Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想构建一个基于“AI+易经+禅悟”的智能体,应该如何开展工作?

Answer

构建一个基于“AI+易经+禅悟”的智能体可以参考以下步骤:

  1. 了解各种 AI 工具:熟悉不同 AI 工具的特点和用途,为后续工作选择合适的工具。
  2. 学会写提示词:这是关键环节,决定能否清晰地向 AI 传达任务。
  3. 搭建 AI 工作流:按照一定的流程和步骤将 AI 工具融入工作环节,提高效率。
  4. 测试 AI 工作流:在使用初期可能会遇到不顺手的情况,需要多尝试并根据体验进行调整和优化。
  5. 解决问题:当遇到现有 AI 工具不好用的情况,可能是提示词不够好或工具本身的问题,需要学习写好提示词、寻找更好的工具或寻求帮助。
  6. 考虑制作智能体:当工作流效率较低时,可以考虑制作智能体来自动化完成一系列任务,需要学习相关知识或寻求专业人士的帮助。

需要注意的是,将易经和禅悟的元素融入其中需要您根据自身的理解和需求,在上述步骤中进行创新性的结合和应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

夙愿:AI 工作流,赋能我的十倍增长

感谢你耐心阅读这篇略显冗长的文章。让我们简单回顾一下,首先,我们讨论了什么是AI工作流。简单来说,就是把AI工具融入到工作里的各个环节中,为我们的工作来提效。然后,我们聊到了搭建AI工作流需要的三层能力:第一层,了解各种AI工具,知道每个AI工具的特点和用途。第二层,学会写提示词,这是很关键,决定你能不能把任务给AI说清楚。第三层,搭建AI智能体,让替代人工,使用多个AI工具协同工作,自动完成任务。接下来,我让AI帮我梳理出了这套搭建AI工作流和公众号工作流的SOP:

夙愿:AI 工作流,赋能我的十倍增长

完成以上步骤之后,你的一个AI工作流就搭建出来了。开始尝试测试使用你搭建出来的这一套工作流了,一开始可能会有点不顺手,没关系,多试几次就熟练了。后面就是,根据你使用体验不断调整和优化你的AI工作流。哪个环节效果不好,就换个工具试试;哪个环节出现了更好的工具,那就这个环节的工具升级一下。这是搭建AI工作流的基础,也是最容易上手的部分。很简单,对吧,当你搭建完这一个AI工作流时,你一定会遇到问题,现成的AI工具,不好用。为什么不好用?因为可能是因为提示词写得不够好、可能是这个工具本身就不行。怎么办?去学习怎么写好提示词、去找更好用的AI工具啊,或者找个懂提示词的人帮你解决啊。接着,等你写提示词、换工具的问题你解决了,你可能又会觉得,这个工作流效率还是太低了,想着怎么搭建一个AI智能体来自动化完成一系列的任务。此时问题就是:怎么做一个AI智能体?同样的,去学习怎么制作智能体,或者找一个懂智能体的人帮你解决。

马斯克xAI动员大会纪要

解决一个重要问题将是AGI的一个关键门槛,比如提醒假设的解决方案在哪里?我看不到。所以,对于到底发生了什么事情,真相是什么,我很想知道。所以我想你可以把x.ai的使命陈述重新制定为“到底发生了什么事情”。那是我们的目标。Toby Pohlen对于使命陈述来说,对我来说,还有一个很好的愿景方面,那就是,短期内,我们致力于更好地理解深度学习技术。但是我认为,在我们所做的每一件事情中,我们也应该始终记住,我们不仅仅是要构建,还要理解,所以追求科学是我们工作的基础,这也体现在我们的使命陈述中。Greg Yang是的,我还想补充一点,我们主要是在讨论如何创建一个非常聪明的智能体,可以帮助我们更好地理解宇宙。这绝对是我们的北极星。但从我的观点来看,当我在发现大型新网络的数学时,我也发现这里的数学实际上可以为我们对基本物理或其他现实的思考开辟新的方式,因为例如,一个没有非线性的大型神经网络,大致上对应于经典的随机矩阵理论,这与高能物理中的规范理论有很多联系。

Others are asking
AI绘画课程
以下为您推荐的 AI 绘画课程: 【野菩萨】课程: 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:参与 video battle,获胜者可获得课程奖励,包括冠军 4980 课程一份、亚军 3980 课程一份、季军 1980 课程一份,入围奖励 598 野神殿门票一张。 扫码添加菩萨老师助理,了解更多课程信息。 【Stable Diffusion 零基础入门宝典】课程: 作者从事平面设计行业,基于对 Stable Diffusion 的学习和研究,开发了这套课程。 课程初衷是为刚入门或想了解 SD 的小伙伴做全面梳理,因为新人面对众多内容往往不知所措。 课程特色暂未提及。 SD 新手视频教程: 章节教学视频: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教你玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet!
2025-02-17
AI相关的舆情分析或信息订阅产品
以下是一些与 AI 相关的舆情分析或信息订阅产品: 腾讯研究院开发的系列产品: AI 每日速递:高度凝练的日报产品,帮助读者在 35 分钟内快速掌握 AI 领域当日十大关键进展。 AI 每周 50 关键词:周报产品,基于 AI 速递内容构建,通过梳理一周热点关键词并制作可交互索引,为研究者提供便捷的“检索增强”工具。 科技九宫格:以 35 分钟视频形式解读科技热点与关键技术原理的短视频栏目,通过可视化呈现促进读者对前沿技术的理解与讨论。 此外,团队还开展了 AGI 专题分析、AGI 线上圆桌、AI&Society 高端研讨会与 AI&Society 百人百问等系列研究探讨。 个人订阅的 AI 信息源: 包括公众号、Telegram、微博、即刻等平台。 推荐的 Telegram 频道:黑洞资源笔记、科技新闻投稿、AI 探索指南、ChatGPT 新闻聚合、ChatGPT 精选、极客分享、开源社区、深度技术资源、AI News、AI Copilot、GIthub 仓库推荐等。 公众号“卡尔的 AI 沃茨”也会有一些 AIGC 周报等。 一种通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答的方式: 利用 wewerss,建议使用 Docker。浏览器打开 http://127.0.0.1:4000 或 http://wewerss 服务的 IP:端口(为上面设置的外部端口)。 点开后输入 Dash 管理页面密码,先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号。 然后在公众号源上,点添加,将想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章,但建议不要短时间订阅太多公众号(最好不超 40 个)。在本地 data/目录会生成一个 SQLite 数据库文件 wewerss.db。
2025-02-17
我该怎么学习ai?帮我组织一个流程,能很好的利用你的资源。
以下是为您组织的学习 AI 的流程: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等方面。您可以根据自己的兴趣选择特定的模块进行深入学习,同时一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库中也有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 另外,费曼学习法也是一种有效的学习方式。它强调通过教授他人来深化个人理解和知识的掌握,基本步骤包括选择一个概念、教给他人、回顾和简化、组织和比较。其应用场景包括个人学习、教学和培训、知识分享等。 WaytoAGI(通往 AGI 之路)是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯,还有丰富的学习资源、实践活动,并倡导开放共享的知识体系。在没有任何推广的情况下,WaytoAGI 一年时间已有超过 100 万用户和超千万次的访问量,目前合作过众多公司和产品。
2025-02-17
人力AI产品
以下是关于人力 AI 产品的相关信息: AI Native 硬件: AI Pin:由 Humane 公司开发的可穿戴设备,通过激光投影技术在手掌显示信息,由高通 Snapdragon 芯片驱动,运行 OpenAI 的 GPT4 语言模型,集成麦克风、摄像头和传感器,能语音通话、上网和回答问题,注重隐私保护,配备“信任灯”功能,但价格高昂且面临市场竞争。 TAB AI:挂在脖子上的小冰盘,本质是麦克风和电池,使用蓝牙传输音频到手机和云端,ChatGPT 在云端转录对话,各种人工智能模型提取见解,是人工智能伴侣。 OpenAI 和 Lovefrom 在软银 10 亿美元融资开发的备受期待的“人工智能 iPhone”。 AI 面试官相关产品: 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、招聘全环节集成解决方案、先进防作弊技术和严密数据安全保障,能完成面试、初筛和自动发送面试邀约。 海纳 AI 面试:通过在线方式自动面试、评估,精准度高达 98%,面试效率提升 5 倍以上,候选人到面率提升。 InterviewAI:在线平台,提供面试问题和 AI 生成的推荐答案,候选人用麦克风回答,每个问题最多回答三次,会收到评估、建议和得分。 AIPM 技能树: 传统软件/互联网 PM 面对 AI 产品时,AI PM 作为更专业化角色逐渐形成,需具备跨学科知识背景,在技术和业务间有效沟通和决策。 掌握算法知识的必要性: 理解产品核心技术,做出更合理产品决策。 与技术团队有效沟通,减少信息不对称误解。 评估技术可行性,在产品规划阶段做出更准确判断。 把握产品发展方向,了解算法前沿。 提升产品竞争力,发现独特优势,提出创新特性。 提升数据分析能力,很多 AI 算法涉及数据处理和分析。
2025-02-17
我怎样用低代码工具去构建我的AI智能体?LLM应用?
以下是关于如何用低代码工具构建 AI 智能体和 LLM 应用的一些建议: 在构建基于 LLM 的应用时,Anthropic 建议先寻找最简单的解决方案,只在必要时增加复杂度。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。不过,对于许多应用来说,优化单个 LLM 调用(配合检索和上下文示例)通常就足够了。 目前有许多框架可以简化智能系统的实现,例如: 1. LangChain 的 LangGraph。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet(一个拖放式 GUI 的 LLM 工作流构建器)。 4. Vellum(另一个用于构建和测试复杂工作流的 GUI 工具)。 这些框架通过简化标准的底层任务(如调用 LLM、定义和解析工具、链接调用等)使入门变得容易,但它们往往会创建额外的抽象层,可能会使底层提示词和响应变得难以调试,也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。建议开发者先直接使用 LLM API,许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。 此外,还有以下相关工具和应用: 1. VectorShift:能在几分钟内构建和部署生成式人工智能应用程序,利用大型语言模型(例如 ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。 2. Unriddle:帮助更快阅读、写作和学习的工具,能简化复杂的主题,找到信息,提问并立即获得答案。 工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLM 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。Omni 的计算 AI 功能体现了这种方法,它利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 详细示例请参考:https://github.com/anthropics/anthropiccookbook/tree/main/patterns/agents
2025-02-17
AI agent 是什么?
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态) 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体) 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-02-17
有很多通过学习易经的卦象来预测未来,通过AI能不能学习易经来占卦,要怎么做
目前关于通过 AI 学习易经来占卦的相关内容较为复杂和多样。 一方面,有案例如“问事屋一个摇签算卦 Bot”,其创建者原本打算做基于六爻周易解卦的 bot,但因 AI 对结果的分析和推理存在不足,后转换思路,以庙里摇签抽签的经历为灵感,收集整理相关签文并搭建工作流。 另一方面,从理论角度来看,AI 模型具有一定的灵活性和学习能力,但如同简单神经网络在预测未来时可能失败一样,AI 在学习易经占卦这类复杂且具有深厚文化内涵和哲学思考的领域,仍面临诸多挑战和限制。 需要注意的是,易经占卦更多是一种文化和哲学的表达方式,其结果并非具有科学可验证性的准确预测。
2024-10-06
如何构建自己领域的微调数据集
构建自己领域的微调数据集可以参考以下步骤: 1. 确定目标领域和应用需求:明确您希望模型在哪个细分领域进行学习和优化。 2. 数据收集:广泛收集与目标领域相关的数据。例如,若要训练二次元模型,需收集二次元优质数据;若要微调 Llama3 ,可参考相关文档获取数据集。 3. 数据标注:对收集的数据进行准确标注,以便模型学习到有效的特征。 4. 数据清洗:去除无效或错误的数据,提高数据质量。 5. 特殊处理:如为数据添加特殊 tag 等。 以 Stable Diffusion 为例,可收集如 833 张宝可梦数据,并按照特定步骤进行清洗、标注和添加特殊 tag 。对于 Llama3 ,获取数据集后上传到服务器,编写并执行微调代码即可进行微调。 在微调过程中,还需注意一些问题,如大型语言模型微调可能面临训练时间长、成本高等挑战,此时可考虑参数有效调优等创新方法。
2025-02-17
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架,提供下prompt样例
以下是几种适用于在飞书上构建企业每日利润表分析与汇报助手的 prompt 框架及样例: 1. ICIO 框架: 指令:明确执行的具体任务,如“分析企业每日利润表并生成详细报告”。 背景信息:提供执行任务的背景信息,如“企业近期业务拓展,成本有所增加”。 输入信息:大模型需要用到的一些信息,如“利润表的各项数据”。 输出信息:明确输出的具体信息的要求,如“报告以表格形式呈现,包含各项利润数据的同比和环比变化,并给出简要分析”。 2. BROKE 框架: 背景:说明背景,如“公司处于业务增长阶段,需要密切关注利润情况”。 角色:设定特定的角色,如“利润表分析专家”。 目标:明确任务的目标,如“准确分析每日利润表,为管理层提供决策支持”。 关键结果:明确可以衡量的结果,如“报告中的分析结论能帮助管理层制定有效的成本控制策略”。 调整:根据具体的情况,来调整具体的结果,如“根据市场变化调整利润分析的重点”。 3. CRISPIE 框架: 能力和角色:期望大模型扮演的角色洞察,如“专业的财务分析师”,提供幕后洞察力、背景信息和上下文。 声明:简洁明了的说明希望完成的任务,如“对每日利润表进行全面深入分析”。 个性:回应的风格、个性或者方式,如“以简洁明了、数据准确为特点”。 实验:提供多个回答的示例。 4. 情境框架: 情境:描述当前的情况,如“企业面临市场竞争,利润波动较大”。 任务:明确要完成的任务,如“分析每日利润表,找出利润波动的原因”。 行动:说明采取的行动,如“对各项收入和成本进行详细比对”。 结果:阐述期望得到的结果,如“生成包含原因分析和建议的报告”。
2025-02-14
如何使用钉钉中的知识库构建智能问答机器人
以下是使用钉钉中的知识库构建智能问答机器人的步骤: 1. 纯 GPT 大模型能力的微信聊天机器人搭建: 配置极简未来(Link.AI)平台:按照官方教程操作,教程地址为 https://docs.linkai.tech/platform/createapp ,学习补充可参考 https://docs.linkai.tech/platform/quickstart 。 教程中的应用是创建一个具体的 AI 问答机器人应用。 教程中的知识库是给绑定到指定问答机器人的资料数据集,让机器人基于这些内容回答问题。 知识库应用中的应用设定是给 AI 机器人的提示词内容或者人设,关于提示词可查看教程 https://waytoagi.feishu.cn/wiki/OqJQwzq2wi9EIOkFtFkclM24nSe 。 创建成功的 AI 应用,记住应用的应用 ID,用于后续对接微信聊天机器人。 生成 API Key 用于后续功能对接,地址为 https://linkai.tech/console/interface ,点击创建 API Key 并记住。 2. 用 Coze 免费打造自己的微信 AI 机器人: 设计 AI 机器人: 开始节点和结束节点会自动生成。 开始节点配置:输入变量名写“Question”,描述写“用户输入的问题”,变量类型选“String”。 知识库配置:将开始节点和知识库左侧节点连接,知识库输入引用开始节点的变量“Question”,点击“+”号选择之前创建好的知识库,将知识库右侧节点与结束节点左侧连起来。 结束节点配置:用于输出 AI 机器人的最终结果,回答格式设置为“您的问题:{{question}} 问题的答案:{{answer}}”,在输出变量那里定义“question”引用“开始节点的 Question”,“answer”引用“知识库节点的输出 output”,回答模式选择使用设定的内容直接回答。 试运行测试:点击右上角“试运行”,输入问题如“AIGC 课件”,点击右下角“运行”,查看工作流每一步的详细输入和输出。
2025-02-12
如何构建一个检查word文档格式的智能体
构建一个检查 word 文档格式的智能体可以参考以下步骤: 1. 考虑到对照精读环节适合批处理形式,使用“分段输入正文”将正文分割,用 LLM 节点批处理每一段的对照精读,最终“拼合精读结果”以输出完整文本。 2. 用户输入原文时,在 AI 对话窗口中通过开场白提示用户按格式输入文章,用“”符标记标题句。 3. 用 Python 脚本去掉标题句,并把剩下内容按照段落的换行逐段输出为 Array<String>格式。附上相关 Python 代码。 4. 试运行以验证节点是否按预期运作,分次输出每一段原文。 此外,在创建智能体的知识库方面: 1. 手动清洗数据可提高准确性,如创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以“”分割。 2. 对于本地 word 文件,注意不能一股脑将所有内容放入训练,应先放入大的章节名称内容,再按固定方式人工标注和处理章节内详细内容。 3. 完成后点击发布,确保在 Bot 商店中能搜到,否则无法获取 API。
2025-02-10