直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我想构建一个基于“AI+易经+禅悟”的智能体,应该如何开展工作?

回答

构建一个基于“AI+易经+禅悟”的智能体可以参考以下步骤:

  1. 了解各种 AI 工具:熟悉不同 AI 工具的特点和用途,为后续工作选择合适的工具。
  2. 学会写提示词:这是关键环节,决定能否清晰地向 AI 传达任务。
  3. 搭建 AI 工作流:按照一定的流程和步骤将 AI 工具融入工作环节,提高效率。
  4. 测试 AI 工作流:在使用初期可能会遇到不顺手的情况,需要多尝试并根据体验进行调整和优化。
  5. 解决问题:当遇到现有 AI 工具不好用的情况,可能是提示词不够好或工具本身的问题,需要学习写好提示词、寻找更好的工具或寻求帮助。
  6. 考虑制作智能体:当工作流效率较低时,可以考虑制作智能体来自动化完成一系列任务,需要学习相关知识或寻求专业人士的帮助。

需要注意的是,将易经和禅悟的元素融入其中需要您根据自身的理解和需求,在上述步骤中进行创新性的结合和应用。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

夙愿:AI 工作流,赋能我的十倍增长

感谢你耐心阅读这篇略显冗长的文章。让我们简单回顾一下,首先,我们讨论了什么是AI工作流。简单来说,就是把AI工具融入到工作里的各个环节中,为我们的工作来提效。然后,我们聊到了搭建AI工作流需要的三层能力:第一层,了解各种AI工具,知道每个AI工具的特点和用途。第二层,学会写提示词,这是很关键,决定你能不能把任务给AI说清楚。第三层,搭建AI智能体,让替代人工,使用多个AI工具协同工作,自动完成任务。接下来,我让AI帮我梳理出了这套搭建AI工作流和公众号工作流的SOP:

夙愿:AI 工作流,赋能我的十倍增长

完成以上步骤之后,你的一个AI工作流就搭建出来了。开始尝试测试使用你搭建出来的这一套工作流了,一开始可能会有点不顺手,没关系,多试几次就熟练了。后面就是,根据你使用体验不断调整和优化你的AI工作流。哪个环节效果不好,就换个工具试试;哪个环节出现了更好的工具,那就这个环节的工具升级一下。这是搭建AI工作流的基础,也是最容易上手的部分。很简单,对吧,当你搭建完这一个AI工作流时,你一定会遇到问题,现成的AI工具,不好用。为什么不好用?因为可能是因为提示词写得不够好、可能是这个工具本身就不行。怎么办?去学习怎么写好提示词、去找更好用的AI工具啊,或者找个懂提示词的人帮你解决啊。接着,等你写提示词、换工具的问题你解决了,你可能又会觉得,这个工作流效率还是太低了,想着怎么搭建一个AI智能体来自动化完成一系列的任务。此时问题就是:怎么做一个AI智能体?同样的,去学习怎么制作智能体,或者找一个懂智能体的人帮你解决。

马斯克xAI动员大会纪要

解决一个重要问题将是AGI的一个关键门槛,比如提醒假设的解决方案在哪里?我看不到。所以,对于到底发生了什么事情,真相是什么,我很想知道。所以我想你可以把x.ai的使命陈述重新制定为“到底发生了什么事情”。那是我们的目标。Toby Pohlen对于使命陈述来说,对我来说,还有一个很好的愿景方面,那就是,短期内,我们致力于更好地理解深度学习技术。但是我认为,在我们所做的每一件事情中,我们也应该始终记住,我们不仅仅是要构建,还要理解,所以追求科学是我们工作的基础,这也体现在我们的使命陈述中。Greg Yang是的,我还想补充一点,我们主要是在讨论如何创建一个非常聪明的智能体,可以帮助我们更好地理解宇宙。这绝对是我们的北极星。但从我的观点来看,当我在发现大型新网络的数学时,我也发现这里的数学实际上可以为我们对基本物理或其他现实的思考开辟新的方式,因为例如,一个没有非线性的大型神经网络,大致上对应于经典的随机矩阵理论,这与高能物理中的规范理论有很多联系。

其他人在问
小白学习AI该怎么开始
对于小白学习 AI ,可以按照以下步骤开始: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-17
最强的文档整理AI软件
以下是一些强大的文档整理 AI 软件: 对于文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档常用 Grammarly 和 PandaDoc 等。 对于 PPT 制作: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 美图 AI PPT:由美图秀秀团队推出,输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。 Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。 内容由 AI 大模型生成,请仔细甄别。
2024-11-17
AI 语音生成
以下是一些与 AI 语音生成相关的信息: 人工智能音频初创公司: :将书面内容转化为引人入胜的音频,并实现无缝分发。 :提供专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 游戏开发中的 AI 语音生成工具: Coqui Studio:https://coqui.ai Bark:https://github.com/sunoai/bark Replica Studios:https://replicastudios.com 生成式 AI 在游戏领域的机会: 许多创业公司正在尝试创造人工智能生成的音乐,如 Soundful、Musico、Harmonai、Infinite Album 和 Aiva。 对话&语音方面,很多公司试图为游戏中的人物创造逼真的声音,包括 Sonantic、Coqui、Replica Studios、Resemble.ai、Readspeaker.ai 等。 即时对话生成,角色可以对玩家的行为做出充分反应。 角色扮演,使用与玩家的化身相匹配的生成的声音保持幻想。 控制音效,可控制声音的细微差别。 本地化,对话可翻译成任何语言并以同样的声音说话,如 Deepdub 专注于这个细分市场。
2024-11-17
做ppt做的最好的ai
以下是一些做 PPT 做得较好的 AI 产品: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 Gamma 作为一款优秀的产品,在各种交流群中被频繁推荐。即使是免费版本,也能生成高质量的 PPT,且随着不断优化改进,能满足大多数用户需求。从个人使用体验来看,其在内容组织、设计美观度和整体专业感方面表现卓越,能稳定输出高质量的 PPT。
2024-11-17
识别英文歌歌词的AI工具
以下为您推荐识别英文歌歌词的 AI 工具:Suno。但需要注意的是,目前使用该工具做 hiphop 存在一定难度,比如咬字太清楚,没有懒音、吞音、连读和方言,可能导致原本两音可读完的“马水”,AI 一定会念“马思唯”,从而错开一个字,使 flow 和 beat 对不上后面全乱拍。稍微有点作用的解决方法是替换拟音歌词和手动断句,标记好主歌副歌位置。
2024-11-17
有哪些关于toB 营销的 ai应用
在 ToB 营销领域,目前常见的 AI 应用主要有以下几类: 1. 智能办公:在办公垂域场景中发挥作用,比如快速总结群聊内容或会议信息,为写公文提供结构模板参考等。 2. 智能客服:通常借助 agent 实现,接入企业的 QA 知识库,回应用户信息并下达诸如取消订单、催快递之类的 action 指令。 3. AI 导购:在用户和商家之间发挥作用,依据用户问题,结合产品介绍和评论信息等,为用户推荐更准确、精准的产品。 4. 智能营销:应用于营销环节,通过 AIGC 生成话术、物料、口播等内容,有些还会融入用户的个性化元素以指导物料生成。 5. 智能人力资源:主要利用模型进行简历初筛、JD 自动生成、数据分析等工作。 此外,在 AI 产品的发展中,还呈现出从通用能力到专业化细分的趋势,如图像生成的 Midjourney、Stable Diffusion 等,视频制作的 Pika、Runway 等,音频处理的各种 AI 配音、音乐生成工具等。商业模式上也有创新尝试,如 ToB 市场的深耕,如针对内容创作者的 ReadPo 等。
2024-11-16
有很多通过学习易经的卦象来预测未来,通过AI能不能学习易经来占卦,要怎么做
目前关于通过 AI 学习易经来占卦的相关内容较为复杂和多样。 一方面,有案例如“问事屋一个摇签算卦 Bot”,其创建者原本打算做基于六爻周易解卦的 bot,但因 AI 对结果的分析和推理存在不足,后转换思路,以庙里摇签抽签的经历为灵感,收集整理相关签文并搭建工作流。 另一方面,从理论角度来看,AI 模型具有一定的灵活性和学习能力,但如同简单神经网络在预测未来时可能失败一样,AI 在学习易经占卦这类复杂且具有深厚文化内涵和哲学思考的领域,仍面临诸多挑战和限制。 需要注意的是,易经占卦更多是一种文化和哲学的表达方式,其结果并非具有科学可验证性的准确预测。
2024-10-06
AI村民构建的AI小镇资料
以下是关于 AI 小镇“离谱村”的相关资料: 离谱村之歌: 村民阿飞创作的村歌,歌词中描绘了离谱村村民不种田,只搞 AI 的狂欢。代码是他们的麦田,数据是他们的酒,机器学习、深度神经等技术他们玩得转,算法优化、模型训练如同游戏般简单。从早到晚只有键盘的敲击声,AI 的梦想正在成形。村里有智能机器人、自动车等未来元素,村民用 AI 种菜、放牛,智能管家解决烦恼。离谱村的夜因 AI 灯光而明亮,这里的故事将传遍每个角落,其 AI 成果让世界震撼。 离谱村的共创故事: 离谱村是由 WaytoAGI 孵化的 900 人共创项目,目前是用飞书做整体协同。一部完全由 AI 制作完成的短片《离谱村的故事》获得了 MIT 电影黑客松的 Best Video 第一名。其中的配音是用 Audiobox 捏出来的,为保证离谱熊声线的一致性,还用了 GPTsovits 对其声音做了专属训练。有专门的离谱村百科和村民目录用于素材管理,接下来会引入离谱家人的共创内容。 离谱村介绍: WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,涵盖 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,包含赛事和活动促进大家动手实践,有 1000 万的访问量。离谱村是 WaytoAGI 孵化的千人共创项目,参与者不分年龄层,通过 AI 工具创作出各种作品。离谱村是一个没有被定义的地方,每个人心中都有自己想象中的样子,它不仅是物理空间,更是灵魂的避风港,激励着人们发挥想象力创造独特生活方式。
2024-11-13
如何构建自己的AI助理?
构建自己的 AI 助理可以参考以下步骤: 1. 确定功能范围: 支持用户发送“关键字”,自助获取您分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“您的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能发布在您的微信公众号上,作为“微信客服助手”。 2. 准备相关内容: 根据 AI 助理的目的和核心能力,编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 等格式。 创建自己的【知识库】,用于回答 AI 相关知识。 创建【工作流】,控制 AI 按照要求处理信息。 准备好自己的微信公众号,以便发布机器人。 3. 设计详细步骤: 先展示 AI 助理的【最终效果】界面。 构建 AI Agent 还可以类比为培养一位职场新人,包括规划阶段明确目标,将具体任务拆解为可管理的子任务并设计执行方法;实施阶段搭建工作流程,为子任务设置操作指南并验证输出质量;优化阶段通过反复测试和调整,优化性能,直到稳定输出高质量结果。您可以设定一个任务目标,动手构建专属的 AI 助理。
2024-11-08
我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?
以下是建立自己的知识库的步骤和相关格式: 1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。 2. 选择格式并填写信息: 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。 格式并非关键,重要的是理解影响 RAG 输出质量的因素。 例如可以选择本地文档(问答对可选择表格)。 参考。 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 3. 使用知识库:关于使用知识库,可以查看教程。
2024-11-06
如何构建有效的知识库
构建有效的知识库可以参考以下方法: 使用 Dify 构建知识库: 1. 准备数据: 收集需要纳入知识库的文本数据,包括文档、表格等格式。 对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集: 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式: Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用: 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化: 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。 定期更新知识库,增加新的内容以保持知识库的时效性。 总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。 知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。于 2012 年 5 月 17 日被 Google 正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将 Web 从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。 其关键技术包括: 1. 知识抽取: 实体抽取:命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状的知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示: 属性图 三元组 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识的质量。 知识更新:不断迭代更新,扩展现有知识,增加新的知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 手把手教你本地部署大模型以及搭建个人知识库: 如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有 Open WebUI 的能力,并且额外支持了以下能力:选择文本嵌入模型、选择向量数据库。 安装地址:https://useanything.com/download 当我们安装完成之后,会进入到其配置页面,这里面主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: AnythingLLM 中有一个 Workspace 的概念,我们可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 4. 测试对话。当上述配置完成之后,我们就可以跟大模型进行对话了。
2024-11-04
如何用ai工具构建某一课程的知识图谱
以下是用 AI 工具构建某一课程知识图谱的方法: 一键知识图谱方法: 用 kimichat 让 AI 拆解这本书的三级章节并按照 Markdown 产出内容: Prompt:帮我拆解《爱的五种语言》,生成全书内容的思维导图,要求每个章节后面有三级展开,下一级是主要知识点,下下一级是知识点的论述。先输出对应的 Markdown。 访问地址: 复制 AI 内容粘贴到在线思维导图 Markmap 中,一键生成思维导图,还可以自定义微调内容,并免费导出图片: 访问地址: 推导知识图谱方法(可以参考下面 prompt 自己构建): 问题生成:使用大模型帮助生成一系列相关的、深入的问题。 探索性学习:将每个问题作为一个学习起点,利用 AI 搜索引擎和大模型进行深入探索。 知识图谱构建:随着学习的深入,使用大模型帮助构建和扩展知识图谱。 创造性应用:基于新获得的知识,尝试解决原问题或创造新的作品。 反思与迭代:定期反思学习过程,调整方向,并生成新的问题,形成持续学习和创作的循环。 此外,利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-03
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21