直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

有没有关于大模型Lora技术的书籍或文章

回答

以下是一些关于大模型 LoRA 技术的书籍或文章推荐:

  • LoRA:Low-rank adaptation of large language models(2021):这项来自 Microsoft 的研究为在新数据上训练 LLM 提供了一种比微调更有效的替代方案。它现在已经成为社区微调的标准,特别是对于图像模型。
  • 同时提供了 LoRA 微调和全量参数微调代码,关于 LoRA 的详细介绍可以参考论文“LoRA:Low-Rank Adaptation of Large Language Models”以及微软 Github 仓库LoRA
  • 创作方面,在打造虚拟专家时,除了传统的全量训练和 freeze 冻结某些层方式以外,最近发展出了很多种高效的微调方法,其中包括 LoRA 技术。本篇主要采用 LoRA 方式,主要思路就是训练一个参数量较小的分支,然后再与底模合并,从而在模型中注入新的知识。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

进阶:a16z推荐进阶经典

[Retrieval-augmented generation for knowledge-intensive NLP tasks](https://arxiv.org/abs/2005.11401)(2020):由Facebook开发,RAG是通过信息检索提高LLM准确性的两个主要研究路径之一。([博客文章](https://ai.facebook.com/blog/retrieval-augmented-generation-streamlining-the-creation-of-intelligent-natural-language-processing-models/))[Improving language models by retrieving from trillions of tokens](https://arxiv.org/abs/2112.04426)(2021年):RETRO,即“检索增强型TRansfOrmers”,这是另一种由DeepMind提出的通过访问训练数据中未包含的信息来提高LLM准确性的方法。([博客文章](https://www.deepmind.com/blog/improving-language-models-by-retrieving-from-trillions-of-tokens))[LoRA:Low-rank adaptation of large language models](https://arxiv.org/abs/2106.09685)(2021):这项来自Microsoft的研究为在新数据上训练LLM提供了一种比微调更有效的替代方案。它现在已经成为社区微调的标准,特别是对于图像模型。

模型微调

同时提供了LoRA微调和全量参数微调代码,关于LoRA的详细介绍可以参考论文“[LoRA:Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)”以及微软Github仓库[LoRA](https://github.com/microsoft/LoRA)。

创作:基于百川大模型向微信群大佬们虚心学习

累积了足够的“专业”数据以后,我们就不满足于只采用prompt方式来提取信息,进而可以打造自己的虚拟助手了。目前有两种主流的实现方案,用向量数据库作为仓库,大模型整合信息输出;另一种直接微调训练自己的模型。(不过微调的算力要求比prompt要高很多)除了传统的全量训练和freeze冻结某些层方式以外,最近发展出了很多种高效的微调方法:1.LoRA:LORA:LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS2.Prefix Tuning:Prefix-Tuning:Optimizing Continuous Prompts for Generation,P-Tuning v2:Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks3.P-Tuning:GPT Understands,Too4.Prompt Tuning:The Power of Scale for Parameter-Efficient Prompt Tuning5.AdaLoRA:Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning6.(IA)3:Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning7.MultiTask Prompt Tuning:Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning本篇主要采用LoRA方式,主要思路就是训练一个参数量较小的分支,然后再与底模合并,从而在模型中注入新的知识。

其他人在问
lora是什么
Lora 全称 LowRank Adaptation Models,即低阶自适应模型。它的作用在于影响和微调画面,能够再现人物或物品的特征。大模型的训练通常复杂且对电脑配置要求高,而 LoRA 采用在原模型中插入新的数据处理层的方式,避免了修改原有模型参数。LORA 模型训练是用特定特征替换大模型中的对应元素,从而生成不同于底模的图片。Lora 训练较为轻量化,所需显存较少,硬件门槛显存达到 6G 即可开启训练。例如,有利用新版 SDXL 生成的如针线娃娃的 lora,还有如“KIDS ILLUSTRATION”这样用于生成儿童绘本风格插画的 lora 等。
2024-11-01
Lora模型训练数据集
以下是关于 Lora 模型训练数据集的相关内容: 创建数据集: 1. 进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset)。 2. 在数据集一栏中,点击右上角创建数据集,输入数据集名称。 3. 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片(之后可在 c 站使用自动打标功能),还可以一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。 4. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 5. 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,能预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。然后等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 用 SD 训练一套贴纸 LoRA 模型的工作流: 1. 原始形象:MJ 初步产出符合设计想法的贴纸原始形象。 2. 二次加工:完成贴纸的白色边线等细节加工。 3. 处理素材:给训练集图片打 tag,修改 tag。 4. 训练模型:将上述处理好的数据集做成训练集,进行训练。 用 SD 训练一套贴纸 LoRA 模型的原始形象:MJ 关键词: A drawing for a rabbit stickers,in the style of hallyu,screenshot,mori kei,duckcore plush doll art exaggerated poses,cry/happy/sad/...ar 3:4 niji 5 style cute s 180 。会得到不同风格的贴图,我们可以先看看自己喜欢哪一种。出图过程可以有意识地总结这一类贴图的特征,比如都是可爱的兔子,有不同的衣服和头饰,都有一双大大的卡通眼睛,会有不同的面部表情。 注意事项: 1. 关键词中限制了颜色,因此 MJ 生成的图片会一种情绪对应一种颜色,所以同一种情绪最好多生成几张不同色系的,可以减少后续训练中模型把情绪和颜色做挂钩(如果需要这样的话,也可以反其道而行之)。 2. 数据集中正面情绪与负面情绪最好比例差不多,如果都是正面积极的,在出一些负面情时(sad,cry)的时候,可能会出现奇怪的问题(如我们训练的是兔子形象,但 ai 认知的 sad 可能是人的形象,可能会出现人物特征)。 3. 如果训练 256266 大小的表情包,这样的素材就已经够用了。如果要训练更高像素的图片,则需要进一步使用 MJ 垫图和高清扩展功能。 高清化: 左(256)→右(1024),输入左图,加入内容描述,加入风格描述,挑选合适的,选出新 30 张图片(卡通二次元类型的 lora 训练集 30 张差不多,真人 60100 张)。
2024-10-22
Lora模型训练
以下是关于 Lora 模型训练的相关内容: 一、用 SD 训练一套贴纸 LoRA 模型的要点 1. 训练数据集准备:包括训练素材处理、图像预处理、打标优化。 2. 训练环境参数配置:选择本地或云端训练环境,进行训练环境配置和训练参数配置。 3. 模型训练:基于 kohyass 训练模型。 4. 模型测试:通过 XYZ plot 测试模型。 二、郑敏轩:Flux 的 Lora 模型训练 1. 所需模型下载:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意事项: 不使用时,模型放置位置不限,只要知道路径即可。 训练时,建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 2. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 三、100 基础训练大模型 1. 步骤一·创建数据集 进入厚德云模型训练数据集:https://portal.houdeyun.cn/sd/dataset 在数据集一栏中,点击右上角创建数据集,输入数据集名称。 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。 Zip 文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 2. 步骤二·Lora 训练 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 选择数据集,点击右侧箭头,选择上传过的数据集。 触发词可有可无,取决于数据集是否有触发词。 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 训练参数可调节重复次数与训练轮数,厚德云会自动计算训练步数,若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。 可按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后等待训练,会显示预览时间和进度条。 训练完成后会显示每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。
2024-10-22
文生图lora微调
以下是关于文生图 lora 微调的详细内容: 定主题:明确您需要生成的图片的主题、风格和要表达的信息。 选择基础模型 Checkpoint:根据主题选择内容贴近的 checkpoint,如麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等。 选择 lora:基于生成内容寻找重叠的 lora,以控制图片效果和质量,可参考广场上优秀帖子中使用的 lora。 ControlNet:可控制图片中特定图像,如人物姿态、生成特定文字或艺术化二维码等,属于高阶技能。 局部重绘:下篇再教。 设置 VAE:无脑选择 840000 即可。 Prompt 提示词:用英文写需求,使用单词和短语组合,不用管语法,单词、短语间用英文半角逗号隔开。 负向提示词 Negative Prompt:同样用英文写要避免的内容,单词和短语组合,用英文半角逗号隔开。 采样算法:一般选 DPM++ 2M Karras 较多,也可参考 checkpoint 详情页上模型作者推荐的采样器。 采样次数:选 DPM++ 2M Karras 时,采样次数通常在 30 40 之间。 尺寸:根据个人喜好和需求选择。 以下是一个简笔水彩风格插画的示例: 使用大模型“Flat 2D Animerge”,适合生成卡通动漫图片,官方建议 CFG 值在 5 或 6(使用动态阈值修复可拉到 11)。搭配两个 lora,“Chinese painting style”可增加中国画水彩风格效果,权重设为 0.4;“Crayon drawing”可添加简单线条和小孩子笔触,权重设为 0.8。将图片丢到标签器中反推关键词,发送到“文生图”。在正向提示词末尾添加这两个 lora,尺寸按参考图设置,重绘幅度开 0.5 让 AI 更自由发挥,若想更接近原图可降低数值。将图放入 ControlNet 中,选择 tile 模型,权重为 0.5,控制模式选择“更注重提示词”。
2024-10-05
使用人物Lora生成的图片中有多个人物时,怎么让人物的形象各不相同?
在 Stable Diffusion 中,若使用人物 Lora 生成的图片中有多个人物并想让人物形象各不相同,可参考以下方法: 1. 在提示词中输入数量词(如 2girls 或 3boys 等),再加上各自的描述提示词。若刷图成功率不高,可配合 openpose 控制,做一个多人骨架,以生成多人物构图。 2. 需使用不同的 Lora 来区分人物,但单纯靠提示词可能行不通。 3. 分区控制思路: Multidiffusion 的做法:启用 Tiled Diifusion,打开分区提示词控制,创建文生图画布。启用不同区域,分别填写背景、不同人物的描述词和 Lora。增加 controlnet 的 openpose 控制来稳定人物,但可能存在分区生成的人物连续性低、lora 控制不强等问题。 Latent Couple 的做法(文中未提及,需进一步探索)。 此外,关于 Lora 模型: 1. Lora 可以固定照片的特征,如人物特征、动作特征和照片风格。 2. 点击“生成”下面的第三个按钮,找到 Lora 选项,可添加下载保存到电脑的 Lora 模型,Lora 可叠加使用,但新手不建议使用太多,且 Lora 之间用英文逗号隔开,每个 Lora 后面的数字用于调整权重,一般只会降低权重。选择 Lora 应根据最初想要生成的照片类型决定。
2024-09-27
AI 增量训练 Lora
以下是关于 AI 增量训练 Lora 的相关知识: 参数理解: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。理论上讲,图片精细度越高,学习步数越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮为一次循环,循环次数一般在 10 20 之间。次数并非越多越好,过多会导致过拟合,即画什么都和样图一样。 3. 效率设置:主要控制电脑的训练速度。可保持默认值,也可根据电脑显存微调,但要避免显存过载。 总的训练步数为:图片张数×学习步数×循环次数。 此外,沃尔夫勒姆提到人工智能是基于机器学习(通常通过神经网络实现),根据给出的示例进行增量训练,且这些示例包括大量人类生成的科学文本等,或者关于世界上发生的事情的实际经验。
2024-09-13
入门大模型的简要学习书籍清单
以下是为您推荐的入门大模型的简要学习书籍清单: 1. 《大模型入门指南》: 通俗解释了大模型,即通过输入大量语料让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 用上学参加工作类比大模型的训练和使用过程,包括找学校(训练所需的大量计算和 GPU)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 介绍了 Token 作为模型处理和生成的文本单位,以及其在数字化和形成词汇表中的作用。 2. 《从 0 到 1 了解大模型安全,看这篇就够了》: 介绍了不同类型的模型架构,如 encoderonly 适用于自然语言理解任务,encoderdecoder 用于理解和生成内容,decoderonly 更擅长自然语言生成任务。 指出目前大型语言模型多为只使用 Decoder 的 Decoderonly 架构,其预训练数据量大,参数多。 提到了大模型在安全性方面的差别。 3. 《走入 AI 的世界》: 以 GPT3 为例,说明了预训练阶段大模型学习的内容和数量,如使用了 4990 亿 token 的数据集,相当于 86 万本《西游记》。 介绍了 Transformer 模型,这是一种处理文本内容的经典架构,不清楚其具体细节不影响使用大模型,感兴趣可通过相关链接深入了解。
2024-10-28
我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用
以下是为您编写关于生成式人工智能书籍提供的大纲框架建议: 一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。 二、基础概念 1. 什么是生成式人工智能(AIGC) 定义和特点 与传统人工智能的区别 2. 相关技术名词 AI(人工智能) 机器学习(包括监督学习、无监督学习、强化学习) 深度学习(神经网络、神经元) 生成式 AI(可生成文本、图片、音频、视频等内容形式) LLM(大语言模型) 三、AIGC 的应用领域 1. 文字生成(如使用大型语言模型生成文章、故事、对话等) 2. 图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等) 3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等) 四、AIGC 与其他内容生成方式的关系 1. AIGC 与 UGC(用户生成内容) 区别与联系 各自的优势和适用场景 2. AIGC 与 PGC(专业生成内容) 区别与联系 相互的影响和融合 五、技术原理 1. Transformer 模型 自注意力机制 处理序列数据的优势 2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文) 六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。 七、挑战与展望 1. 面临的挑战(如数据隐私、伦理问题等) 2. 未来发展趋势和前景 八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。 各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。
2024-10-23
那款AI更适合写书籍读后感
以下是关于适合写书籍读后感的 AI 的相关信息: 在书籍推荐方面,有三本神经科学书籍值得关注: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):这是世界权威的认知神经科学教材,系统涵盖了认知神经科学的诸多方面,包括发展历史、细胞机制与认知、神经解剖与发展等。 2. 《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz):能让您系统了解神经元的细胞和分子生物学、突触传递等内容。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):是神经生物学领域的世界级名著,涵盖了神经科学的各个方面。 在利用 AI 写书籍读后感的提示词方面,您可以参考以下方法: 1. 明确不同类型书籍的阅读和记忆方法,总结共性方法论。 2. 了解阅读和记忆的思维模型和小技巧。 3. 掌握选择自己“一定看得下去”的书籍的方法,通过目录大纲确定核心内容。 4. 确定一本书的阅读次数和顺序。 5. 决定读书过程中是否做笔记以及何时做大纲。 6. 思考如何教刚毕业的孩子有效读书。 根据上述问题的清晰答案,可以设计不同用途的 Prompt,如“书籍阅读助手”“催我读书”等,并根据不同类型的书籍进行测试和优化。如果侧重知识内化,要重点研究读书效率和信息转化,注重结构化信息能力和有效的记忆存储与调取。
2024-10-13
推荐一些学习AI的书籍
以下是为您推荐的学习 AI 的书籍: 神经科学相关: 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,系统涵盖认知神经科学的诸多方面。 《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz):让您系统了解神经元的细胞和分子生物学等内容。 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的世界级名著,涵盖神经科学的方方面面。 Python 与 AI 相关: Python 方面:《Python 学习手册》《Python 编程》。 AI 方面:《人类简史》《深度学习实战》。 此外,对于初学者,还可以考虑微软的相关课程,例如: 特定的机器学习云框架:如《》。 对话式人工智能和聊天机器人:《》。 深度学习背后的深层数学(Deep Mathematics):Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》(Deep Learning),该书可在 https://www.deeplearningbook.org/ 上获取。
2024-10-02
推荐一本适合纯新手小白看的ai书籍
以下是为纯新手小白推荐的 AI 相关书籍: 在 Python 方面: 《Python 学习手册》:名声在外。 《Python 编程》:对新手友好。 在 AI 方面: 《人类简史》:其中“认知革命”的相关章节令人获益匪浅。 《深度学习实战》:按脉络梳理了 ChatGPT 爆发前的 AI 信息与实践。 此外,还有以下相关资源: 课程:推荐 B 站 up 主“PAPAYA 电脑教室”的 Python 入门课,完全免费。 地址:https://space.bilibili.com/402780815/channel/seriesdetail?sid=2762019 对于大模型,Andrej Karpathy 的讲解很不错,其相关地址: 油管:https://www.youtube.com/watch?v=zjkBMFhNj_g B 站:https://www.bilibili.com/video/BV1AU421o7ob 资料库:推荐 AJ 和众多小伙伴们共创的“🌈通往 AGI 之路(一个飞书文档)”,这是当下最全的中文 AI 资料库,免费、开源、共创,包含了几乎所有有价值的文档、文章、资料、资讯,并永远是第一时间更新。 地址:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e 另外,还有“陈财猫:推荐书单了解各个领域的知识,并在恰当的时候调用它们”中提到的相关书籍: 计算机方面: file:智慧的疆界从图灵机到人工智能.epub file:白话机器学习的数学(图灵图书).epub 课程:【李宏毅 2021/2022 春机器学习课程哔哩哔哩】https://b23.tv/KhwgLna 【【授权】李宏毅 2023 春机器学习课程哔哩哔哩】https://b23.tv/2ocUNn0 https://www.lanqiao.cn/mobile/courses/1330 人工智能方面: file:人工智能(第 4 版)现代方法.epub
2024-09-30
帮忙推荐AI优秀的书籍,让我们快速入门
以下是为您推荐的能够帮助您快速入门 AI 的优秀书籍: 《陈财猫:推荐书单了解各个领域的知识,并在恰当的时候调用它们》:这是一个涵盖多个学科的书单,包括心理学、人工智能、经济学、社会学、生态学、哲学、设计学等 13 个学科。其特点包括权威准确,多为大学教材或导论书籍,不乏经典大师之作;有框架成体系,能通过阅读构建起完整知识框架;好读,适合初学者,即使对该领域没有了解也能看懂并入门。 《写给不会代码的你:20 分钟上手 Python + AI》: Python 方面:推荐《Python 学习手册》,名声在外;《Python 编程》,对新手友好。 AI 方面:推荐《人类简史》,其中“认知革命”的相关章节令人获益匪浅;《深度学习实战》,按脉络梳理了 ChatGPT 爆发前的 AI 信息与实践。
2024-09-17
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16
什么工具/模型/API 可以根据宠物照片生成数字宠物 可以有简单的活动。
以下是一个可以根据宠物照片生成数字宠物并具有简单活动的工具/模型/API: 出门问问 Mobvoi 的照片数字人工作流及语音合成(TTS)API。 出门问问是一家以生成式 AI 和语音交互为核心的人工智能公司,为全球多个国家提供面向创作者的 AIGC 工具、AI 政企服务,以及 AI 智能硬件。致力于打造国际领先的通用大模型,通过 AI 技术、产品及商业化三位一体发展,致力成为全球 AI CoPilot 的引领者。 在 ComfyUI 全球领导力峰会上,特意搭建了数字人 workflow(照片数字人驱动),仅需上传一张照片,输入一段文字或者上传一段音频,就可以生成短视频让“照片开口说话”。本次活动特意提供了免费 api 额度及操作指南给大家进行体验。以下是一些不同风格的照片驱动效果展示:
2024-11-16
大模型微调
大模型微调是在较小的、特定领域的数据集上继续大模型的训练过程,具有重要意义和多种方式: 意义: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中表现更好,但可能会失去一些通用性。 提高模型效率:实现更低的延迟和成本,可通过专门化模型使用更小的模型,以及舍弃示例或指令来改善。 方式: 从参数规模的角度,分为全量微调 FFT(Full Fine Tuning)和 PEFT(ParameterEfficient Fine Tuning)。全量微调是对全量的模型参数进行全量的训练,而 PEFT 只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 对于 Llama3 的微调,需要下载数据集,如可参考文档: 。有了数据集后,将其上传到服务器,编写并执行微调代码,大概 15 分钟左右可完成微调。 此外,通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。大模型的训练、使用过程可类比上学参加工作:找学校(需要大量 GPU 进行训练)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(即微调)、搬砖(推导)。在 LLM 中,Token 被视为模型处理和生成的文本单位,会对输入进行分词并数字化形成词汇表。 OpenAI 官方微调教程:
2024-11-16
什么是大模型
大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,会被数字化形成词汇表,便于计算机处理。为让计算机理解 Token 之间的联系,还需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”指用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数。 所谓的大模型,简而言之就是拥有庞大参数数量的模型,通过处理和理解海量数据,能够胜任一系列复杂的任务。大模型强大的原因在于庞大的参数数量和大量的数据,参数帮助模型更深入地理解和生成数据,大量数据是学习的基础,使其能掌握丰富的知识和技能。
2024-11-16
混元大模型
腾讯混元大模型(HunyuanLarge)是全球最大的 MoE 开源模型,具有以下特点: 拥有 3890 亿参数,其中活跃参数为 520 亿。 具备强大的长文本处理和常识推理能力,支持 256K 上下文窗口。 通过数据增强,使用合成数据提升对未见内容的理解。 详细介绍: 模型下载: 技术报告:
2024-11-15
整合多家大预言模型的工具
以下为整合多家大语言模型的工具介绍: 1. Poe: 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验,但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性。 支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导能够启发用户,支持 Explore Chatbot,但丰富度不如后续要介绍的 Character,midjourney prompt 扩写 Chatbot 能力很惊人。 2. Ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 下载安装地址:https://ollama.com/download/ ,安装完后,在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。 3. 未来还会不断丰富大模型的外延能力,例如知识库检索、计算工具、WolframAlpha、操作软件等。首先集成了 LangChain 框架,可更方便地基于 Llama2 开发文档检索、问答机器人和智能体应用等。针对 LangChain 框架封装的 Llama2 LLM 类见,简单的调用代码示例如下。
2024-11-15
有没有用Stata的最小二乘法处理相关的AI
目前在 AI 领域中,较少直接将 Stata 的最小二乘法与 AI 进行特定的结合应用。Stata 的最小二乘法主要用于传统的统计分析,而在 AI 中,更多采用的是基于机器学习和深度学习的算法和模型。但如果您是在处理某些与数据相关的任务,最小二乘法的原理和思路在一定程度上可能对您理解和设计 AI 中的数据处理方法有所帮助。
2024-11-16
有没有自动AI样机的工具 mockup
目前在 AI 领域,暂时没有特别知名的专门用于生成自动 AI 样机的工具 mockup。但随着技术的不断发展,未来可能会出现相关的创新工具。您可以持续关注 AI 技术的最新动态,以获取相关信息。
2024-11-16
有没有帮研究生查看课题,整理论文的ai
在研究生查看课题和整理论文方面,AI 技术提供了多种辅助工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化,协助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 对于医学课题需要 AI 给出修改意见,您可以考虑以下专业工具: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含多个分析板块。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 使用这些工具时,要结合自身写作风格和需求,选择最适合的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-16
有没有可以免费设计包装的AI
以下是一些可以免费设计包装的 AI 工具: 1. Canva(可画):https://www.canva.cn/ ,是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户通过简单拖放操作创建海报,其 AI 功能可帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ ,稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ ,简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ ,通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能。 此外,以下是一些生成 Logo 的 AI 产品,也可能对包装设计有一定帮助: 1. Looka:是一个在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个 Logo 设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,提供 Logo 设计服务,通过回答系列问题生成 Logo 选项。 3. Designhill:Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户选择元素和风格,AI 生成设计方案。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,利用 AI 辅助设计建议创建品牌标识。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成 Logo 设计方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术创建个性化 Logo。 您可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:
2024-11-15
有没有模仿语音的(国内的)
以下是一些国内模仿语音的工具: 出门问问的魔音工坊,可以使用情绪调节控件。 需要说明的是,对于国内的语音模仿工具,目前了解和使用经验相对有限。
2024-11-14
有没有模仿语音的
以下是一些能够模仿语音的相关信息: 人工智能音频初创公司: :为所有人提供开放的语音技术。 :基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 :基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 :使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 :为出版商和创作者开发最具吸引力的 AI 语音软件。 :Wondercraft 使用户能够使用文本转语音技术生成播客。 :基于生成机器学习模型构建内容创作的未来。 :从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 :演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。 VALLEX:一个开源的多语言文本到语音合成与语音克隆模型。和 19 年百度地图发布的语音定制功能使用的 meitron 模型很像。用户在百度地图 App 上录制 20 句话、20 分钟左右即可生成个人完整语音包。该模型支持多种语言(英语、中文和日语)和零样本语音克隆,只需提供一个人短短几秒钟的录音(3 10 秒),就能模仿出那个人的声音。此外,它还具有语音情感控制和口音控制等高级功能。VALLE X 模型具有多语言 TTS(文本到语音合成)、零样本语音克隆等显著功能特点。 ElevenLabs 推出全自动化的 AI 配音或视频翻译工具。只需上传视频或者粘贴视频链接,就能全自动在几十秒到几分钟内将视频翻译成 29 种语言,还能直接克隆原视频里面的声音来配音。另外,有群友测试豆包的音色模仿,读大概 20 个字的句子,5 秒就可以生成非常像的音色,之后可用自己的声音读生成的文字内容,声音音色的模仿非常像。
2024-11-14