSVDxt 。 内容由 AI 大模型生成,请仔细甄别。
2024-10-04
有没有什么没有道德限制的AI软件?
目前不存在没有道德限制的 AI 软件。 AI 是一种工具,其使用需要遵循道德规范。大型语言模型本身不具有真正的道德观念,但其开发者和研究人员会采取一系列措施使其输出符合社会道德和伦理标准,例如数据清洗、算法设计、制定道德和伦理准则、保持透明度、接受用户反馈、持续监控、人工干预以及对使用者进行教育和培训等。 同时,在 2018 年 6 月,有宣布了七项 AI 原则来指导相关工作,包括人工智能应该对社会有益、避免产生或加强不公平的偏见、被构建和测试以确保安全、对人负责、纳入隐私设计原则、坚持科学卓越的高标准、用于符合这些原则的用途等。并且明确了不会在造成或可能造成整体危害、便于对人造成伤害、违反国际公认规范的信息监视、违反广泛接受的国际法和人权原则这四个应用领域设计或部署人工智能。 总之,AI 的发展和应用必须在道德和法律的框架内进行,以确保其对人类社会产生积极的影响。
2024-10-01